The Structure of Nilsson States and Rotational Bands Generated by Spherical Particle-Vibration Coupling in Odd-A Nuclei

V. Paar, S. Brant, G. Alaga, G. Dodig, Lj. Udovičić, Prirodoslovno-matematički fakultet, University of Zagreb and "Rudjer Bošković" Institute, Zagreb, Yugoslavia G. Leander, NORDITA, Copenhagen, Denmark

Nilsson states and rotational bands are generated by coupling spherical single particles to the anharmonic quadrupole vibration. Third- and fourth-order anharmonicities are included; also, the coupling to SU(6) anharmonic quadrupole phonons in the SU(3) limit is performed. The systematics of the band structure and the implicit Coriolis coupling are discussed. The calculation provides a simple and transparent mechanism for generating model wave functions of Nilsson states and rotations. For each rotational band the states are grouped into two classes, each of them having a similar structure of the wave functions. It is shown how the maximum alignment of phonons and the averaging over the aligned and nearlyaligned structures plays a basic role in generating rotations. The resulting prolate-oblate symmetry and triaxiality are discussed.