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Abstract: Scholars have compared the pricing behaviour where a monopolist in the short run produces
heterogeneous products 1 and 2, and a duopolist i produces goods i (i = 1, 2), where there are
exogenous shocks to marginal cost and/or industry demand. This pricing behaviour is short
run in that no entry is considered. However, this paper considers whether the existence of a
potential entrant producing heterogeneous goods affects the pricing behaviour of the
established monopolist under the same random shocks.
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Since the monopolist produces two heterogeneous goods 1 and 2, it is a situation of
double entry. Two cases of double entry are possible. One is that one potential entrant,
if it enters, produces two heterogeneous goods 1 and 2. The other is that two potential
entrants 1 and 2 try to enter, at the same time, to compete with the monopolist
producing two goods, 1 and 2. The two cases do not make any difference for the
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analysis, but the former case is used for convenience. It is also assumed that the
monopolist’s good 1 (good 2) is substitutable for the entrant’s good 1 (good 2) with a
certain degree, d, but that the entrant’s good 1 (good 2) is not related with the
monopolist’s good 2 (good 1). In other words, the entrant’s good 1 (good 2) is
substitutable for the monopolist’s good 2 (good 1) with a zero degree.

These assumptions can be justified by imagining the following situations.
Suppose that there are four kinds of chewing gum, which are different in the quantity
of sugar contained. The first chewing gum contains 20 percent sugar, the second 40
percent, the third 60 per-cent, and the fourth 80 percent. If a chewing gum can be
substitutable only for the next one, the chewing gum containing 40 percent sugar can
be a substitute for the one containing 20 percent or 60 percent sugar, but not for the
one containing 80 percent sugar. If the monopolist is producing the second and third
chewing gums, and the entrant produces the first and fourth chewing gums, our
assumption is justified. As another example, suppose that an established monopolist
is producing BMWs and Pontiacs. The potential entrant considers entering the
automobile market by producing Rolls Royces (highest quality car) and Yugos
(lowest quality car). Rolls Royce (Yugo) is substitutable for BMW (Pontiac) with the
degree of 4, but Rolls Royce (Yugo) is not substitutable for Pontiac (BMW).

The monopolist m (m = 1, 2) in period 2 has limited information on the potential
entrant e’s (e = 1, 2) characteristics, and the potential entrant e also has only the
incomplete information of the monopolist m’s characteristics. Under this uncertainty,
the entrant e attempts to enter for a positive payoff, while the monopolist m has a
incentive to limit its price for deterrence of the entry. The monopolist’s limit pricing
of the imperfect information will be different from its pricing of the perfect
information in Kamerschen and Park (1992a,b).

One of our tasks is to compare the long-run pricing behaviour of the monopolist m
and the duopolist i. So, it is appropriate to analyze the pricing behaviour of the
duopolist i that faces potential entry. However, its analytical complications would
add only marginally to the duopolist ’s pricing behaviour. To the duopolist i, the
established rival is an imminent problem, and the pressure it feels from its potential
entry is very weak, compared with what the monopolist m does. Also, since the
duopolists do not experience any new shocks during the production periods 2 and 3,
their pricing behaviour that is compared with the monopolist’s limit pricing
behaviour is assumed the same as in Kamerschen and Park (1992b).
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Limit Pricing Strategy of the Monopolist Facing Heterogeneous Potential
Entrants with Incomplete Information

Our analysis begins by writing the industry demand, marginal cost and marginal
revenue curves of the monopolist m (m = 1, 2) as:
a 2
"=—-Zq", MC=c; MR" =
p 5 b q

where a ~ N(a;, ¢,) and ¢ ~ N(¢;, o;). All the notations follow the usages of
Kamerschen and Park (1992a,b,and 1994), but should be clear as stated in this paper.
The monopolist m’s period 2 equilibrium prices and profits are, respectively,

(a - bc)?
8

where the subscript 7 takes, in general, any real number in ascending order.

Suppose that the monopolist faces potential entry. The potential entrant entered
the market is assumed to have the same industry demand equation as the monopolist,
but a different marginal cost curve such as MC = w, where w ~ N(w;, 6y,).

In production period 3, the demand equations for the monopolist m (m = 1, 2) and
the entrant e (e = I, 2) are, respectively,
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Then, they each would maximise their respective Cournot profits:
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The first order conditions of the two maximisation problems are
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We can rewrite above two first order conditions for ¢” and ¢° as

m _a+4dp® —(b+4d)c
q =
8
e _a+4dp™ —(b+4dyw
q9 = 3
Putting the above two values back into the demand equations (2) gives
m _a+4dp® +(b+4d)c
Ab+4d)
e_a+ 4dp™ +(b + 4d)w
2Ab +4d)

Solving the above two equations gives Nash-equilibrium prices as
)= (b+6d)a+2d(b +4d)w +(b +4d)* ¢

pm(a)c’w’d
2b +6d)(b +2d) @)
(aw,c.d)y=br6Da+2d(b +4d)c +(b +4d)*w
pR&Ie, 2b +6d)(b +2d)

Putting (4) into the first order conditions yields Nash-equilibrium quantities as

(b +4d) [(b +6d)a +2d(b +4d)w —(b* +8bd +8d> )c]

q"(a,c,w,d)=
8(b +6d)(b +2d) )
(b +4d) [(b +6d)a +2d(b + 4d)c —(b* +8bd +8d2)w]
q°(a,w,c,d)=
8(b +6d)(b +2d)

Putting (4) and (5) into (3), the Cournot equilibrium profits for the monopolist m
and the entrant e, respectively, are
(b+4d) [(b +6d)a +2d(b +4d)w —(b* +8bd +8d* )c]2

cen”(a,c,w,d) =
16(b +6d)* (b +2d)*

(6)
(b+4d) [(b +6d)a +2d(b +4d)c —(b? +8bd +8d? )w]2
16(b +6d)*(b +2d)>

So the reward to the monopolist m (m = 1, 2) from deterring entry is equal to the
excess of its period 2 monopoly profit over its period 3 Cournot equilibrium profit:

cnf(a,w,x,d)=
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R(a,c,w,d)=(a,c)—cn™(a,c,w,d)

(a - by (b+4d)[(b+6d)a+2d(b+4d)w—(b2+8bd+8d2)c]2 (7

8b 16(b +6d)*(b +2d)*
For simplicity, the post-entry profits of the monopolist m are normalised to be zero
[en™(a, ¢, w, d) = 0] if entry occurs. In this event, it receives only its second period
profit as its payoff:

n(p,,a,c)=(p,—c)a—bp,)/2 ®)

where p.(a, ¢) is the monopolist m’s equilibrium price in period 2. If entry does not
occur, however, its payoff is its second period profit plus the discounted value of the
reward to deterring entry:

p(s a, ¢) +8"R(a, c, w, d), ©)

whered 8" is the present value to the monopolist m (m = 1, 2) of $1 accruing after
entry.
The payoff to the entrant e (e = 1, 2) if no entry occurs is zero, but his payoff if
entry occurs in period 3 is
(b +4d) [(b +6d)a +2d(b +4d)c —(b* +8bd +8d2)w]2
6 ¢
16 (b +6d)* (b +2d)*

-K (10)

where &7 is the present value to the entrant e of $1 accruing after entry, and K is the
entry cost.

The information structure in this paper is similar to that in Kamerschen and Park
(1994) and the difference arises by adding an additional parameter, 4. But the
parameter of substitutable degree, d, is different from other random parameters. The
random parameters, a, ¢ and w, are not controllable by the firms, but determined
solely by nature, and they were assumed to be distributed normally. The parameter of
d is determined by the entrant e, not by nature, and its probability is assumed to have a
uniform density function. We assume that each of the four random variables, g, ¢, w,
and d, takes only two values, high and low, which are denoted by the upper bar and
lower bar, respectively, in those random variables. The monopolist’s period 2
equilibrium price, p,(a, ¢), takes only four values from p; to p,.

The monopolist m’s (m = I, 2) information sets are realised values of industry
demand, g, and its marginal cost, ¢, while the entrant e’s (e = 1, 2) information sets are
its cost w, a measure of substitutable degree d, and the monopolist m’s choice of p,(a,
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c). The entrant e has a belief about the demand shock, a, and the monopolist m’s
cost shock, c, from observing p;(a, ¢). The monopolist m has a belief about the entrant
e’s cost w from experiences, but its belief about the value of d does not matter, and is
indifferent to all circumstances. This monopolist m’s indifferent belief about d is
represented by the uniformly distributed density function.

