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Abstract: 1t has been widely recognised that the randomness of a stock market may actually be an
indicator of an underlying strange attractor which has a fractal structure and supports
chaotic motion. The application of non-linear methods to such financial data may indicate
the presence of nonlinearities and low-dimensional chaos. These methods include rescaled
range (R/S) analysis, correlation dimension calculation and estimation of Lyapunov
exponents. This study presents a preliminary analysis of these tests when applied to the
monthly TOPIX data of the Tokyo Stock Exchange. Although there are a number of
limitations for applied non-linear methods such as the presence of noise and limited data
size, the results indicate the presence of nonlinearities and the long memory effect in the
observed data set. In order to complement these methods, neural networks are used for
non-linear modelling and the prediction of the TOPIX data. The results can serve as an
additional evidence of a deterministic system by giving accuracy estimates for short-term
prediction,
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Introduction

The finding that a system which appears to behave randomly may in fact be a
low-dimensional deterministic non-linear system has motivated the application of
non-linear methods to financial data (Hinich ef al, 1985; Scheinkman ef al, 1989).
Consequently, recent research of the stock market data has used techniques developed
in physics to analyse nonlinear systems in order to discover non-periodic cycles
governed by an underlying strange attractor. An analysis using these techniques may

* Teo Jasi¢ is a Ph.D. candidate at the Department of Industrial Engineering and Operations Research,
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reflect the presence of important nonlinearities in the business fluctuations of the
economic system. In practice, a deterministic system is often termed ‘chaotic” if it
shows sensitive dependence on initial conditions and has a relatively small number of
degrees of freedom.

Studies in this area include the work of Brock, Hsieh and LeBaron (1991) who
found non-linear dependence in the CSRP (Centre for Research in Security Prices)
value weighted US stock returns index. Peters (1991) provided additional evidence
that the S & P 500 index has an underlying low dimensional chaotic attractor along
with similar findings for the data comprising UK, German, and Japanese market
indices. Japan is cited as an interesting case as several studies have found an important
non-linear structure in the Japanese market (Frank er al, 1989). The common
methodology used in these studies is the BDS-test (Brock, Dechert and Scheinkman,
1988). The BDS-test is based on the correlation dimension statistic which contrasts
the null hypothesis of independence and identical distribution of time series against a
general alternative of dependence, either deterministic or stochastic.

In this study, several algorithms for the analysis of non-linear and chaotic time
series are applied to observed TOPIX (Tokyo Security Exchange Stock Prices Index)
data. The rescaled range (R/S) analysis is used to detect long-memory effect in the
TOPIX time series over certain time period. In addition, the correlation dimension,
which provides an estimate of the fractal dimension of the system, is being calculated
by the Grassberger and Procaccia method (1983a). The lower bound for Kolmogorov
entropy (K,, Renyi entropy of second order), which is a useful indicator of system
behaviour, can be calculated as the by-product of correlation dimension calculation.
As a final test, the largest Lyapunov exponent is calculated to provide an additional
evidence of the possible existence of a strange attractor in the Japanese Stock Market.

The aim of these algorithms is to calculate geometric and dynamical invariants of
an underlying strange attractor, such as correlation dimension and Lyapunov
exponents. The largest Lyapunov exponent is an indicator of how far into the future
reliable predictions can be made, and the correlation dimension is an indicator of the
complexity of a possible predictive model (Casdagli, 1989). It should be noted from
the outset that the application of these algorithms is plagued with several problems, of
which the most prominent are the limited size of data sets and the presence of noise in
the data. Moreover, a number of researchers emphasise the necessity of exact and
precise statistical analysis when using these algorithms which will make findings
unambiguous (Jensen, 1993).

In order to complement these non-linear methods and to test for determinism, a
neural network prediction model is also constructed. The observations of the
prediction error by using neural networks to approximate given data set may provide
insights about the deterministic properties of the observed data set.
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Algorithms for non-linear Analysis
R/S analysis

The rescaled range analysis (R/S analysis) (Hurst,1951) is able to distinguish a
random series from a non-random series, irrespective of the distribution of the
underlying series (Gaussian or non-Gaussian). It is a robust statistics for measuring
the amount of noise in a system and can be used to determine the average length of
nonperiodic cycles. R captures the maximum and minimum cumulative deviations of
the observations x, of the time series from its mean (1), and it is a function of time (the
number of observations N)

Ry =maxlx.v ] - minlx.v] ®

where .
X, =2.(x, ), =1, N )

f=1

The R/S ratio of R and the standard deviation S of the original time series can be
estimated by the following empirical law (Mandelbrot,1972): R/S = N” when
observed for various N values. For some value of N, the H ¢xponent can be calculated
by.

