On the I=j-2 Anomaly and the Doublet-Triplet Condition

V. Paar, Prirodoslovno-matematički fakultet, University of
Zagreb and "Rudjer Bošković" Institute, Zagreb, Yugoslavia

The lowering of the I=j-1 and I=j-2 states, referred to as the I=j-1 and I=j-2 anomalies, is a pronounced feature in $f_{7/2}$ nuclei. These nuclei exhibit an outstanding asymmetry: in $f_{7/2}$ odd-A nuclei $\binom{51}{25}$ Mn₂₉, for example), the low-lying doublet 7/2, 5/2 appears, while in $f_{7/2}^3$ odd-A nuclei (such as the cross-conjugate $\binom{45}{22}$ Ti₂₃ nucleus), the ground-state triplet 7/2, 5/2, 3/2 appears. The I=j-1 and I=j-2 anomalies have also been discovered in other regions of the periodic table.

We point out here that the I=j-2 anomaly appears as a second-order effect in the CVM, analogously to the I=j-1 anomaly¹⁾. We show that the only possible sizable influence on the splitting of the one-phonon multiplet $\frac{1}{2}(j^3)j$, 12;I>1 is due to the possible presence of the single-particle configurations $\frac{1}{2}=j\pm2>$. Owing to the $\frac{1}{2}=2>$ single-particle state in the second order the contribution from the cluster $\frac{1}{2}(j^2)0$, $\frac{1}{2};I=j^2>1$ leads to a strong shift downwards of the $\frac{1}{2}=j-2>1$ state, without affecting sizably other members of the multiplet. In the asymptotic limit this shift is even larger than for the $\frac{1}{2}=1$ state, and the $\frac{1}{2}=1$ state becomes the ground state.

Based on the CVM discussion, we introduce a new asymptotic rule, a doublet-triplet condition, and exemplify it throughout the nuclear systematics.

¹⁾ V. Paar, Nucl. Phys. A211 (1973) 29.