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COMPUTATIONAL EXPERIENCES ON NORM FORM
EQUATIONS WITH SOLUTIONS FORMING ARITHMETIC

PROGRESSIONS
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Abstract. In the present paper we solve the equation NK/Q(x0 +

x1α + x2α2 + · · · + xn−1αn−1) = 1 in x0, . . . , xn−1 ∈ Z, such that
x0, . . . , xn−1 is an arithmetic progression, where α is a root of the polyno-
mial xn − a, for all integers 2 ≤ a ≤ 100 and n ≥ 3.

1. Introduction

In [6] we investigated a problem which originates in an article of Buch-
mann and Pethő [9]. More precisely, they found by chance that in the field
K := Q(α) with α7 = 3, the integer

10 + 9α+ 8α2 + 7α3 + 6α4 + 5α5 + 4α6

is a unit. This means that the diophantine equation

NK/Q(x0 + x1α+ · · · + x6α
6) = 1

has a solution (x0, . . . , x6) ∈ Z7 such that the coordinates form an arithmetic
progression. This led us in [6] to investigate in more general context norm
form equations with solutions whose coordinates form an arithmetic progres-
sion. There we proved effective and qualitative results in the topic. Here we
summarize our computational experiences with solutions of special norm form
equations whose coordinates form an arithmetic progression.
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2. Results

Let α be an algebraic integer of degree n ≥ 3 and K := Q(α). Consider
the equation

(1) NK/Q(x0 + x1α+ x2α
2 + · · · + xn−1α

n−1) = 1 in x0, . . . , xn−1 ∈ Z.

Let α be a root of the polynomial xn − a, where a is an integer such that
xn − a is irreducible. For 2 ≤ a ≤ 100 we determine all such solutions of
equation (1) for which x0, . . . , xn−1 are consecutive terms in an arithmetic
progression. The case a = 2, 3 was already considered in [6]. For sake of
completeness we include the following theorem, which was proved there.

Theorem 2.1. Let α be an algebraic integer of degree n and consider
equation (1).

(i) If α is a root of the polynomial xn − 2 (n ≥ 3) then for odd n ∈ N the
n-tuples (2n − 1, 2n − 2, . . . , n), (1, 1, . . . , 1) and for even n ∈ N the
n-tuples (2n − 1, 2n − 2, . . . , n), (−2n + 1,−2n + 2, . . . ,−n), are the
only solutions of equation (1) which form an arithmetic progression.

(ii) If α is a root of the polynomial xn −3 (n ≥ 3) then for each odd n ∈ N
the n-tuple ( 3n−1

2 , 3n−3
2 , . . . , n+1

2 ) is the only solution of equation (1)
which forms an arithmetic progression, and we note, that for even
n ∈ N there are no such solutions at all.

Now we present our main result:

Theorem 2.2. Let n ≥ 3 be an integer, let α be a root of the irreducible
polynomial, xn − a ∈ Z[x], and put K := Q(α). Suppose that 4 ≤ a ≤ 100.
Then equation (1) has no solutions in integers x0, . . . , xn−1 ∈ Z which are
consecutive elements in an arithmetic progression.

3. Proof of Theorem 2.2

3.1. Reduction to the equation Xn − aY n = (a − 1)2. Put d := xi+1 − xi.
Then equation (1) has the form

NK/Q

(

(1 + α+ α2+ · · · + αn−1)x0

+ (α+ 2α2 + · · · + (n− 1)αn−1)d
)

= 1.
(2)

In [6] we have shown that any solution x0, d of the equation (2) leads to a
solution X,Y of the equation

(3) Xn − aY n = (a− 1)2

and these solutions are related to each other by the formulas X := −x0(a −
1) − dan and Y := −x0(a− 1) − dan+ d(a− 1).

Now to prove Theorem 2.2 we need to solve completely equation (3) for
4 ≤ a ≤ 100. Equation (3) is a so-called binomial Thue equation, and a wide
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range of diophantine problems leads to such equations (see e.g. [1, 2, 3, 11,
12, 14, 17, 18, 21]).

Lemma 3.1. The only solutions of equation (3) for 4 ≤ a ≤ 100 are those
listed in Table 1.