H = log(R/S)/log(N), 0<H<I. 3)

and the estimate of A can be found by calculating the slope of the log/log graph of R/S
against N using regression. The R/S used in the regression between /og(R/S) and
log(N) for various N, is the average R/S value for each N. By regressing over the range
of different values of N, the highest value obtained indicates the average length of the
nonperiodic cycle (mean orbital period) of the observed system.

The Hurst exponent H describes the likelihood that two consecutive events are
likely to occur. There are three distinct classifications for the Hurst exponent: (a) H =
0.50, (b) 0<H<0.50, and (c) 0.50<H<1.00. The type of series described by H = 0 is
random, consisting of uncorrelated events. However, value H = (.50 cannot be used
as an evidence of a Gaussian random walk, it only proves that there is no evidence of
long memory effect. A value of H different from 0.50 denotes the observations that
are not independent. When 0<H<().5, the system is an anti-persistent or ergodic series
with frequent reversals and a high volatility. For the third case (0.5<H<1.0), H
describes a persistent or trend-reinforcing series which is characterised by long
memory effects.
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Correlation Dimension and Kolmogorov Entropy

The fractal dimension of given time series can be calculated by using the method of
state-space reconstruction with time delay co-ordinates (Packard et al., 1980). To
extract information from a time series, it is necessary to geometrically reconstruct the
attractor on which the trajectory producing the data is assumed to lie. This is achieved
by constructing (embedding) m-dimensional vectors from a single co-ordinate (any .
single output of a dissipative dynamical system) and using time delays (lags) of the
same variable. For the noise free data, it means that the topological properties of the
attractor of the original system are the same as those for the embedded system
(Takens, 1981). The details of the attractor may change, but the topological
characteristics or the geometrical form remain intact. This is an important property as
it implies that all systems are observable, regardless of whether the proper states
needed to form an attractor are known or measurable.

The reconstructed phase space has all the characteristics of the real, original phase
space, given that the time delay t (in units of orbital periods) and embedding
dimension m are properly specified. The relationship m.=/ is often used in
reconstructions for the calculation of correlation dimension and Lyapunov exponent
(Wolfet al., 1985). If the time lag is represented in the units of observed time periods
[, then Q = ml and 1 = [/Q where Q is the mean orbital period which can be estimated
from the R/S analysis. Itis the length of time until observations become uncorrelated.

The fractal dimension estimate provides important information about the
underlying attractor. Grassberger and Procaccia (1983a) estimated the fractal
dimension as the correlation dimension, D, which measures how densely the attractor
fills its phase space by finding the probability that any one point will be a certain
distance, r, from another point.

The correlation integral, C,,(7), for a time series {X,- =/, ... N} of m-dimensional
vectors is an estimator of the probability that two vectors of the time series of length m
are within a distance r of each other:

. 2
C,(r)y=lim——> I.(X,X]), 4
()= fim s BT XD @
where N,, = N-(m-1), m is embedding dimension, and Z(x, y) is an indicator
function which equals 1 if|x - y| < 7, and 0, otherwise |x — y||is the sup-norm (i.e., the
L ”norm) which serves as a distance measure.
The correlation dimension for embedding dimension m is defined as:

D, = lirgl logC,(r,N)/logr (5)
N 5x

and the correlation dimension itself 1s
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D=1limD, 6)
m—»0

The correlation dimension can be used to differentiate between an apparently
random system that is a low-dimensional deterministic chaos and a high dimensional
or stochastic system. If chaos is present, i.e. the original time series is generated by an
attractor of finite dimension, then the dimension estimate D,, will stabilise at some
value for increasingly larger values of the embedding dimension m. If this
stabilisation does not occur, the system is considered ‘high-dimensional’ or
stochastic. For purely stochastic system the correlation dimension does not converge

and is equal to m.
The estimate C,,(7,N) of the correlation integral has an asymptotic behaviour (for m

sufficiently large and » small) of the following form (Grassberger and Procaccia,
1983b):