Figure 1.: Game Tree
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Therefore, the monopolist m’s strategy is a map s from R’ of each possible
combination (g, c) into its decision {p;} for i =1, ..., 4, where p;, is the lowest price and
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p. is the highest price. The entrant e’s strategy is a map ¢ from R’ of each possible
combination (p, w, d) into its decision {E, S}, where E is “enter” and S is “stay out.”
This information framework is summarised in a game tree of Figure 1.

Then, an equilibrium consists of a pair of strategies (s, ) and a pair of
conjectures (s°, #°) such that:

(i) Forany ae[g,a], ce[g,z], and any s:-[a,c] - {P,.}
n(s*(a,c),a,c)+8" fff))R(a,c,'w,d)[l—t"(s*(a,c),w,d)] dH* (w,d)

>n(s(a,c)a,c)+8” [ R(a,c,w,d)[1-1°(s(a,c)w,d)| dH (w,d)
w,d)

where [(w, d), (w, d)] is the range of possible values of (w, d) and H' is the probability
distribution function for (w, d) [monopolist m’s beliefs about (w, d)]. That is, the
monopolist m’s pricing policy s~ is a best response to its conjecture ¢° about the
entrant e’s entry rule.

(i) Forany P e [P, P,],we [w,w] de [dd] and any ¢:
[P..w.d] —> {E.S}
fjj[S”cne(a,c,w,d)—K]t‘(s"(a,c),w,d)dH’”(a,c)

> f;'z)[ﬁ”cne(a,c,w,d)—K]t(s“(a,c),w,d)dH'”(a,c)

a,c)

where [(a, ¢), (a, ¢)] is the range of possible values of (a, ¢) and H" is the probability
distribution function for (g, ¢) [entrant e’s beliefs about (g, c)]. That is, the strategy ¢
is a best response for the entrant e to its conjecture s°.

(i) ") =(5° 19.

The actual and conjectured strategies coincide.

Numerical Examples

In the numerical examples of Kamerschen and Park (1992b, in Tables 2 and 3), where
the random parameter valueswere a, =10+ 2, b=1,¢, =4+ 0.8and d = 0.1/0.35 in
time 2, the monopolist m’s (m = I, 2) equilibrium price and profit were
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P,(a,c)=8.4, P,(a,c)=7.6
P,(a,c)=6.4, P(a,c)=5.6

n,(a,c)=6.48, 1,(a,c) =9.68

n,(a,c)=128,

1, (a,c) =2.88

These examples are used in this paper, with additional parameters of w, = 4.5 +

0.9, K = 1.5, and 8™ = &° = 1, so that the pricing behaviour of the monopolist m facing
the potential entrant e (e = 1, 2) can be compared with that of the duopolist i (i = 1, 2)
in Kamerschen and Park (1992b). The random parameter value for w satisfies the
assumed proportionality. The monopolist 7’s period 3 Cournot equilibrium profits
are computed for each combination of (g, ¢, w, d), by putting above parameter values

into (6):

en™(a,c,w,d) =2.94
en™(a,c,w,d)=2.23
cn™ (a,g,v_v,c_i) =5.18
en™(a,c,w,d)=4.22
en™(a,c,w,d)=0.64
en™(a,c,w,d)=0.34

cn”(g,g,;},c_l) =1.86

en”(a,c,w,d)=3.24
en™(a,c,w,d)=2.97
en™(a,e,w,d)=5.13
en™(a,c,w,d)=4.78
en™(a,c,w,d)=0.66
cn”(z_z,z,v_v,_d) =0.54

cn”(g,g,_u—),g) =163

cn”(a,¢,w,d)=131 cn"(a,c,w,d) =144

Taking the differences between the period 2 monopoly profits and period 3
Cournot profits of the monopolist m for each corresponding combination of random
variables, the monopolist m’s period 3 rewards from deterring entry are

R(a,c,w,d)=3.54 R(a,c,w,d)=3.24
R(a,c,w,d)=4.25 R(a,c,w,d)=3.51
R(a,c,w,d)=4.50 R(a,c,w,d)=4.55
R(Zz,g,v:v,;')=5.46 R(a,c,w,d)=4.90 a1
R(a,c,w,d)=0.64 R(a,c,w,d)=0.62
R(a,c,w,d)=0.94 R(a,c,w,d)=0.74
R(a,c,w,d)=1.02 R(a,c,w,d)=125
R(a,c,w,d)=157 R(a,c,w,d)=144
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According to (10), the entrant e’s (e = I, 2) third period payoffs if entry occurs, for
each combination of different parameter values (a, ¢, w, d), are

ent(a,c,w,d)—1.5= 0.54 cn(a,c,w,d)-15=106
en(a,c,w,d)-15= 2.75 cn‘(a,c,w,d)-15=3

en®(a,c,w,d)-15= 0.02 cn(a,c,w,d)—15= 0.85
cn(a,c,w,d)-15= 198 cn‘(a,c,w,d)-15=2.72
ent(a,c,w,d)-15=-123 cn(a,c,w,d)-15=-112
en(a,c,w,d)~1.5=-0.18 cn®(a,c,w,d)-15=-0.21
ent(a,cw,d)-15=-14 cn(a,c,w,d)-15=-12
ent(a,cow,d)-15= 0.59 cn‘(a,c,w,d)~-15=-0.36

(12)

We can specify the probability distribution for numerical examples. For both
H"(a, ¢) and H'(w, d) of the plane distribution, all the random parameters are assumed
to be independently distributed with H"(@=a) =x=1-H"(a=g), H'c=c)=y=1-
H'(c=¢) Hw=w) =z=1-HMW=w),andH'({d=d) = 1/2=1- H{d=4d).

The independence assumption on the distribution of random variables does not
contradict the assumption of proportionality.

At equnllbrlum the only values of Pia, c¢) to be observed are
s (a c) s’ (a,c),s (a,c), and s "(a, ¢). If all the possible random pairs of the above
four observable prices are categorised, there are 24 possible combinations as the
separating case, and 232 combinations as the pooling case.

Among 24 sepalatmg cases, the only sensible equilibrium set is s "(a,c) =84,
s (a,c)=1786,s (a,c)=64, and s'(a,c)=56.

Thus, the observation of P;(a, ¢) in the above separating equilibrium allows the
values of a and ¢ to be exactly inferred by the entrant e.

Accordmg to the entrant e’s payofT list, (12), entry occurs if s (a) is observed and
will not if s "(a) is observed. Therefore, the probability of entry is simply x, which is
Prja=al.

In pooling equilibrium, observing P,(a, ¢) gives no information about the actual
values of a and c. In this situation, the entrant e enters only if its expected payoff is
positive: that is,

xycm© (Zz,z,w,d) +x(1-y)cen® (Zl,g,w,d) +
(1-x)yen® (a,e,w,d)+(1-x)(1-y)en‘(a,c,w,d)-K 20
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We can determine the specific range of probabilities, x and y, for which the entrant

e can make a positive expected payoff, by looking at the following four possibilities.

First, consider where (w,d) =(w,d). For the entrant e (e = I, 2) to enter, it must be

that:

054xy +002x(1 - y) —123(1-x)y —L4(1 - x)(1 - y) =15
~> 035xy +142x +017y >29
—> (x +049)(y +406)>1028
1028
(x +049) | |
if x=204,y >0, orif y =0, x 2204
fx=154,y>1,  orif y=1, x>2154
ifx=1, y=>1, orif y=284, x>1;
if x=05,y>1, orif y=632, x2>05
if x=0, y>1, orif y=183, x>0

2

Therefore, when (w,d)=(w,d), there does not exist any combination of x and y

that allows the entrant e to make a positive payoff. Second, when (w,d) =(w,d), for
the entrant e (e = 1, 2) to enter, it must be that:

106xy +085x(1—-y)-112(1-x)y ~12(1 - x)(1 - y) > 15;
— 013xy +205x + 08y >2.7 |
— (x +062)(y +15.77) > 3055
y= 3055 -15.77
(x +062
if x =1, y2309 orif y=309, x>1,
if x=132, y>1 orif y=0, x2>132
if x=126, y205 orif y=05 x>126
ifx=12, y=x1 orif y=1, x212
fx=0, y=2335 orif y=335,x>0;

Therefore, when (w,d) =(;, d), there does not exist any combinationof x and y

that allows the entrant ¢ to make a positive payoff. Thus, if w = w, there is no chance
for the entrant e to enter, regardless of whether d is high or low. Third, when
(w,d)=(w, d) for the entrant e (e = 1, 2) to enter, it must be that:
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2.75xy + 1.98x(1 - y) - 0.18(1 - x)y - 0.59(1 -x)(1 - y)21.5
— 0.36xy + 2.57x + 0.41y 2 2.09
>+ 114)@y+714) 21395

y 4155
T (x +115)
ifx=1y2-0.62, orif y=-062,x21;
ifx=08Ly>0, orif y=0, x>081;
ifx=069y205o0rif y=05 x2069
ifx=057y21, orif y=1I, x>0.57;
ifx=0,y> 51, orif y=51 x20

-2369

Therefore, when (w,d) = (w,d), if the value x is smaller than or equal to 0.57, even
the low cost entrant e has no chance to make a positive payoff fory € [0, 1]. If the
value of x or Pr| @ = a| is larger than 0.57, there are chances for the entrant e of (w,d)
to enter by maKing apositive payoff. That is, if, 081<x <1, the low cost entrant e
would enter for all y. For 057 < x < 081, if the value x is higher, the low cost entrant e
enters even against the low cost monopolist m, and if the value x is lower, the entrant e
enters only against the high cost monopolist m.

