Theoretical Interpretation of the ¹⁴²Ce(d,p) ¹⁴³Ce Reaction V. Paar, Prirodoslovno-matematički fakultet, University of Zagreb and "Rudjer Bošković" Institute, Zagreb, Yugoslavia G. Vanden Berghe, Seminaire voor Wiskundige Natuurkunde, Rijksuniversiteit Gent, Gent, Belgium

The $^{142}Ce_{84}$ and $^{142}Ce_{85}$ nuclei are described by coupling two- and three-particle clusters to quadrupole vibrations, respectively. We used the single-particle positions as centres of gravity determined experimentally from (d,p) reactions. The phonon energy was $\hbar\omega=1$ MeV, adopted as an average phonon energy for medium-heavy nuclei; the pairing strength was G=21/A. The only free parameter was the particle-vibration coupling strength; it was chosen to be a=0.9. The calculated wave functions of the target and daughter nucleus were inserted in the expression for the spectroscopic factor. These theoretical results for low-lying states are compared with experimental data in table 1, and are discussed qualitatively. In the zeroth-order approximation, the spectroscopic factor is large for the $0\frac{1}{1}$, $7/2\frac{1}{1}$ transfer reaction, while it is zero for the $0_1^+ + 3/2_1^-$, $0_1^+ + 5/2_1^-$, $0_1^+ + 9/2_1^-$ reactions, because the states $3/2_1^-$, $5/2_1^-$ and $9/2_1^-$ are of the $(f_{7/2}^3)$ I clustertype. This pattern is qualitatively conserved for a=0.9 owing to the partial destructive interference. It should

TABLE 1				be stressed that the
^J th <u>e</u> or	S(theor)	$^{\rm J}$ exp	S (exp)	presence of the low-lying
3/21	0.10	3/2	0.03	triplet 3/2 _{q.s.} , 7/2
$7/2\frac{1}{1}$	0.62	7/2	0.50	(21 keV), 5/2 (40 keV)
$5/2\frac{1}{1}$	0.02	5/2	0.02	excludes the possibility
9/21	0.13	9/2	0.26	of interpreting these
$3/2^{\frac{2}{2}}$	0.31	3/2	0.50	states by coupling odd
9/22	0.37	9/2	0.44	particle (quasiparticle)
5/22	0.04	(5/2)	0.09	to the ¹⁴² Ce core.