Cm(r)=A1,iLr§OCm(r,N)~rD exp(-mrK ) @)

where K is a lower bound for the Kolmogorov entropy K, which has the following
properties: K, <K, K, > 0, K, is infinite for random systems, and K, # 0 for chaotic
systems. K, > 0 is a sufficient condition for chaos and is found to be numerically
close to Kolmogorov entropy for many dynamical systems. Thus, if logC, (r,N) is
plotted against /og r for increasing values of m, and assuming that the correlation
dimension D exists, a series of approximately parallel lines with common slope D will
be obtained, and the displacements between these lines will be multiples of the factor
exp(-mrK ). In particular,

logC,(r,N)-logC, , (r,N)=rK, ®
and K, can be estimated from this formula, as

K,~limK, ,(r) €)

r—0
The Spectrum of Lyapunov Exponents

Chaotic attractors are characterised by the sensitive dependence on initial conditions.
The Lyapunov exponents are related to the expanding or contracting nature of
different directions in phase space. A positive exponent indicates a ‘direction’ in
which the system exhibits the repeated stretching and folding that decorrelates nearby
states on the attractor. Such behaviour is chaotic because the long-term evolution of
an initial condition that is specified with any uncertainty cannot be predicted. The
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largest Lyapunov exponent represents the divergence of points in phase space, or the
sensitive dependence on the conditions represented by each point. For a chaotic
attractor, it is greater than zero. The i-th one dimensional Lyapunov exponent (L) is
defined in terms of the length of the stretched principal axis r,(z) (Wolf et al,1985):
L, —hm log, ——= (D) (10)
==t r(0)

The importance of Lyapunov exponents lies in the fact that they quantify an
attractor’s dynamics in information theoretic terms. The exponents measure the rate
at which system (dynamics) processes create or destroy information (Shaw, 1981).
Therefore, the exponents are usually expressed in bits of information/s or bits/orbit
for a continuous system.

In this study, the method of Wolf et al. (1985) for calculating the largest Lyapunov
exponent L; from experimental data is used. It measures the divergence of nearby
points in the reconstructed phase space, and indicates how the rate of divergence
scales over fixed intervals of time. In reality, we deal with a limited amount of
nonstationary and noisy data, so that the embedding dimension m, the time lag t, and
the maximum and minimum allowable divergence distance must be chosen
appropriately. The relationship m, = I is used in reconstructions, where m is the
embedding dimension and . is the delay in units of orbital periods.

Results of the non-linear Analysis for the TOPIX Data
Data Summary

Data used in this study consist of the monthly TOPIX time series covering the period
between March 1970 and March 1994. The whole set contains 289 monthly
observations.

For market analysis, percentage changes or logarithmic returns defined as:
Si=log(P,.)/P;) are commonly used. For R/S analysis, logarithmic returns are more
appropriate than the more commonly used percentage change in prices because R/S
analysis is the cumulative deviation from the average and logarithmic returns sum to
cumulative returns which is not the case for percentage changes. Figure 1 shows the
graph of logarithmic monthly returns of the TOPIX.

It should be pointed out that there is a severe data limitation in finance with respect
to data size and the sampling frequency. As one extends a data-set back in time,
non-stationarity becomes increasingly more likely. Thus, the requirements of long
sampling intervals (to avoid micromarket structure dependencies) and short histories
(to avoid micromarket structure dependencies) and short histories (to avoid
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non-stationarity) impose severe data limitations in finance (Brock ez al, 1992). In the
analysis of nonlinear and chaotic systems, it is advantageous to have data covering
longer time periods rather than large number of data points in a shorter period because
time series may not be invariant with respect to time (i.e., ‘time arrow’ effect in the
nonlinear systems).

Figure 1: Logarithmic monthly returns of the TOPIX
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In the case of the calculation of correlation dimension of the time series, returns are
not appropriate for non-linear dynamic analysis because by using returns the data is
prewhitened and the serial dependence between observations may be eliminated
(Theiler et al, -1992). It may be the case that this - serial dependence can reveal
non-linear dependent structure through the noise. An additional problem for
economic time series involves de-trending prices for economic and inflationary
growth. If data for economic and inflationary growth are not available, the simple
procedure which will log the price and subtract appropriate value depending on the
time horizon may be used. For the case of the TOPIX data for which the inflationary
data were not available, we use the following formula:

S. =log,(P,) —(a* index +Constant) an

where P; represents the original time series, S; denotes detrended price series, and
index is the ordinal index of time series data points, a is a constant, and for constant
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the mean of the series Jog,(P;)-a*index can be used. The resulting loglinear detrend
time series of the Topics is shown in Figure 2.