Finally, when (w,d) =(w,d), for the entrant e (e = 1, 2) to enter, it must be that

3xy+2.72x(1 -y) - 0.21(1 -x)y - 0.36(1 -x)(1 -y) 1.5
> 0.13xy + 3.08x + 0.15y 1.86
- (x+ LIS)(y + 23.69) 41.55

> 41559369

y‘u+u$

ifx=1  y=-4.36, orify =-4.36, x=1;
ifx=0.061 y=0, orify =10, x 20.61;
ifx=057, y=05 orify=05 x=057
ifx=0353 y=1, orify =1, x>0.53;
ifx=0 y>1244,0rify =12.44,x2 0.

Therefore, if x < 053, the entrant e of (w, d) has no chance to enter for ally, while if
x > 0.53, there are chances for the entrant e of (w, d) to enter by making a positive
payoff. More specifically for the latter case, if x > 0.6, the low cost entrant e enters
for all y. If 053< x < 061, the low cost entrant e with the higher value of x would enter
even against the low cost monopolist m, but the low cost entrant e with the lower
value of x would enter only against the high cost monopolist m. ‘
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Inference and Equilibrium

When the potential entrant e (e = 1, 2) is not directly knowledgeable about the values
of aand c, it attempts to make inferences about them from the observed monopolist’s
price. If the entrant can infer the actual values of a and c, there would be no point to
limit pricing, and the monopolist m (m = I, 2) would simply set its price at the
short-run profit-maximising levels. When the entrant cannot exactly infer the true
values of a and c, it calculates its expected payoff. If it is positive, it enters, but it stays
out, otherwise. Therefore, the monopolist’s pricing strategies can possibly influence
the entrant’s decision. With nonexact inference, two possibilities are discussed: first,
the entrant cannot infer any values of @ and ¢; second, it can infer only partially.

A. Exact inference case

1. Separating equilibrium.

We can construct a separating equilibrium condition which is consistent with the
results of the numerical examples That is, the monopolist m’s (m = 1, 2) pricing
strategy (s°) and the entrant e’s

(e = 1, 2) response (¢ ) to it are, respectively, given as:

s'(a,c)=84, s'(a,c)=76, s (a,c)=64, s (a,c)=56
'(a)=8, '(a)=E

t (a) is clearly a best response to s'(a, ¢). We can show that s (a, ¢) is optimal, given

t(a).

(1) When (a,c) =(21,E), any type of firm e with any pair of (w, d) would enter.
Therefore, the monopolist m would earn second period profits only, regardless of
what the established price levels are. That is, p,(a, ¢) yields, by (8), the monopolist
m’s payoffs as:

n(9,a,c)=63; m(84,a,c)=648; n(76,a,c) =616

n(64,a,c) =448, n(56,a,c)=256.

Since n(76,a,c) is the largest payoff, s'(a,c)=84 is globally optimal to the
monopolist m.

(2) When(a,c)=(a,c), as in the previous situation, any type of firm e would enter.
Therefore, p(a, ¢) yields the monopolist m’s payoffs as:
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n(84,a,c) =936, n(76,a,c)=968;
n(64,a,c) =896, w(56,a,c)="768.

Since n(76,a,c) is the largest payoff, s"(a,c) =76 is globally optimal to the
monopolist m.

(3) When(a,c) =( g,E), any type of firm e with any pair of (w, d) would not enter.
Therefore, the monopolist m would earn second period profits plus the discounted
value of a reward to deterring entry, and p,(a, c) yields, by (9), the monopolist m’s
expected payoffs as:

n(76,a,c)+063z +084(1 — z) =14 -021z;
1(64,a,c) +063z +084(1 - z) =212 — 021z; and
n(56,a,c) +063z +084(1— z) =18 —021z;

Since the expected payoff, (2.12 - 0.21z), is the largest one,s'(c_z,;:)=6.4 is
globally optimal for all z.

(4) When (a, ¢) = (g, ¢), any type of firm e would not enter. Therefore, p.(a, ¢)
yields the monopolist m’s expected payoffs as:

n(6.4,a ¢ + 114z + 1.51(1 -2) = 4.07 - 0.37z; and
R(5.6,a ¢ + 114z + 1.51(1 -2) = 4.39- 0.37z.

Since the expected payoff, (4.39 - 0.37z), is the largest one, s'(g, ¢) = 5.6 is
globally optimal for all z.

Therefore s'(a, ¢ is globally optimal for all z. Since s'(a, ¢) = P {(a, ¢) with exact
inference s (g, ¢) is not a limit pricing strategy. The separating equilibrium set, s'(a,
¢}, holds forx € [0, 1] and y € [0, 1].

This separating equilibrium can be compared with the one with exact inference in
Kamerschen and Park (1994) when the entrant could infer the values of a and ¢, and
the monopolist could also infer the value of w. When the monopolist could not infer
the true value of w, it could simply set its price at the short-run profit-maximising
levels (instead of the one separating and two pooling equilibria), as if it knew the
value of w. However, the separating equilibrium is a sensible Nash-equilibrium,
regardless of the monopolist’s knowledge of w. This difference is due to the different
payoff list of the entrant: that is, in this paper, the entrant’s decision to enter does not
depend on w in the entrant’s payoff list (12); whereas in Kamerschen and Park (1994)
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it depends on w for the random movements (a,c)and (g,c), in the entrant’s payoff list
(14).

Therefore, if the potential entrant e (e = I, 2) infers the true values of a and c, the
monopolist m (e = 1, 2) would not limit its price. For the entrant e’s decision to enter
is not influenced by the monopolist m’s pricing strategies. This is true regardless of
whether the monopolist can infer the actual value of w. If the entrant e cannot infer the
monopolist m’s characteristics, a and ¢, it would enter if and only if its expected
payoff is positive. Therefore, the entrant e’s decision is affected by the monopolist
m’s pricing strategy.

To look at specific equilibria, we review the entrant e’s strategy with incomplete
information. If w = w, there is no chance for the entrant e to enter, but if w = w, ithasa
chance to enter. That is,

i) if (w,d)=(w,d)and 0.57 < x < 0.81, or (w, d) = (w, d) and 0.53 <x < 0.61, the
low cost entrant e with higher value x enters even against the low cost monopolist m,
but the low cost entrant e with lower value x enters only against the high cost
monopolist m: _

i) if(w,d) =(w,d)and 0 < x <0.57, or (w,d)=(w, d) and 0 <x < 0.53, even the low
cost entrant e has no _chance to enter;

iii) if(w,d) =(w,d)and 0.81<x <1, or (w, d) = (w, d) and 0.61<x < 1, the low cost
entrant e always has chances to enter.

The first one involves zero inference, and the second and third together involves
partial inference. However, both zero and partial inference give the same result in
these specific numerical examples. They both are completely complementary for the
same equilibrium set. We investigate partial inference for the two different degrees of
substitutability: one is high substitutable degree d = d; the other is low substitutable
degree (d =d).

B. Partial inference case of (w,d) = (y,zf), and 0.81 <x<1lor0< x<057
2. Separating equilibrium

The monopolist m’s (m = 1, 2) pricing strategies (s") and the entrant e’s (e = 1, 2)
responses (7 ) to it are, respectively, given as

s'(a,c)=84 s'(a,c)=1786,

' (a,w)=§ t‘(E,Lv,Z):[E if p,-(a,c)>6-4}

S otherwise

and
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s'(g,E) =64, s'(g,g) =56
(a)=S.

Clearly, t'(a, w, d) are the best responses to s (a, ¢) forx € [0.81, 1] and x € [0,
0.57]. But it should be shown that s"(a, c) are optimal, given £ (a, w, d).

