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Vladimir Ćepulić and Olga S. Pyliavska

University of Zagreb, Croatia and National University of Kyiv-Mohyla
Academy, Ukraine

Abstract. Nonabelian nonmetacyclic finite 2-groups in which every
proper subgroup is abelian or metacyclic and possessing at least one non-
abelian and at least one nonmetacyclic proper subgroup have been investi-
gated and classified. Using the obtained result and two previously known
results one gets the complete classification of all nonabelian nonmetacyclic
finite 2-groups in which every proper subgroup is abelian or metacyclic.

1. Introduction and preliminaries

The aim of this article is to prove the following

Theorem. Let G be a nonabelian non-metacyclic finite 2-group with all
proper subgroups being abelian or metacyclic and possessing at least one non-
abelian and at least one nonmetacyclic proper subgroup. Then G is isomorphic
to some of the groups:

G = 〈a, b, c | a2µ

= b2
ν

= c2 = 1, ab = a1+2µ−1

, ac = a, bc = b〉 = 〈a, b〉 × 〈c〉,
µ ≥ 2, ν ≥ 1, that is, G is the direct product of a metacyclic minimal non-
abelian group 〈a, b〉, distinct from Q8, and the cyclic group 〈c〉 of order 2.

Using this Theorem and two previously known results:

Theorem 1 (Miller-Moreno, [2]). A minimal nonabelian finite 2-group is
isomorphic to some of the groups:

(a) G = 〈a, b | a2µ

= b2
ν

= 1, ab = a1+2µ−1〉, µ ≥ 2, ν ≥ 1,
(b) G = 〈a, b, c | a2µ

= b2
ν

= c2 = 1, c = [a, b], [a, c] = [b, c] = 1〉,
µ, ν ≥ 1, µ+ ν > 2,
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(c) G ∼= Q8.

Theorem 2 (Blackburn, see Janko [1, Theorem 7.1]). A minimal non-
metacyclic finite 2-group is isomorphic to some of the groups:

(a) G = 〈a, b, c | a4 = b4 = 1, c2 = a2b2, ab = a, ac = a3, bc = a2b3〉,
a special group of order 32,

(b) G ∼= Q8 × Z2,
(c) G ∼= Q8 ∗ Z4, the central product of Q8 and Z4,
(d) G ∼= E8,

we get the following classification of the considered groups:

Theorem 3. Let G be a nonabelian nonmetacyclic finite 2-group with all
proper subgroups being abelian or metacyclic. Then G is isomorphic to some
of the groups:

(a) G = 〈a, b, c | a2µ

= b2
ν

= c2 = 1, c = [a, b], [a, c] = [b, c] = 1〉,
µ, ν ≥ 1, µ+ ν > 2,

(b) G = 〈a, b, c | a2µ

= b2
ν

= c2 = 1, ab = a1+2µ−1

, ac = a, bc = b〉,
µ ≥ 2, ν ≥ 1,

(c) G = 〈a, b, c | a4 = b4 = 1, c2 = a2b2, ab = a, ac = a3, bc = a2b3〉,
(d) G ∼= Q8 × Z2,
(e) G ∼= Q8 ∗ Z4, the central product of Q8 and Z4.

Proof. If all proper subgroups of G are abelian, then G is a nonmeta-
cyclic minimal nonabelian group from the list in Theorem 1, which gives the
case (a). If all proper subgroups of G are metacyclic, then G is a nonabelian
group from the list in Theorem 2, which gives the cases (c),(d),(e). Otherwise,
there must be in G some nonabelian metacyclic proper subgroup and some
nonmetacyclic abelian proper subgroup, and applying our Theorem, we get
the case (b).

2. Proof of the Theorem

Let A be an abelian maximal subgroup of G, which is not metacyclic
and M a metacyclic maximal subgroup of G, which is not abelian. Denote
T = A ∩M . The group T is both metacyclic and abelian.

We prove our Theorem in several steps:

(i) M = 〈a, b | a2µ

= 1, b2
ν

= a2ρ

, ab = as〉, µ ≥ 2, ν ≥ 1,
1 ≤ ρ ≤ µ, s > 1, 2 - s.