Figure 2: Time Series of loglinear detrended TOPIX: March 1970 - March 1994

0.8

0.6 -
0.4 F

02}

[«]

"TOPIX_detrend’ —

-0.4

NS v

-0.8 7o 1578

1985

Table I: Regression between log(R/S) and log(N)

R
Adj. R?
St. Error
F Test

Sig. F.

X coef. B
Constant

0.99122
0.99116
0.02093
15475.52
0.0000
0.656899
-0.182272

Results of non-linear Analysis

Results of R/S Analysis

1004

The results of applying the R/S analysis to the log-returns of the TOPIX data are
shown in Table 1. The H value is found to be 0.6568 (B coefficient of X, slope
estimate). It is calculated by using regression between the log(N) and log(R/S) over
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the whole range of N values. The H value of 0.6568 indicates an evidence of
non-linear dependence in the series although a high level of noise seems to be present.

Figure 3: R/S Analysis of Japanese TOPIX index: Monthly Returns, March 1970
- March 1994
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By running regression over the range of data which increases with the number of
data points corresponding to 2, 3,...,10 years, the largest slope estimate is obtained for
the period of four years, although the values for neighbouring periods (3 or 5) are not
significantly lower. Consequently, for the observed data set, the TOPIX returns have
a mean orbital period or mean memory period of approximately 4 to 5 years.

Figure 3 shows the plots of Jog N against log(R/S) for the Japanese market. The
point on x-axis (log N) for which the R/S observations begin to fluctuate and become
erratic is close to the average cycle length of the system. It seems that the Japanese
market has a four to five year cycle on the account of the data available, although it
cannot be readily seen from the log/log plot. The cycle length can be associated with
the economy cycle of the country but the nature of this relationship is not easily
determined.

The validity of the H estimate can be tested by randomly interchanging the order of
data points in original time series and calculating the H exponent for a new series. For
the long memory effect, the order of data is important so that a new series should have
lower H estimate, although the frequency distribution of the observations remains
unchanged. After shuffling original time series to ten new series, the average
obtained H estimate was much lower (0.51 ).
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Calculation of Correlation Dimension

Using the results of the R/S analysis for the definition of the appropriate time lag, the
correlation integrals C(¥) are calculated for embedding dimensions from 3 to 15. The
initial distance » was chosen to be 10 per cent of the amplitude range of the original
time series. Figure 4 shows the Jog/log plots of correlation integrals for embedding
dimensions of 3 to 15. The regression is run for each dimension over the linear
regions of the log/log plots. The correlation dimension should eventually converge to
its true value as the embedding dimension m is increased. Figure 5 shows the results
of the regression between log C(r) and log r, which are the estimated correlation
dimensions D,, for each dimension m (represented as points on the lower curve). It
can be noted that correlation dimension values (D,,) converge to a value of 2.355 for
increasing values of dimension m, so D ~ 2.355.

In order to validate the results of correlation dimension estimation, a new time
series is generated from the original data by choosing data at random with
replacement. For the reordered data the slopes of correlation integrals will increase
with m indefinitely since the structure of the data is lost in permutation (Isham, 1993).
If the original time series is random then the order of the time series will not change
the value of the correlation dimension. The correlation dimension statistic for the
‘randomised’ loglinear de-trended TOPIX data can be distinguished from the same
statistic for original data as shown in Figure 5. Observation of the actual values of the
statistic for original and ‘randomised’ data reveals that difference can be greater than
10 per cent. It means that there is evidence of a non-linear structure in the original
time series. This procedure should be viewed as refuting some hypothesis about the
time series, rather than proving the evidence of chaotic system.

From the correlation dimension calculations, the lower bound K for Kolmogorov
entropy as given in Formulas 8 and 9 can also be estimated. Figure 6 shows the K,
values for the observed data for the first three values of  taken in the linear region of
slopes (see Figure 4). The extrapolated value seems to be lower than the value of the
Lyapunov exponent (for the linear region of the correlation dimension integrals, the
value of K is in the range of 0.015 to 0.03). The problem with this method is that the
results are sensitive on choices of » and may diverge for higher embedding
dimensions and short time series.