(1) When (a,c)= (E,E) the entrant e with the pair of ( w,d)would enter, as long as
pi(a, c) is greater than 6.4. But if p; < 6.4, even the lower cost firm e would not.
Therefore, p;(a, ¢) yields the monopolist m’s expected payoffs as:

n(9,a,c)+1772 =63 +177z

n(84,a,c) +1.77z =648 +177 2z

n(76,a,c)+1772=616+177z

n(64,a,c)+177z +213(1 - z) =661-0362

Since (6.48 +1.77z) > (6.61 - 0.36z) for z> 0.06, 5" (a,c) is globally optimal for z
e [0.06, 1].

(2) When (a,c) =(c—1, ¢), as in the previous results the firm e of (14_1,2) only enters if
pi{a, ¢) > 6.4. Thus, p,(a, ¢) yields the monopolist m’s expected payoffs as:

n(84,a,¢) +2252 =936 +225z
n(764,a,c)+2252 =968 +225z
n(84,a,c) +225z +2.73(1 - 2) =1169 — 0.482

Since (9.68 + 2.25z) > (11.69 - 0.48z) for 0.74< z, s~ (E,g) is globally optimal for z
€ [0.74, 1].

(3) When (a,c) =(c—z,g), any type of entrant e would not enter. Thus, p;(a, ¢) yields
the monopolist m’s expected payoffs as:

n(76,a,¢) +032z +047(1- z) =103 - 015z;
n(64,a,c) +032z +047(1 - 2) =1.75 — 015z and
n(56,a,c) +032z +047(1 - 2) =143 - 015z.

Since the expected payoff, (1.75 - 0.15z), is the largest one, s (a,c)=64 is
globally optimal for all z.
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(4) When (a, ¢) = (g, ¢), as in the preceding situation, any type of firm e would not
enter. Therefore, p;(a, ¢) yields the monopolist m’s expected payoffs as:

n(6.4,a ¢) +0.51z+ 0.79(1 -z) = 3.35 - 0.28z; and
n(5.6,a ¢) + 051z + 0.79(1 - z) = 3.67 - 0.28z.

Since the expected payoff, (3.67 - 0.28z), is the largest one, s'(a@. ¢) = 5.6 is
globally optimal for all z.

Therefore, s'(a, ¢) are globally optimal for z € [0.74, 1]. Since s'(a, ¢) = pifa, ¢,
§'(a, ¢) is not a limit pricing strategy.

3. One-pair pooling equilibrium

The monopolist m’s (m = 1, 2) pricing strategies (s’) and the entrant e’s (e = 1, 2)
responses () to it are, respectively, given as
s'(a,c)=84 s'(a,c),

“(a,w o= = _|Eif p(a,c)>64
C@m=5, f@wd=|"? P>
S otherwise

and ,
s'(g,2)=6.4, s'(a,c)=56
£'(a)=S§.

Clearly, £'(a, w, d) are the best responses to s (a, c) for x € [0.81, 1] and x & [0,
0.57). We can show that s"(a, ¢) are optimal, given ¢ (a, w, d).

(1) When(a,c) =(c—1,2), the low cost firm e of(v_v,g) would enter, as long as p,(q,
¢)> 6.4. So, pi(a, ¢) yields the monopolist m’s expected payoffs as:

n(84,a,c)+177z =648 +177z;
n(76,a,c)+177z =616 +1.77z;
1(64,a,c) +1.77z +213(1 - z) =661 -036z.

Since (6.48 + 1.77z) > (6.61 - 0.36z) for 0.06 <z, s (a,c) is globally optimal for
z<[0.06, 1].

(2) When (a,¢) =(a,c), as in the preceding scenario, p;(a, ¢) yields the monopolist
m’s expected payoffs as:
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n(84,a,c) +225z =936 +225z;
1(76,a,c) +225z =968 +225z;
n(64,a,¢c)+225z +2.73(1 - z) =1169 +0.48z;

Since (11.69 - 0.48z) > (9.68 + 2.25z) for z < 0.74, s (c_z, ¢) is globally optimal for
ze [0, 0.74]. The situations of (a,c) =(a,c)and (g, ¢) = (g, ¢) in this one-pair pooling
equilibrium are exactly the same as those in the separating equilibrium of partial
inference. Thatis s'(a,c), s'(a ¢c)=5.6are globally optimal for all z. Therefore, s'(a,
¢) are globally optimal for z € [0.06, 0.74]. Since 5" (a,¢) < p,(a,¢),s (a,c)is a limit
pricing strategy.

4. Triple pooling equilibrium
The monopolist m’s (m = 1, 2) pricing strategies (s’) and the entrant e’s (e = I, 2)

responses (¢) to it are, respectively, given as

s'(a,c)=5"(a,c) =64,

(Ghs, a0
and

s'(a,c)=64, s (a,c)=56

(a)=S

Clearly, t'(a, w, d) are the best responses to s'(a, ¢) forx € [0.81, 1] and x € [0,
0.57]. We can demonstrate that s (g, ¢) are optimal, given f'(aw, d.

(1) When (a,c)=(:1,z), the firm e of (v_v,c—z’) enters, as long as p;(a, c) > 6.4.
Therefore, p;(a, ¢) yields the monopolist m’s expected payoffs as:

n(84,a,c) +1772 =648 +177z;
n(76,a,c)+1772=616+177z;
n(64,a,c)+1.77z +213(1 - 2) =661-036z;

Since (6.61 - 0.36z) > (6.48 + 1.77z) for2<0.06, 5" (a,c) is globally optimal for z
e [0, 0.06].
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(2) When (a,c) =(c—1,g), as in the above case, p;(a, c¢) yields the monopolist m’s
expected payoffs as:

n(84,a,¢) +225z =936 +225z;
n(76,a,c) +225z =968 +225z;
n(84,a,¢) +225z +2.73(1 - ) =1169 — 0.48z;

Since (11.69-0.48z) > (9.68 + 2.25z) forz<0.74, s'(a ¢)is globally optimal for z
€ [0, 0.74]. The situations of (a,c) =(a, c) and (g, ¢) = (g _) in this triple poolmg
equilibrium are the same as the of partial mference That s, s” =(a,c)=6.4and s'(g
¢) =5.6are globally opt1ma1 for all z. Therefore s'(a, ¢) are globally optimal for z €
[0, 0.06]. Sinces”(a,c)=s (a o)< p, (a ¢), s (a,c) is a limit pricing strategy. We
can now search for equilibria with zero inference of (w,d)=(w,d) and 0.57< x <
0.81. But the equilibrium sets are the same as those with partial inference. Even if the
potential entrant e cannot infer the value of g, it would enter if P,(a, ¢) > 6.4, and this
entrant e’s behaviour is exactly the same as if it is able to infer the true value of a. This
is because the entrant e’s third period payoffs, (12), are symmetrically structured into
the division of positive and negative payoff by the criterion of whether the value of a
is high or low. With this symmetric structure of the entrant e’s payoffs, the inference
of the value of a only is not useful at all. Since the three equilibrium sets with partial
inference, one separating and two pooling, hold true with zero inference, they are the
equilibrium price sets of (w,d) =(w,d) for all x.

C. Partial inference case of (w, d) = (w, d), and 0.61<x<1or0<x<0.53
5. Separating equilibrium

The monopohst m’s (m = 1, 2) pricing strategies (s)and the entrant e’s (e = I, 2)
responses (') to it are, respectively, given as

s.(C_I,E)=8'4 s.(as§)=7.6a

“(a,w (7 E if p(a,c)>64

faw=s, f@wd=" 7 P>
S otherwise

and
s'(a,c)=64 5 (a,c)=56
f'(a) =S

Obviously, ' (a, w, d) are the best responses to s (a, ¢) forx e [0.61,1] andx e [0,
0.53]. We can prove that s (a, ¢) are optimal, given 7 (a, w, d).
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(1) When (a,¢) =(a,c), the firm e with the pair of (w, d) would enter, if p,(a, ¢) >
6.4. Therefore, pi(a, c) yields the monopolist m’s expected payoffs as:
n(9,a,¢) +162z =63 +162z

n(84,a,c)+162z =648 +162z
1(76,a,¢)+162z =616 +162z
n(64,a,c) +162z +176(1— z) =624 + 014z

Since (6.48 + 1.62z) > (6.24 - 0.14z) forz>0, s (a,c)is globally optimal for all z.

(2) When(a,c) =(a,c), as in the preceding situation, p,(a, c) yields the monopolist
m’s expected payoffs as:

n(84,a,c) +228z =936 +228z;
n(76,a,c) +2282 =968 +228z;
n(64,a,c) +228z +245(1-z)=1141-017z;

Since (9.68 + 2 28z) > (11.41-0.17z) forz>0.71,s *(a,c)is globally optimal for z
e [0.71, 1].