Proof. Being metacyclic, M is of the form M = 〈a, b | am = 1, bn =
ar, ab = as〉. As M is a 2-group, obviously m = 2µ, n = 2ν , r = r′ · 2ρ with

2 - r′ and 2 - s. Replacing a by ar′
we have b2

ν

= a2ρ

, the other relations
remaining unchanged. As M is not abelian and 〈a〉 CM , it is µ ≥ 2, ν ≥ 1,
ρ ≥ 1 and s > 1.
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(ii) d(A) = 3, d(T ) = 2 and A = T × 〈c〉 for some involution c ∈ A− T .
There are exactly three involutions in T .

Proof. T = A∩M is metacyclic and abelian. Therefore d(T ) ≤ 2. Since
A = 〈T, c〉 for any c ∈ A− T , and A is not metacyclic, we have d(A) ≥ 3 and
d(A) ≤ d(T )+1. It follows d(T ) = 2, d(A) = 3, and so Ω1(T ) ∼= E4, Ω1(A) ∼=
E8. Thus there are exactly 3 involutions in T and there is some involution
c ∈ Ω1(A) − Ω1(T ) ⊆ A− T . Now, obviously, A = 〈T, c〉 = T × 〈c〉.

(iii) Denote N = 〈a〉 CM . Then either

1) N ≤ T and T = 〈a, b2〉, ν ≥ 2, or
2) N � T and, without loss, T = 〈a2, b〉.
Proof. If N = 〈a〉 ≤ T , then b /∈ T , but b2 ∈ T , as M/T ∼= Z2. Thus

〈a, b2〉 ≤ T and |M : 〈a, b2〉| = 2 = |M : T |. It follows T = 〈a, b2〉. If
N � T , then M = NT and NT/N = M/N ∼= T/N ∩ T ∼= Z2ν . Henceforth
|N : N ∩ T | = |M : T | = 2, N ∩ T = 〈a2〉 and there exists b′ ∈ T − (N ∩ T )

such that b
′2ν ∈ N ∩ T and b′2

ν−1

/∈ N ∩ T . Now T = 〈N ∩ T, b′〉 = 〈a2, b′〉
and M = 〈a, b′〉. Replacing b by b′ we get M = 〈a, b〉, T = 〈a2, b〉.

(iv) Φ(M) = f1(M) = 〈a2, b2〉 is abelian.

Proof. We know that Φ(M) = f1(M) for 2-groups and M/Φ(M) ∼= E4

since M is metacyclic. As 〈a2, b2〉 ≤ f1(M), and |M : 〈a2, b2〉| = 4, it follows
Φ(M) = 〈a2, b2〉. Also Φ(M) ≤ T , because T is maximal in M , and so Φ(M)
is abelian.

In the following, we consider the involutions in T . In N = 〈a〉 there is only

one involution τ = a2µ−1

. If σ is another involution in T , then Ω1(T ) = 〈σ, τ〉.
(v) If ν ≥ 2, ρ ≥ 2, then Ω1(T ) = 〈σ, τ〉, where σ = a−2ρ−1

b2
ν−1

and τ =

a2µ−1

, and thus Ω1(T ) ≤ 〈a2, b2〉 = Φ(M). Besides, Ω1(A) = 〈σ, τ, c〉 ∼= E8.

Proof. Here σ ∈ T − 〈a〉, and σ2 = (a−2ρ−1

b2
ν−1

)2 = a−2ρ

b2
ν

=
a−2ρ

a2ρ

= 1. So σ and στ are both involutions in T −〈a〉. Since A = T ×〈c〉,
obviously Ω1(A) = Ω1(T ) × 〈c〉 = 〈σ, τ, c〉.

(vi) If ν ≥ 2, ρ ≥ 2, then G = M × 〈c〉 and M is minimal nonabelian.