It is important to note that a method of correlation dimension calculation by fitting
a straight line to the plot of Jog Cm (¥, N) against log r has some deficiencies such as
the wandering intercept problem (Cutler, 1991) and the effects of the observation
noise at small distances of . There is in principle a trade-off between taking r small
enough to avoid non-linear effects and taking r sufficiently large to reduce statistical
errors due to lack of data (Isham, 1993).
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Figure 4: Correlation Integrals for loglinear detrended TOPIX data
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Figure 5: Estimate of the correlation dimension for loglinear detrended TOPIX
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Figure 6: Extrapolated values of K, (r) for loglinear detrended TOPIX data
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Figure 7: Convergence of the largest Lyapunov exponent
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4, and 5-dimension reconstructed phase space because the estimated value of the
correlation dimension is D = 2.355. Embedding the attractor in a higher dimensional
space is desirable and results in stretching the attractor and reducing systematic errors
due to a non-uniform coverage of the attractor (Isham, 1993). Evolution time steps T
of 4 and 6 months were tried for the experimental data set in order to avoid folds, and
the maximum divergence between two points was chosen to be 10 per cent of the
amplitude range of the time series.

Figure 7 shows the stable convergence of the estimated values of the largest
Lyapunov exponent given the evolution time step of 6 months to 0.026698 for
dimension m = 3, and to 0.017057 and 0.013508 for dimension 4 and 5 respectively.
If the evolution time step is taken to be 4 months, the Lyapunov exponent estimates
are slightly higher for the observed dimensions (3, 4, and 5).

Summary of Results for non-linear Methods

The purpose of the applied algorithms was to search for the presence of important
nonlinearities in the TOPIX monthly data. The results should be viewed as an
exploratory data analysis. The results of the R/S analysis indicate that the long
memory effect is present, with an average cycle of 4 to 5 years. Similar result is also
presented in the calculation of the largest Lyapunov exponent with a value of
approximately 0.0267 bit/month. Therefore, the whole information is expected to be
lost in 1/0.0267 ~ 38 months (for an embedding dimension 3) or 1/0.017057 = 58
months in the case of the embedding dimension of 4. Correlation dimension estimate
of 2.355 shows that definite temporal correlations in the data do exist and provides an
indication of the complexity of the system.

The Neural Network Prediction Model Approach

The algorithms applied in previous sections help to calculate geometric and
dynamical invariants of an underlying strange attractor. However, the data
requirements for these algorithms are often prohibitive and the calculated invariants
are of limited practical use. Another approach to determine some of the properties of
the time series is to construct a prediction model directly from time series data
whereas the prediction will be treated as an ‘inverse problem’ in dynamical systems
(Casdagli, 1989, 1991; Farmer and Sidorowich, 1987). The essence of the inverse
problem is to construct a non-linear map, which is able to capture the asymptotic
behaviour of the observed time series. Such a map, given initial assumptions and
satisfactory performance criteria, can serve as a candidate for a prediction model. The
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ability to forecast accurately with such a model is the test of whether or not
low-dimensional chaos is present. This method can be used to complement previously
described algorithms.

Embedding with State Space Reconstruction

It is assumed that the time series observation x, is a scalar variable sampled at discrete
intervals of time ¢ =nt, ] <n <o and that the underlying dynamics is that of a
strange attractor lying on a (possibly) low-dimensional invariant manifold of a
dynamical system. Using state space reconstruction, a smoothmap f:R"™ —> R canbe
constructed for observed values of the finite time series x,1<n<N:

fx((n+m=1),... . x(nt))=x((n + my). (12)

A value m in the formula is referred to as an embedding dimension and it is possible
to find the minimal embedding dimension m* for which the formula holds. For a
deterministic system, it is sufficient to take m > 2D for equation (12) to hold. The
results of Sauer et al (1991) also show that if D <m < 2D, equation (12) can also hold
where D is the dimension of the reconstructed attractor. On the other hand, if the time,
series is generated by a stationary stochastic process then a noise term will appear on
the right-hand side of equation (12) (for all values of m) and the delay vectors are
expected to reconstruct a set of dimension m.