(3) When(a,c) =( g,z'), any type of firm e would not enter. Thus, p;(a, ¢) yields the
monopolist m’s expected payoffs as:

n(76,a,¢)+031z +037(1 — ) =093 —0.062z;

1t(6.4,g,5) +031z +037(1-2z) =165 ~006z;and

n(56,a,c)+031z +037(1 — z) =133 —006z;

Since the expected payoff, (1.65 - 0.06z), is the largest one, s'(a,c) =64 is
globally optimal for all z.

(4) When (a, ¢) = (g, ¢), as in the previous scenario, p;(a, ¢) yields the monopolist
m’s expected payoffs as:

n(64,a,c) +063z +0.72(1 - z) =328 —0092z; and

7(56,a,¢) +063z +0.72(1 - ) =36 — 009z

Since the expected payoff, (3.6 - 0.09z), is the largest one, s'(a ¢) = 5.6 is globally
optimal for all z. .

Therefore, s (a, ¢) are globally optimal for z € [0. 71 1]. Since s '(a, ¢) = pi(a, c),
s'(a, ¢) is not a limit pricing strategy.
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5. One-pair pooling equilibrium

The monopollst m’s (m = 1, 2) pricing strategies (s ) and the entrant e’s (e = 1, 2)
responses (t ) to it are, respectively, given as

s'(a,c)=84, s'(a,c)=64

"(a,w *(a E if p(a,c)>64
t (aw)=8, t(awd)= if p(a,c)
S otherwise

and
s (a,c) =64, s (a,c)=56

(@) =S.

It is obvious that £"(a, w, d) are the best responses to s'(a, ¢)forx e [0.61,1]and x
e [0, 0.53]. We show that s'(a, c) are optimal, given /'(a, w, d).

(1) When (a,c) =(c_1,2), the firm e of (w, d) would enter, as long as p;(a, ¢) > 6.4.
Therefore, p;(a, c) yields the monopolist m’s expected payoffs as:

n(84,a,c) +162z =648 +162z;
n(76,a,c)+162z =616 +162z;
n(64,a,c) +162z +1.76(1— z) = 624 - 014z.

Since (6.48 + 1.62z) > (6.24 - 0.14z) for 2> 0, s* (a,c)is globally optimal for all z.

(2) When(a,c) = (Zz, ¢), as in the previous case, p,(a, ¢) yields the monopolist m’s
expected payoffs as:

n(84,a,c) +228z =936 +228z:
n(76,a,c) +228z =968 + 228z
n(64,a,c) +228z +2.45 (1-2)=1141-017z.
Since (11.41-0.17z) > (9.68 + 2.28z) forz<0.71, s (a c¢)is globally optimal for z
e [0, 0.71]. ~
When (a,c)=(a,c) and (@, ¢) = (g, ¢) are exactly the same as those in the
separating equilibrium of partial inference That is, s (a,c) and s'(g, ¢) = 5.6 are

globally optimal for all z. Therefore, s'(a, ¢) are globally optimal for z € [0, 0.71].
Since s'(a,c)<, s'(a, ¢ is a limit pricing strategy.
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The equilibrium price sets with zero inference of (w, d) = (w, d) and 0.53<x <
0.61 are the same as with partial inference with (w, d) = (w, d) and 0 < x < 0.53 or
0.61<x < 1. This is because, with the symmetric structure of period 3 payoffs, (12),
the entrant e’s inferability of whether the industry demand is high or low doesn’t
provide a useful information to itself. Therefore, these two equilibrium sets with
partial inference, one separating and one pooling, hold true for all x.

D. Comparison and implications

With exact inference, where the entrant e (e = 1,2) can infer the monopolist m’s (m
= 1, 2) characteristics, one separating equilibrium exists for all x, y and z. With
non-exact inference, where the low cost entrant e of both high and low d cannot infer
or partially infer the true values of a and c, there exist both separating and pooling
equilibria, each of which holds for all x and y. The reason that all the optimal pricing
strategies of the monopolist m hold for all x in non-exact inference is because of the
symmetrical structure of the entrant e’s payoffs by the criterion of a. Once the
monopolist m’s optimal pricing is satisfied for all x, it should also hold true for all y.
This is because the monopolist m’s price is dominated by the demand shock, rather
than cost shock. 3

To be more specific with non-exact inference, if the firm e of (w,d) cannot exactly
infer the firm m’s characteristics, a and ¢ (including the possibility that it infers the
value of a only), one separating equilibrium exists for z € [0.74, 1]; one-pair pooling
equilibrium exists for z € [0.06, 0.74]; and triple pooling equilibrium exists for z e [0,
0.06]. On the other hand, if the firm e of (w, d) cannot exactly infer the actual values
of a and ¢ (including the case that it infers the value of a only), one separating
equilibrium exists for z € [0.71, 1] and one-pair pooling equilibrium exists for z € [0,
0.71].

All the three pooling equilibria involve the limit pricing in different degrees,
whereas all the three separating equilibria including the one with exact inference do
not. With exact inference, the probability of entry is x, and with non-exact inference
of both high and low d is x(1 - z)/2, satisfying the respective probability restriction for
each equilibrium price set. The probability of entry in the former is greater than that in
the latter two cases.’ That is, the probability of entry in limit pricing equilibrium is
lower than that with complete information. This result differs from Milgrom and
Roberts’ (1982) conclusion that the probability that entry actually occurs in limit
pricing equilibrium can be lower, the same, or even higher than in a regime of
complete information. Therefore, the tradeoff for society between lower prices and
deterred entry exists with heterogeneous products, and the monopolist can rationalise
its behaviour of limit pricing.
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Table 1. contrasts the monopolist m’s (m = I, 2) pricing behaviour when it does
and when it does not face potential entry. When the entrant e (e = /, 2) can infer the
monopolist m’s characteristics of a and c, the firm e’s decision of whether to enter is
not influenced by the firm m’s limit pricing. The firm m’s optimal decision of
separating equilibrium is not constrained by any of the probabilities, x, y, and z (see
the last column of Table 1). When the entrant e cannot exactly infer the monopolist
m’s characteristics, there is a incentive for the firm m to deter the entry by limiting
price. The firm m’s optimal pricing behaviour is constrained to a certain range of
probability z, which represents the firm m’s belief about the firm e’s cost, w.

The restriction on the probability z for each equilibrium set tells how the
monopolist m comes up with a specific equilibrium set. For example, consider
non-exact inference with high d. The probability restriction, z € [0.06, 0.74] for
one-pair pooling equilibrium, is the probability range required for the monopolist m
to deter entry or to accept the low cost firm e only, with its price set, (8.4, 6.4, 6.4,
5.6). Each price of the equilibrium price set can be either limiting or unlimiting,
depending on the pair of random variables, a and c. If the monopolist m believes that
the entrant e’s cost is so high as to fall in the probability range, [0.74, 1], it sets the
separating equilibrium set, without worrying about whether the entrant e is able to
infer. When the monopolist m believes the firm e’s cost is so low that z € [0, 0.06], it
commands the maximum limit pricing such as (6.4, 6.4, 6.4, 5.6). The same
interpretation can be applied to non-exact inference with low d. Therefore, the higher
entrant e’s cost perceived by the monopolist m, the less it limits price, and vice versa.

The perceived demand curve can be derived for the monopolist m (m = 1, 2) that
faces the heterogeneous entrant e (e = I, 2). It is discontinuous at a certain output
level and horizontal for a certain range of output levels, and the horizontal part of the
demand curve not only depends on what kinds of belief the firms have about the
unknown nature moves, but also on how substitutable the two firms’ goods are. With
exact inference, the monopolist m would not limit its prices, and thus has the same
downward-sloping curve as it had without any potential entry. With non-exact
inference, however, the monopolist m has an incentive to limit price to deter entry.

Thus, its perceived demand curve is horizontal and also shows that the more
substitutable goods the entrant e produces, the more the monopolist m limits price.

Consider the situation with a high degree of substitutability,

(a) in Figure 2. If 0.74 <z < 1, the monopolist m’s perceived demand curve is the
downward-sloping curve, dx, for all output levels. However, if 0.06 <z<0.74 (0 <z <
0.06), its perceived demand curve is the discontinuous one, dghkx (defkx), and
becomes horizontal for the output range, Ak (fk). With a low degree of substitutability,

(b) in Figure 2, if 0.71 <z < 1, the monopolist m’s perceived demand curve is the
downward-sloping curve, dx, for all output levels. If 0 < z < 0.71, its perceived
demand curve is the discontinuous one, dnrsx, and horizontal for the output range, rs.
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Therefore, in both cases of substitutable degree, if the monopolist m believes that the
entrant e’s cost is high, its perceived demand curve includes no or a small flat part,
while if the monopolist m believes that the entrant e has a low cost, its perceived
demand curve includes a large flat part.