Table 1.

n a (X,Y )

3 9 (−8,−4), (−2,−2), (4, 0)
6 9 (2, 0), (−2, 0)
3 10 (1,−2), (11, 5)
3 19 (7, 1)
3 28 (−27,−9), (−3,−3), (9, 0)
6 28 (3, 0), (−3, 0)
3 29 (1,−3)
3 36 (13, 3)
3 37 (10,−2)
3 38 (7,−3), (11,−1)
3 57 (−8,−4)
3 65 (−64,−16), (−4,−4), (16, 0)
6 65 (4, 0), (−4, 0)
12 65 (2, 0), (−2, 0)
3 66 (1,−4)
3 73 (8,−4)
3 74 (47, 11)
3 93 (118, 26)
4 5 (6, 4), (−6, 4), (−6,−4), (6,−4), (2, 0), (−2, 0)
4 10 (3, 0), (−3, 0)
4 17 (4, 0), (−4, 0)
8 17 (2, 0), (−2, 0)
4 26 (5, 0), (−5, 0)
4 37 (6, 0), (−6, 0)
4 50 (7, 0), (−7, 0)
4 65 (8, 0), (−8, 0), (12, 4), (−12, 4), (−12,−4), (12,−4)
4 82 (9, 0), (−9, 0)
8 82 (3, 0), (−3, 0)
4 90 (37, 12), (−37, 12), (−37,−12), (37,−12)
5 33 (−8,−4), (−2,−2), (4, 0)
10 33 (2, 0), (−2, 0)
5 34 (1,−2)
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Lemma 3.1 provides an easy way to prove Theorem 2.2. Indeed, we have
to show that no solution of the equation (3) leads to an integral solution of
equation (1), which has coordinates forming an arithmetic progression.

Since X := −x0(a− 1) − dan and Y := −x0(a− 1) − dan+ d(a− 1), if a
solution of (3) leads to an integral solution of equation (1) with coordinates
forming an arithmetic progression, then we also have a − 1 | Y − X . Using
Table 1 we can verify that this condition is fulfilled only if (n, a,X, Y ) =
(3, 93, 118, 26). However, in this case we see that x0 = − 118−3·93

92 , which is
not an integer.

Thus if we want to conclude the proof of Theorem 2.2, it remains us to
prove Lemma 3.1. Clearly, it is enough to consider the cases where n is an
odd prime, or 4, since the other cases are simple consequences of these.

3.2. Baker-type bound for the degree. First we need an upper bound for the
degree n of the Thue-equation (3) in terms of a. Here we use a result of Pintér
[18], which is a refinement of a theorem of Mignotte [16], achieved by iterative
use of Baker’s method.

Lemma 3.2. (Á. Pintér) Let

F (x, y) = axn − byn, a 6= b

be a binary form of degree n ≥ 3, with positive integer coefficients a and b.
Set A = max{a, b, 3}. Suppose that

F (x, y) = c

with x > |y| > 0, 3 log(1.5|c/b|) ≤ 7400 log A
λ and log 2c

log 2 ≤ 8 logA. Then we

have

n ≤ min

(

7400
logA

λ
, 3106 logA

)

:= B(a).

Since we have to deal with the case 4 ≤ a ≤ 100 this lemma reduces our
proof to a finite problem in terms of a and n, which means that there remain
finitely many Thue-equations to be solved. However, the above bound is too
large to make it possible to solve directly all the remaining Thue-equations.
Thus we use local arguments in order to prove the insolvability of most of the
remaining equations.

3.3. Local arguments. Here we adapt to our case a well-known local method
which was used recently by Kraus [15], by Siksek and Cremona [22], and by
Bennett [2].

Choose a small integer k such that p = 2kn+ 1 is a prime. Then Xn and
Y n are both either 2k-th roots of unity (mod p) or zero. Thus we have to
check

Xn − aY n ≡ (a− 1)2 (mod p)
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only in (2k + 1)2 cases. Programmed in MAGMA, this method works very
efficiently, and proves that the majority of the equations

Xn − aY n = (a− 1)2

with 4 ≤ a ≤ 100 and n ≤ B(a) has no solution.

3.4. The remaining cases. There are several such equations for which the local
argument does not give any contradiction. These have to be solved individ-
ually. To do so we use the computer algebra packages PARI and MAGMA
which are able to solve Thue equations of moderate degrees, and when it is
needed we also use the most advanced techniques for solving binomial Thue-
equations involving the theory of modular forms. This approach is analogues
to that employed by Wiles [25] to prove Fermat’s Last Theorem. These meth-
ods were developed and improved by several authors. For relevant references
see [4, 5, 10, 15, 19, 20]. Our application of these methods also involved
computations using MAGMA.

First we present the method using the theory of modular forms. This is
based on the following two lemmas. The first one is a theorem of Bennett and
Skinner [4], and the second one a theorem of Kraus [15].

Lemma 3.3 (M. A. Bennet and C. M. Skinner). Suppose that a, b, c,
A,B,C are non-zero integers with aA, bB, cC pairwise coprime, ab 6= ±1,
satisfying

Aan +Bbn = Cc2

with n ≥ 7 a prime. Then there exists a cuspidal newform f =
∑∞

r=1 crq
r of

weight 2, trivial Nebentypus character and level N := Rad2(AB)Rad2(C)2ε2,
where

ε2 :=







1 if ord2(Bbn) = 6

2 if ord2(Bbn) ≥ 7

4 if ord2(B) = 2 and b ≡ −BC/4 (mod 4)

8 if ord2(B) = 2 and b ≡ BC/4 (mod 4),

or if ord2(B) ∈ {4, 5}
32 if ord2(B) = 3 or if bBC is odd

128 if ord2(B) = 1

256 if C is even.