Evaluation of the Prediction Errors

The prediction error can be evaluated either as the normalised mean squared error
(NMSE) or the normalised root mean squared error (NRMSE) of the testing
(prediction) set P described as follows:

E,(P)=—r v 2,5, )’ = T K+ £, (K ) X (= DD (1)
Gp nel Gp neP

where 62 is the estimated variance of the time series for a testing set P, N is the
number of data points in a set P, x, is the actual value and £ is the predicted value for
certain n in set P. E,, is the normalised mean squared error and E ,’n” is the normalised

root mean squared error.
Although the discrimination between deterministic or stochastic models is often
not clear-cut, the method based on prediction can be used to complement algorithms
described in the previous sections. The procedure consists of evaluating the
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prediction error for increasing values of m until an acceptably small value is found for
E,.. In the case of chaotic time series, it is expected that the prediction errors E,, will
suddenly decrease to a value close to zero as m is increased to the correct minimal
embedding dimension m* and remain close to zero for values of m above m*. If the
time series is random, no such decrease should be observed (Casdagli, 1989). An
assumption here is that m is large enough for the map to be an embedding so, in the
deterministic case, improved forecasting will occur as m increases until the
appropriate value of m* is reached and then no further improvement will result.

In addition, the prediction errors can be observed for values of m and N (number of
observations in the testing set), as the function of the number of iterations in a multi
step prediction. For a chaotic system, E,, should increase exponentially with the
increasing number of iterations, at least for a while (Casdagli, 1992).

A limitation for the prediction method in general is that the sampling rate » must be
kept reasonably small, so that the approximated function does not have wildly varying
slopes (Casdagli, 1989). In this study, time delay is 1.

Prediction with Neural Networks for Analysis

The numerical techniques appropriate for this problem must be able to interpolate or
approximate unknown functions from scattered data points. The common used
techniques are piecewise linear approximators, radial basis functions and neural
networks. With using data of limited size, smoothing methods such as thin plate
splines or neural networks are found to be most appropriate (Casdagli, 1989).

For this experiment, feed-forward single hidden layer neural networks are used,
consisting of input units, hidden units, and one output unit: The input units correspond
to time-delay vectors of a certain embedding dimension m, and the output unit
represents predictions for the actual time series observations. A neural network witha
sigmoid activation function is performing an operation similar to a multidimensional
spleen approximation (Lapedes, Farber and McCelland, 1987), such that any arbitrary
nonlinearity is sufficient to approximate any function. The nonlinearities are located
in the non-linear transfer function of the hidden units, which is fanh.

Neural network units perform a weighted sum of the output of the preceding layer
and in the addition the hidden units carry out a transformation by a sigmoidal transfer
function g. If the input to the network are observationsx,_, . ,...,x, then the output 4,
of the £ units in the hidden layer and the output o are given by:

h, =g(z‘w,g.xi_j+l +0,) (14)
j=1

o= w.h, +9, (15)
k
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where w,, .0, ,w,,and 8, are parameters of the system. In a training phase these
parameters are adjusted in order to produce the desired output using the back
propagation algorithm (Rumelhart, 1986). The mean squared error between the
output (with a chosen number of hidden units £ and function g) and the observed value
1s to be minimised.

Results of the Neural Network Prediction Model Approach for the TOPIX Data
Training and Testing Data Sets

Training and testing data for neural network are derived from the 289 samples such
that data from the earlier period (1970/1989 bottom data) are used for training (200
samples) while the rest of data sets (1989-1994) are used for testing to observe the
prediction error. Input vectors are adjusted to zero mean and unit variance for the
neural network inputs in the interval (-1,1) (tanh activation function). In contrast to
artificially generated data, the economic time series are limited in size so that
conclusions can be made only for the allocated testing set.

For our experiments, the values of m from 3 to 10 are used and the prediction error
is observed for both single-step prediction and multi step prediction method. The
networks are trained with different learning rates in order to achieve optimal
convergence. The results presented here are obtained using a learning rate of 0.05 and
no momentum. Different neural network architectures which vary the number of
hidden nodes are also tried out. The networks are chosen with the number of hidden
units being less than the number of inputs.

Results of the Neural Network Prediction Model for Single-Step
and Multi-Step Prediction

To test the prediction errors of trained neural network, two types of predictions are
used: single-step prediction and multi-step prediction.