Table 1.: Comparison of the monopolist m’s pricing behaviour with and without
potential entry

— T e
s(a,0) | s(a,c) ! s(ac) | §(ac) Probability |
Monopolist m’s Price without Potential Entery 84 | 16 64 5.6 }
| Exact Separating | o, - 76 6.4 56 0<z<1
| Inference equili. ' ) w ) ) ~
| Separafing | o, 6 64 5.6 074<:<1 |
| equili. i ;
1 |
! One-pair | : |
Non-Exact £ ; ;
Inference pool}r}g 84 i 6.4 l 6.4 5.6 0.06<-<0.74
| Monpolist m’s (d=d) equili. 3 ;.
f Pric.e with Triple |
Potential Entry pooling 64 | 64 | 64 5.6 0<z<0.06
equili. 1 ! |
Separating | g 0 4 6.4 5.6 071 <51
Non-exact equili, :
Inference One-pair ‘
(d=d) pooling 8.4 6.4 6.4 56 0<:<0711 |
_equili | S ]

Note: This table assumes that the coefficients have the following values: 2> =10+2,b=1, ¢;
=4+08, w>=451+09,d=0.1/0.35 and K = 1.5, which satisfy the assumed
proportionality. All the equilibrium prices are satisfied for0< x<land0<y<1.

It is useful to compare the limit pricing behaviours of the monopolist in the
homogeneous products and with heterogeneous products. Table 2 contains the
relevant information for both zero and partial inference. This comparison is possible,
because we have used consistent parameter values in those numerical examples of
both Kamerschen and Park (1994) and here. A general tendency, as shown in the
Table 2., is that, for both zero and partial inference, the more substitutable goods the
potential entrant produces to enter with, the more the monopolist limits its price. This
was, in fact, shown in Figure 2.

To investigate the general tendency, we can look at the partial inference with
homogeneous goods and the heterogeneous products with a of high degree of
substitutability degree (d =d) in Table 2. The monopolist’s pricing behaviours are
apparently similar, because there are three equilibria, separating, one-pair and triple,
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in each case. However, facing the probability restrictions of z in the last column, the
monopolist i with heterogeneous goods case of (d =d) sets its triple pooling
equilibrium price only if it believes that the entrant’s cost is extremely low (0 < z <
0.06), while the monopolist with homogeneous goods sets the same triple pooling
price even when it believes that the entrant’s cost is not very low (0 £z <0.55). We
can make a similar comparison for other illustrations.

Figure 2.: Unconventional demand curve with heterogeneous goods

P P
d
8.4
7.6
i
6.4 ri s
5.6 x
.0 -] c.0 g
{(z) O 0.06 0.74 1 o 0.71 1
(a) {b}
with High Degree - With Low Degree
of Substitutability (d = d) of Substitutability (d = d}

To investigate the general tendency, examine partial inference with homogeneous
goods and with heterogeneous goods with high substitutable degree (d =d)in Table
2. The monopolist’s pricing behaviours in both settings are apparently similar,
because there are three equilibria, separating, one-pair and triple, in each case.
However, if we look at the probability restrictions of z in the last column, the
monopolist m with heterogeneous products of (d =d) will set its triple pooling
equilibrium price only if it believes that the entrant’s cost is extremely low (0 <z <
0.06), whereas the monopolist with homogeneous products sets the same triple
pooling price even when it believes that the entrant’s cost is not very low (0 <z <
0.55). We can make a similar comparison for other possibilities.



Pricing behaviour of the Monopolistic and Duopolistic Firms 97

Table 2.: Comparison of limit pricing behaviours of the monopolist facing
homogeneous and heterogeneous entry

Equlibrium s@c) | s@o | s@e) | s(@g |  Probability |
| Separating 8.4 76 64 56 . 07<:z<l
; — G T B ‘
| Homogeneous | Ope-pair pooling 8.4 76 56 56 1 06<-<07 |
1 Goods For ! 3 ‘
: Zero Triple pooling 8.4 5.6 : 5.6 5.6 | 013<-<06 |
| Inference f ‘
i Quadruple 56 | 56 | 56 56 1 0<:z<0.13
! pooling j ; ‘
| Homogeneous |  Separating | 84 . 7.6 | 64 | 56 = 086<:z<I
{ Goods For . . : ‘ . ‘ _
] Partial One-pair pooling 8.4 : 7.6 : 5.6 5.6 0.55<-<0.86
Inference | Triplepooling | 84 | 56 56 | 56 0<:s055
| Heterogeneou Separating 84 | 76 - 64 5.6 0.74<:-<1
{  sGoods . . | ; s ; -
| (d=d)For One-pair pooling 8.4 6.4 1 6.4 3.6 0.06<-<0.74 }
| both Zero and | i l 1
] Partial Triple poolong 6.4 6.4 | 6.4 5.6 i 0<z<006
1 Inference ‘ !
Heterogeneou :
s Goods Separating 84 1.6 . 64 5.6 0.71<z<1
(d=d)For :
| Both Zero and i : ‘
i Partial One-pair poolong 84 | 64 i 64 5.6 I 0<z<0.71
Inference } ‘ \

Comparison of the Limit Pricing behaviour of the Monopolist with the Pricing
Behaviour of the Duopolistic Firm?

Tables 3. and 4. summarise the main results of the parameterised examples
respectively, for the low degree (d = d) and high degree (d =d) of substitutability.
Therefore, in each case of substitutable degree, the monopolist m’s (m = 1, 2) price
changes are compared with the duopolist i’s (i = I, 2) for each pair of random
movements.

First, compare the first and fourth columns in both tables, to determine when the
two random variables move in the same direction. For the low substitutable degree (d
= d) of Table 3, we see the maximum possible fluctuations of price in both firms, m
and i. In all cases, the firm m’s price change, (5.6 - 8.4), is greater than the firm ’s
(5.38 - 8.07). As the substitutable degree rises to d = 0.35 in Table 4, the firm #’s price
change, (4.98 - 7.47), get smaller than before, and the firm m also exercises a
maximum limit pricing if it believes that the entrant e’s cost is extremely low (0 <z <
0.06). If the degree of substitutability increases further, then the firm i’s price change
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gets much smaller than before, whereas the range of the probability z for the firm m’s
maximum limiting price gets widened. When the substitutable degree goes up, the
firm m’s greater limit pricing goes with the firm i°s smaller price change, and thus
their relative pricing behaviour remains the same. The overall pricing behaviour of
the firm m is relatively more fluctuating than that of the firm i, when the two random
variables of @ and ¢ move in the same direction.

Second, compare the second and third column of both tables to when the two
random variables move in the opposite direction. For the low substitutable degree (d
= d) of Table 3, the firm 7’s price moves between 6.25 and 7.2. But the price of the
firm m facing potential entry makes different movements, depending on its belief
about the firm e’s cost. If the firm m believes that the entrant e’s cost is very high
(0.71 > z), its prices move between 6.4 and 7.6, and fluctuate more than the firm 7’s.
This is the same for exact inference. If, however, the firm m believes that the entrant
e’s cost is not very high (0 < z < 0.71), its price of one-pair pooling equilibrium
doesn’t move at all. Therefore, it is difficult to make a clear statement of which price
fluctuates more, because it depends on whether the potential entrant e is exactly
informed of the actual values of a and ¢, and on what kind of belief the firm m has
about the firm e’s cost. With a high substitutable degree (d = d) of Table 4, the price
comparison of the firms, 7 and m, is similar to that in the case of d = d, because as the
substitutable degree rises, the firm #’s price change, (5.98 - 6.46), becomes smaller
than before, and the firm m exercises more limit pricing (0 < z < 0.74).