Moreover, if we write Kf for the field of definition of the Fourier coefficients
cr of the form f and suppose that p is a prime coprime to nN , then

(i) if ab ≡ 0 (mod p) then

NormKf /Q(cp − ap) ≡ 0 (mod n),

where ap = ±(p+ 1),
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(ii) otherwise

NormKf /Q(cp − ap) ≡ 0 (mod n),

where ap = ±(p+ 1) or ap ∈ {x : |x| < 2
√
p, x ≡ 0 (mod 2)}.

Lemma 3.4. (A. Kraus) Suppose that a, b, c, A,B,C are non-zero integers
with aA, bB, cC pairwise coprime, ab 6= ±1, satisfying

Aan +Bbn = Ccn

with n ≥ 5 a prime. Then there exists a cuspidal newform f =
∑∞

r=1 crq
r of

weight 2, trivial Nebentypus character and level N := Rad2(AB)Rad2(C)2εn,
where

εn :=







1 if ord2(ABC) = 4

2 if ord2(ABC) = 0 or if ord2(ABC) ≥ 5

8 if ord2(ABC) = 2 or 3

32 if ord2(ABC) = 1.

Moreover, if we write Kf for the field of definition of the Fourier coefficients
cr of the form f and suppose that p is a prime coprime to nN , then

(i) if ab ≡ 0 (mod p) then

NormKf /Q(cp − ap) ≡ 0 (mod n),

where ap = ±(p+ 1),
(ii) otherwise

NormKf /Q(cp − ap) ≡ 0 (mod n),

where ap = ±(p+ 1) or ap ∈ {x : |x| < 2
√
p, x ≡ p+ 1 (mod 4)}.

These two deep and involved lemmas give a straightforward way to prove
that equation (3) has no solutions for fixed values of a.

3.5. Computational aspects. The cases with n = 3, 4, 5, 7 were solved using
the algorithms for solving Thue equations in the computer algebra packages
PARI [24] and MAGMA [8]. The cases (a, n) = (11, 17) and (a, n) = (43, 17)
were solved using Lemma 3.3 (ii). The cases (a, n) = (23, 11), (a, n) = (35, 13)
and (a, n) = (77, 13) were solved using Lemma 3.4 (ii). When solving the case
(a, n) = (31, 13) first we proved 79 | XY using the local approach, and then
we used Lemma 3.4 (i), with the prime p = 79. Similarly, when solving the
case (a, n) = (9, 19) first we proved 571 | XY and then we used Lemma 3.4
(i) with this prime.

In the remaining cases we solved the Thue equations using the develop-
ment version 2.2.8 of PARI which includes a new version of the routine for
solving Thue-equations. (In these cases neither the stable version of PARI nor
the one of MAGMA was able to solve the occurring Thue equations.) Some
of the main ideas behind this new program can be found in the papers [7]
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and [13]. Since at the moment this is included only in the unstable version of
PARI we used it only if we were not able to apply the other methods. These
cases were the following: (a, n) ∈ {(33, 11), (33, 13), (41, 19), (56, 19), (57, 17),
(58, 17), (61, 19), (74, 13), (79, 11), (83, 11), (85, 17), (88, 13), (94, 13), (95, 11),
(95, 19), (96, 19), (99, 17)}.

We were unable to solve the equation

X31 − 93Y 31 = 922.

We would like to thank the referee for letting us know how to prove that
this equation has no solutions. Suppose that (X,Y ) = (A,B) is an integral
solution of the above equation. If we follow the method of [4], depending on
whether B ≡ 1 (mod 4) or B ≡ −1 (mod 4), we may consider the elliptic
curves

E1 : y2 = x3 + 184x2 − 93B31x

or

E2 : y2 = x3 + 184x2 +A31x,

respectively. Now by Lemma 3.3 of [4] we see that the associated mod 31
Galois representation arises from a weight 2 cuspidal newform

∑
cnq

n of level
N = 32 · 93 = 2976. One can check (either by MAGMA or from Stein’s
Modular Forms Database) that

c5 ≡ 0,±2,±4,±6 (mod 31)

provides a contradiction for all such newforms, except two. These are num-
bered by 2976, 3 and 2976, 4 in Stein’s database [23], and both of them corre-
spond to elliptic curves over Q with rational 2-torsion. In both cases we have
c17 = 4. Computing the number of points over GF (17) on E1 and E2, for
each choice of A and B modulo 17, we find that this number is never 14 and
thus we get a contradiction in all cases.
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Math. 49 (1997), 1139-1161.

[16] M. Mignotte, A note on the equation axn − byn = c, Acta Arith. 75 (1996), 287-295.
[17] L. J. Mordell, Diophantine equations, Academic Press, London, 1969.
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