The term single step prediction refers to the use of the actual values of the observed
time series for all input units. The normalised mean squared error is used to evaluate
the single-step prediction performance. Given in the form (13), it is independent of
the dynamic range of the data and of the length of time series. In practice, this method
will yield less smooth prediction values but it can help evaluate the adaptability and
robustness of the prediction model.

In multi step prediction, the set of predicted rather than actual values is used as the
input of delayed input vectors to predict the value of a target in the next period. The
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network predicts the output variable one step ahead of time, but uses the predicted
rather than the actual value for the current prediction. The prediction error in this case
will depend on the number of iterations.

The resulting prediction errors for single-step prediction (on a testing set starting
from index 200) are shown in Table 2. For m = 6, the lowest estimate of the prediction
error is obtained (0.123201) although the error for m = 4 does not differ significantly.
For m 2 7, the prediction errors start increasing. Figure 8 shows the predicted and
actual values over the whole data set for m = 6 using neural network with 6 inputs and
4 hidden units (6x4x1 network). The prediction errors are observed for the values of
m such that D < m < 2D and m > 2D where D is the dimension of the reconstructed
attractor (2.355 in this case). For a (stationary) stochastic process, the embedding will
include a noise term and the error will increase with increasing values of m. In our
case, the prediction errors for m =4 and m = 6 decrease when compared to prediction
errors for m = 3 and m = 5 respectively. This behaviour is not likely for stochastic
systems and is consistent with the observations of Casdagli (1989) for chaotic
systems.

For multi-step prediction, the prediction errors for networks corresponding to m =
3,4, 5, and 6 increase first exponentially for the increased number of iterations (up to
10) and then at a slower rate (nearly linear). For m > 7, the prediction errors increase
at a very slow rate in the beginning (for the first 10 iterations) and then increase at a
faster rate (almost exponentially). Figure 9 shows the values of the normalised root
mean squared error (NRMSE) after 30 iterations for different values of m. In this
case, the nearly exponential rate with which prediction errors increase for 3 <m <6
and the increased number of iterations may serve as an indication of a deterministic
behaviour.

Table 2: Prediction Error (Testing) Results of Neural Networks (NN) for
single step prediction for networks trained at a learning rate of 0.05

Model m NMSE
NN 3x2x1 3 0.146067
NN 4x2x1 4 0.126875
NN 5x3x1 5 0.139057
NN 6x4x1 6 0.123201
NN 7x4x1 7 0.136080
NN 8x4x1 8 0.137440
NN 9x5x1 9 0.156360

NN 10x6x1 10 0.168904
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Figure 8: The normalised TOPIX data fitted with 6-4-1 network and the single
step prediction of the network (Testing Set starts at the index point 200 on the
X axis)
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Figure 9: Normalised roots mean squared error after 30 iterations for different
values of embedding dimension (input units to neural network) for
multi-step prediction
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According to these results, there is a certain indication of determinism when
evaluating the prediction errors for single-step and multi-step prediction for the
values of m in the observed range of 3 to 10.

Conclusion

In this study, non-linear methods for testing the non-linear structure of time series
have been applied to the TOPIX monthly data. The correlation dimension estimate
shows convergence and indicates temporal correlations in the data. The R/S analysis
provides evidence that the observed system has a long-memory effect. Finally, the
calculation of the largest Lyapunov exponent corresponds to the result of R/S analysis
and may indicate sensitivity on the initial conditions in the system. Alternatively, in
order to complement the above algorithms in detecting the deterministic properties of
the TOPIX data, the prediction errors resulting from the neural networks
approximation of the data set are evaluated. The application of the neural networks
shows that the system exhibits certain deterministic properties for the allocated
testing set. The unified approach of combining both the applied non-linear algorithms
and neural network prediction model is necessary as the discrimination between
deterministic or stochastic systems is not straightforward.

As applied to the TOPIX data, the above methods indicate a weak chaotic
behaviour in the TOPIX monthly time series taking into account a limited size of the
data set and the presence of noise. However, the results show that ‘a certain level of
deterministic behaviour of low dimensionality is present’ in the TOPIX monthly time
series.

Future research should adopt a more rigorous approach to testing the statistical
significance of these applied methods for detecting chaotic behaviour in the data.
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