Table 3.: Comparison of the pricing behaviours of the monopolist m and the duopolist
i with a substitutable degree d = 0.7

s (a,0) s (;,g) ‘ s’ (a.0) } s (a,c) Probability ]
Duopoly 7’s (i=1.2) 6.73 5
Duopoly i’s Price in Period 2 8.07 ‘ 7.2 ’ 625 538
Monopolist m’s (m=1,2) Price in Period 1 7 : h
- _Monopolist m’s Price without Potential Entry 84 7.6 64 5.6
Exact —  Separating | ¢, 76 6.4 56 . 0<:=<1
Inference equili.
. Monopolist ‘ S i
- m Price with ‘ °pa“.‘l.‘“g 8.4 76 | 64 5.6 0.71<z<1
. Potential Non-Exact ____equil. : ‘ ;
Entry Inference One-pair ‘ : . ‘
(d=4d) pooling 8.4 76 64 | 56 i 0<z<071 |
equili. i ‘ ; ]

Note: This table assumes that the coefficients have the following values: a;=10+2,b=1, ¢,
=4+0.8,w2=4.5+0.9,4=0.1and K = 1.5, which satisfy the assumed proportionality.
All the relevant equilibrium prices are satisfied for0 < x<land0< y<1.
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Table 4: Comparison of the pricing behaviours of the monopolist 7 and the duopolist
i with substitutable degree d = 0.35

5 (a,0) ‘ S | s(ao) l s (a,c) | Probability |
!
Duopoly #’s (i=1, 2) Price in Period 1 6.22 ' |
I
Duopoly i’s Price in Period 2 7.47 l 6.46 [ 5.98 l 498 | p
Monopolist m’s (m=1, 2)Price in Period | 7 3
Monopolist m’s Price without Potential Entry | 84 76 | 64 5.6
. 1 :
Exact Separating | g 4 76 6.4 56 | 0<z<i
Inference equili. !
| . !
| Scparating | g 4 16 6.4 56 | 074<z<1
{ Monopolist equili. :
| m Price with One-pair
; . Non-Exact P i 006=s:-<
I Potential ; ; | 0.06=:-<
| Eng)l'a Inference pooling 8.4 64 | 64 56 0.74
| (d=4d) equili. | ‘
; Triple ‘ : ;
pooling ' 84 64 = 64 5.6 0<z<0.06 |
equili, ‘ ‘ ‘

Note: This table assumes that the coefficients have the following values: a>=10+2,b=1,¢c;
=4+ 08, w, =45+ 09, d=0.35and K = 1.5, which satisfy the assumed
proportionality. All the relevant equilibrium prices are satisfied for0 <x<1and0<
y<1.

Third, compare the third and fourth column in both tables, to investigate when
demand is low. The firm #’s price in Table 3 and Table 4 moves, respectively,
between 5.38 and 6.25 and between 4.98 and 5.98, depending on whether the
marginal cost is low or high. The firm m’s prices move between 5.6 and 6.4 with both
exact and non-exact inference and for both low and high d. In this specific illustration
of lower demand, therefore, the firm #’s price change is greater than the firm m’s for
all case, and this dominance of the firm i over the firm m in the price fluctuation
becomes greater, as the degree of substitutability increases.

Fourth, compare the first and second column in both tables to the high demand
case. The firm i’s price in Table 3 moves between 7.2 and 8.07. If the firm m believes
that the firm e’s cost is high (0.71> 2), its price moves between 7.6 and 8.4, and it is
the same for exact inference. If, however, the firm m believes that the firm e’s cost is
not high (0 <z < 0.71), its price moves between 6.4 and 8.4. Therefore, which price
fluctuates more depends on what kinds of belief the firm n has about the firm e’s cost.
As the substitutable degree increases to = 0.35 in Table 4, the firm 7°s price change,
(6.46 - 7.47), gets larger than before, but at the same time, the firm m’s price that
moves between 6.4 and 8.4, shifts up to a more plausible probability range, (0.06 < z
< 0.74). But the firm m’s price is stuck at 6.4 if it believes that the entrant e’s cost is
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extremely low (0 < z < 0.06). Therefore, the firm m’s pricing behaviour becomes
erratic when the substitutable degree increases, even though it is still not clear which
price change of the firms i and m is greater.

Fifth, compare the second and fourth column in both tables to study low cost,
which is analytically quite similar to the fourth case. The firm #’s price in Table 3
moves between 5.38 and 7.2. If the firm m believes that the firm e’s cost is high (z >
0.71), its price moves between 5.6 and 7.6, and it is the same for exact inference. If,
however, the firm m believes that the firm e’s cost is not very high (0 <z < 0.71), its
price moves between 5.6 and 6.4. Therefore, which price fluctuates more depends on
what kinds of belief the firm m has about the firm e’s cost. As the substitutable degree
increases, as shown in Table 4, the firm i’s price change, (4.98 - 6.46) gets smaller
than before, but at the same time, the firm m’s price, that moves between 5.6 and 6.4,
has a greater probability range, 0 < z < 0.74. Even if the degree of substitutability
increases, the firm m’s overall pricing behaviour, relative to the firm i’s, doesn’t
change, and it is still not clear which price change of the firms i and m is greater.

Finally, compare the first and third columns in both tables for the high cost
scenario. The firm i’s price in Table 3 moves between 6.25 and 8.07. The firm m’s
price moves between 6.4 and 8.4 in all cases, and fluctuates more than the firm #’s.
When the substitutable degree goes up, as shown in Table 4, the firm m’s price is
stuck at 6.4 if it believes that the firm e’s cost is extremely low (0 <z <0.06), but at the
same time, the firm #’s price change becomes smaller (6.46 and 7.47) than before. As
the substitutable degree increases further, the probability range of z, in which the firm
m’s price is stuck at 6.4, expands, and also the firm 7’s price change becomes even
smaller. Therefore, the greater price change of the firm m over the firm 7 holds true for
any degree of substitutability.

The previous analyses of the six random pair changes are, in order, summarised in
Table 5. The price changes from one price to the other (e.g., 5.6 - 8.4) are caused by
the random pair changes of the variables, a and c, such as from (g, ¢) to(a,c). Fora
given random pair changes of a and ¢, the monopolist m’s (m = I, 2) price changes are
different, depending on the potential entrant e’s (e = I, 2) inferability (exact or
non-exact inference) and also on the substitutable degree of the two goods. Even for a
given inferability and substitutable degree of the entrant ¢ with the given random pair
change (indicating a cell in the table), the monopolist’s price changes are different,
depending on its beliefs about w.
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Table 5: Summary of the pricing comparison

Movements | Dvopolist /s Monopolist m’s (m=1, 2) Price Change Duopolist i’s
of Random Price Exact Non-Exact . * Non-Exact Price
Variables Change Inference for | Inference | Rangeofz ' Inference Change
=1,2) both d d=d d=a (=1,2)
@o o006 |
) ] _ . z>0. 5.6-8.4 _

1) . 5.38-8.07 5.6-8.4 684 | oo EL__——_S.6-6. i 498-7.47
(a o) 6476 | z>074 | 6476

@) 6.25-7.2 6476 |y =207 | 5.98-6.46
(a.g . i 22071 1 64-64*

@9 | ‘

3 5.38-6.25 5.6-6.4* 5.6-6.4* 0<-<1 5.6-6.4 4.98-5.98

(ac
=>074 | 71684
@' Q) ! - .

@ 7287 76-84% [ Zgg: B : g'gé | 6484 6.46-7.47
@9 | ] 1l Zcoes | eaear | ,
(@c | =>074 5.6-7.6

G) 538-7.2 5.6-7.6 —55“66—62;6*——1 z>0.71 4.98-6.46
(a, ¢ o | <071 5.6-6.4*

@c : >0.06 |
L z>0. L 64-R4 |
(6) . 6.25-8.07 6.4-8.4 6484 | 006 | 64640 5.98-7.47

The monopolist m’s price changes that are smaller than the duopolist i’s (i = 1, 2)
are denoted by an asterisk. Which firm’s price change is greater depends on the firm
e’s inferability of a and ¢ and the firm m’s beliefs about w. We examine exact
inference for both low and high degree of substitutability. In the two possibilities of
random pair movement, (3) of low demand and (4) of high demand, the firm m’s
price changes are slightly dominated by the firm /’s. In the other four random pair
movements, however, the firm m’s price changes dominate the firm #’s.

Next, look at non-exact inference of low substitutable degree (d = d). In the two
cases of random pair movement, (1) and (6), the firm m’s price changes are the same
as with exact inference, and still dominate the firm #’s. In (3), the firm m’s price
changes are also the same as in exact inference, and are still dominated by the firm i’s.
However, both (2) and (5), where the firm m s price changes dominate the firm /’s in
exact inference, include significant probability ranges (z < 0.71), where the firm #’s
price changes dominate the firm m’s. In (4), the firm m’s price changes dominate the
firm i’s in a significant probability range (z <0.71), even though the reverse holds true
with exact inference. In non-exact inference and high substitutable degree (d = d), the
comparison of the two firms’ pricing becomes complicated. Now, (3) is the only
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situation in which the firm m’s price change is the same as exact inference. Therefore,
when the random pair moves from from (g, ¢) to (g, ¢), the firm m’s price changes are
dominated by the firm #’s for all circumstances (both exact and non-exact inferences
and both low and high degrees of the substitutability). In all the other illustrations
except (4), however, the firm m’s price changes are dominated by the firm #’s if the
firm m believes that the entrant e’s cost is low, and the reverse holds if it believes that
the entrant e’s cost is high. More specifically, in (2) and (5) [(1) and [6)], the firm m’s
price changes are dominated by the firm #’s for the probability range, z < 0.74 (z <
0.06), but the reverse holds otherwise. In (4), the firm m’s price changes are
dominated by the firm #’s if it believes that the entrant e’s cost is high (z > 0.74) and
low (z < 0.06), but the reverse holds otherwise.