Proof. By (ii) and (iii) we have [T, c] = 1 and either 1) T = 〈a, b2〉
or 2) T = 〈a2, b〉. Thus ac = a in case 1) and bc = b in case 2). Among
the generators a, b of M denote the one belonging to T by x, and the one
outside of T by y. Thus xc = x. It is y /∈ T , but y2 ∈ T and we have

(y2)c = y2, yc2

= y1 = y. Since G/T ∼= E4 and G/T = 〈Ty, T c〉, it is yc = ty,

for some t ∈ T . Hence yc2

= (yc)c = (ty)c = tc · ty = t · ty = y, (y2)c =
yc · yc = ty · ty = ty2ty = ttyy2 = y2. It follows that t2 = 1 and ty = t, thus t
is some involution in T and [y, t] = 1.
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We assert that Φ(G) = Φ(M) = 〈a2, b2〉. As G = 〈M, c〉, the elements of
G are of the form g = xαyβ or g = xαyβc. If g = xαyβ ∈ 〈a, b〉 = M , then g2 ∈
Φ(M) = 〈a2, b2〉. If g = xαyβc, then g2 = (xαyβc)2 = xαyβc2(xc)α(yc)β =
xαyβ · 1 · xα(ty)β = xαyβxαtβyβ = (xαyβ)2 · tβ , because of [x, t] = [y, t] = 1.
Since (xαyβ)2 ∈ Φ(M) and t ∈ 〈σ, τ〉 ⊆ Φ(M), it follows g2 ∈ Φ(M) in any
case. Therefore f1(G) = Φ(G) ≤ Φ(M) ≤ Φ(G), and so Φ(G) = Φ(M) =
〈a2, b2〉.

Now G = 〈Φ(G), a, b, c〉 = 〈x, y, c〉. The subgroup M1 = 〈Φ(G), y, c〉 =
〈Φ(M), y, c〉 is a maximal subgroup of G containing 〈σ, τ, c〉 ∼= E8. Thus M1

is not metacyclic. So it must be abelian, and yc = y. Since also xc = x, we
have [a, c] = [b, c] = 1, and so G = M × 〈c〉.

For each maximal subgroup T1 of M , we have T1 ≥ Φ(M) ≥ 〈σ, τ〉. The
group T1 × 〈c〉 is maximal in G and contains 〈σ, τ, c〉 ∼= E8. By the above
argument T1 × 〈c〉 is also abelian, and so is T1. It follows that all proper
subgroups of M are abelian and soM is minimal nonabelian metacyclic group.

Now we consider the remaining cases, when ν = 1 or ρ = 1.

(vii) Both cases ν = 1, or ρ = 1 reduce to the case ν = 1, that is

M = 〈a, b | a2µ

= 1, b2 = a2ρ

, ab = as〉, 2 - s.

Proof. If ν = 1, then M is as stated above and it is a metacyclic group
with a cyclic maximal subgroup 〈a〉.

If ρ = 1, then M = 〈a, b | a2µ

= 1, b2
ν

= a2, ab = as〉. Now, |b2ν | = |a2| =
2µ−1, and so |b| = 2ν+µ−1. As |M | = 2µ+ν , it now follows that〈b〉 is a cyclic
maximal subgroup of M . Interchanging the notation for a and b, we get again
the same relations for M as in the assertion.

(viii) In any case, G = 〈c〉 ×M and M is minimal nonabelian.

Proof. We continue considering the remaining case ν = 1. Since T =
A ∩M, d(T ) = 2, therefore T 6= 〈a〉. From |M : T | = 2 and |M : 〈a〉| = 2,
it follows T ∩ 〈a〉 = 〈a2〉. Since 〈σ, τ〉 ≤ T and σ /∈ 〈a〉, it is M = 〈a, σ〉,
and we can replace b by σ. Now, b = σ ∈ T, b2 = σ2 = 1 and T = 〈a2, b〉,
M = 〈a, b | a2µ

= b2 = 1, ab = as〉.
It is (a2)b = a2 = (ab)2 = a2sand thus 2µ|2(s − 1). It follows that

s = 1 + 2µ−1 and so ab = a2µ−1 ·a = τa. Similarly as in (vi), we have ac = ta,

for some t ∈ T , and from ac2

= a1 = a and (a2)c = a2 we conclude again that
t2 = 1 and ta = t. Therefore t ∈ 〈σ, τ〉. Because of τa = τ, σa = ba 6= b = σ,
it must be t ∈ 〈τ〉, that is