Therefore, the results of numerical examples in this paper are much different from
Kamerschen and Park (1992b) where the monopolist did not face the potential entry.
Where potential entry exists, the monopolist m’s price change is not only dominated
by the duopolist i’s in a significant way (expressed by the probability range), but also
shows internal dynamics, in that they are different for the same random pair
movements of a and ¢, depending on the entrant e’s inferability of the monopolist’s
characteristics and the monopolist’s conjectures of the entrant e’s characteristics. If
the substitutable degree of two heterogeneous goods increases further, it is expected
to have the result that the firm i’s price changes dominate the firm m’s in a more
significant way. This is what Stigler (1968) showed empirically and what Rotemberg
and Saloner (1987) tried to show theoretically.

Conclusions

In this paper, the monopolistic model of Kamerschen and Park (1992b) is extended
with an additional assumption that the established monopolist m (m = 1, 2) faces
potential entrant e (e = I, 2) with the degree of substitutability, d. The pricing
behaviour of the monopolist m facing the potential entry is compared with that of the
duopolist i (7 = I, 2). Although it is proper to examine the pricing behaviour of the
duopolist 7 facing potential entry, it would provide only small details. Furthermore,
the established rival is an imminent problem to the firm i, rather than the potential
entry.

The firm m facing the potential entry has limited information on the firm e’s cost
(w) with nothing about the substitutable degree (d), whereas the firm e has only the
incomplete information on the firm m’s cost (c) and industry demand (@). With
imperfect information, the firm e attempts to enter the industry for a positive profit,
whereas the firm m tries to deter the entry to maximise its long-run payoff. Therefore,
the existence of potential entry influences the firm m’s pricing behaviour. It is
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assumed that the firm m has a belief about the firm e’s characteristics, H'(w, d),
whereas the firm e tries to infer the firm m’s characteristics from the observed p;(a, ¢),
using its conjectures on the firm m’s pricing behaviour, H" (a, c). A Nash-equilibrium
of rational expectations character is defined when the firms’ actual and conjectured
strategies coincide.

A parameterised family of examples is used for analysis. With exact inference,
the separating equilibrium exists for all x, y and z, for the firm e’s entry decision
would not be influenced by the firm m’s pricing strategy. When the firm e cannot
infer the actual values of a and c, the firm e takes the rule of positive expected
payoffs, and thus the firm m’s pricing strategy affects the firm e’s entry decision. In
this non-exact inference circumstance, there exist two cases of zero and partial
inference. However, the firm m’s equilibrium pricing strategies are the same in these
two cases, because of the symmetric structure of the firm e’s payoffs by the criterion
of industry demand, a. Thus, the firm m’s pricing behaviour is indifferent to whether
the firm e is able to infer the value of a. This implies that, with non-exact inference,
firm m’s equilibrium pricing strategies hold true for all x and y.

With non-exact inference, if the substitutable degree of two heterogeneous goods
is low (d = 0.1), one separating equilibrium exists for z €[0.71, 1], and one pooling
equilibrium exists for z € [0, 0.71]. If the degree of substitutability is high (d = 0.35),
one separating equilibrium exists for z € [0.74, 1], and two pooling equilibria exist
for z € [0, 0.74]. These three separating equilibria including the one with exact
inference, do not involve the limit pricing, but the three pooling equilibria do in
different degrees.

The probability of entry with exact inference, x, is larger than that with non-exact
inference of both high and low substitutable degree, x(7 - z)/2. That is, the probability
of entry in limit pricing equilibrium is lower than that with complete information.
Therefore, the tradeoff for society between lower prices and deterred entry exists, and
the monopolist m rationalises its behaviour of limit pricing.

The probability restrictions: of z tell how the monopolist m comes up with a
particular equilibrium, given the entrant e’s inferability of a and c. That is, the higher
the monopolist m perceives the entrant e’s cost the less the monopolist m limits its
price, and vice versa. The monopolist’s equilibrium price set also depends on the
substitutable degree of heterogeneous goods of the entrant. With the monopolist 72’s
limit pricing, its perceived demand curve is not necessarily downward sloping and
continuous, but discontinuous at a certain output level and horizontal for a certain
range of output levels. The horizontal part of its perceived demand curve depends on
the monopolist’s beliefs about w and the entrant’s substitutable degree chosen.

Also, the limit pricing behaviour of the monopolist with homogeneous products
(Kamerschen and Park, 1994) is compared with heterogeneous goods products. For
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both zero and partial inference, the more substitutable the goods of the potential
entrant, the more the monopolist limits its price.

Using summary tables for the main results of the parameterizd examples, the
price changes of the monopolist m facing the potential entry are compared with those
of the duopolist i. The comparison is made for six combinations of random pair
movements of @ and ¢. For exact inference of both a low and high substitutable
degree, if the cost shock only increases at either low demand [(a, ¢) > (a ¢)] or high
demand [(@, ¢) = (a, ¢)], the firm m’s price changes are slightly dominated by the
firm #s. In the other four random pair movements, [(@, ¢) = (a, ¢)], [(a ¢) —> (a, o],
[(@ ¢) — (a o], and[(a, ¢) = (a, ¢)], the firm m’s price changes dominate the firm ’s.

With non-exact inference of low degree substitutability (4 = d), using the Table 5,
the firm m’s price changes dominate the firm i’s in (1) and (6), while the reverse holds
in (3). However, if (2) and (5) occur, the firm #°s price changes dominate the firm m’s
in significant probability ranges (z < 0.71 for both cases). If (4) occurs, the firm m’s
price changes dominate the firm i’s in a significant probability range (z < 0.71). With
non-exact inference of high substitutable degree (d = d), (3) is the only situation in
which the firm m’s price change is still dominated by the firm #’s for all z. In (2) and
(5) [(1) and (6)], the firm m’s price changes are dominated by the firm #’s for the
probability range, z < 0.74 (z < 0.06), but the reverse holds otherwise. In (4), the firm
m’s price changes are dominated by the firm #’s for high z (z 0.74) and lowz (z <
0.06), but the reverse holds otherwise.

In this paper, the monopolist m’s price changes are generally dominated by the
duopolist i’s, and they are also different for the same random pair movements of a and
¢, depending on the entrant e’s inferability of the monopolist’s characteristics (a, ¢)
and the monopolist’s conjectures of the entrant e’s characteristics (w, d). If the
substitutable degree of the two heterogeneous goods rises, the firm i’s price changes
are expected to dominate the firm m’s in a more significant way.

NOTES

' In Kamerschen and Park (1994), a comparison is made among the probability of entry with exact
inference, with zero inference, and with partial inference, by using the monopolist’s deterability and the
entrant’s enterability. However, it was not clear whether the probability of entry with exact inference
was greater than and that with non-exact inference.

21t is appropriate to analyse the pricing behaviour of the duopolist / that faces potential entry. To the
duopolist i, however, the established rival is an imminent problem, rather than the potential entry. If
analysing the pricing behaviour of the duopolist i facing the potential entry would add only small details,
its cost is too high.



Pricing Behavior of the Monopolistic and Duopolistic Firms 105

REFERENCES

Kamerschen, D. R., Park J-H, (1992a), ‘Pricing Behavior of the Monopolistic and the Competitive Firm
in the Short Run with Homogeneous Products,” Working Paper. University of Georgia.

Kamerschen, D. R.. Park, J-H., (1992b), ‘Pricing Behavior of the Monopolistic and the Competitive
Firm in the Short Run with Heterogeneous Products,” Working Paper., University of Georgia.

Kamerschen, D. R., Park, J-H.. (1994), ‘Pricing Behavior of the Monopolistic and the Competetive Firm
in the Long Run with Homogeneous Products’, Journal of East and West Studies. 23 (1):
19-35.

Milgrom, P., Roberts, J.. (1982), ‘Limit Pricing and Entry under Incomplete Information: An
Equilibrium Analysis,” Econometrica, 50 (2): 443-59.

Rotemberg, J. J., Saloner, G., (1987) ‘The Relative Rigidity of Monopoly Pricing,” American Economic
Review, 77 (5). 917-26.

Stigler, G. 1., (1968). ‘The Kinky Oligopoly Demand Curve and Rigid Prices,” Journal of Political
Economy. 55 (5): 432-49. This paper was reprinted in George Stigler, The Organization of
Industry, R. D. Irwin, Inc., Homewood. Illinois. 1968, pp. 208-34.