G = 〈a, b, c | a2µ

= b2 = c2 = 1, ab = τa, ac = τηa, bc = b〉, η ∈ {0, 1}.
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If η = 0, then obviously G = M × 〈c〉, where

M = 〈a, b | a2µ

= b2 = 1, ab = a1+2µ−1〉.
Otherwise, if η = 1, replacing c by c′ = bc = σc, we have c′2 = (σc)2 = 1, ac′ =
abc = (τa)c = τ · τa = a, and again G = M × 〈c〉. The maximal subgroups of
M are 〈Φ(M), a〉 = 〈a〉, 〈Φ(M), σ〉 = 〈a2, σ〉 and 〈Φ(M), aσ〉 = 〈a2, aσ〉, all
of them being abelian. Thus M is minimal nonabelian group.

(ix) G is isomorphic to some of the groups:

G = 〈a, b, c | a2µ

= b2
ν

= c2 = 1, ab = a1+2µ−1

, ac = a, bc = b〉,
µ ≥ 2, ν ≥ 1.

Proof. This follows immediately by (vi),(viii) and Theorem 1, as the
groups from Theorem 1(b) are not metacyclic, and Q8 × Z2 is minimal non-
metacyclic.

(x) All groups listed in the Theorem have the stated property.

Proof. It remains to show that every maximal subgroup of such a group
G is abelian or metacyclic. We know that M is minimal nonabelian and
M/Φ(M) ∼= E4. Thus Φ(M) is intersection of abelian maximal subgroups
and so lies in Z(M) and Z(M) = Φ(M). Since G = M × 〈c〉, obviously
Φ(M) = Ω1(M) = Ω1(G) = Φ(G) and Z(G) = Z(M) × 〈c〉 = Φ(G) × 〈c〉.

The Frattini factor group G/Φ(G) = 〈a, b, c〉 ∼= E8 has 7 maximal sub-
groups: H1 = 〈a, b〉, H2 = 〈a, c〉, H3 = 〈b, c〉, H4 = 〈ab, c〉, H5 = 〈a, bc〉,
H6 = 〈ac, b〉, and H7 = 〈ac, bc〉. They are in the one to one correspondence
with maximal subgroups of G, according the correspondence law:

Hi = 〈x, y〉 ↔ Hi = 〈x, y,Φ(G)〉.
We see that: H1 = 〈a, b,Φ(G)〉 = 〈a, b,Φ(M)〉 = M is metacyclic, nonabelian,
H2 = 〈a, c,Φ(G)〉, H3 = 〈b, c,Φ(G)〉 and H4 = 〈ab, c,Φ(G)〉 are all abelian,
because they are cyclic extensions of Z(G) = Φ(G) × 〈c〉.

The groups H3 and H4 are moreover nonmetacyclic in both cases ν ≥ 2
and ν = 1, while H2 is metacyclic in the latter case, as for ν = 1 the group
Φ(G) = 〈a2〉.

Since c ∈ Z(G) and c2 = 1, it is (ac)2 = a2, (bc)2 = b2, |ac| = |a|, |bc| =

|b| and [a, bc] = [ac, b] = [ac, bc] = [a, b] = a2µ−1

= (ac)2µ−1

. Therefore:

H5 = 〈a, bc,Φ(G)〉 = 〈a, bc | a2µ

= (bc)2ν

= 1, [a, bc] = a2µ−1〉 ∼= H1

H6 = 〈ac, b,Φ(G)〉 = 〈ac, b | (ac)2µ

= b2
ν

= 1, [ac, b] = (ac)2µ−1〉 ∼= H1

H7 = 〈ac, bc,Φ(G)〉 = 〈ac, bc | (ac)2µ

= (bc)2ν

= 1, [ac, bc] = (ac)2µ−1 〉 ∼= H1,

and H5, H6, H7 are all metacyclic nonabelian.
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Our Theorem is proved.
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