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Abstract. In this paper we classify finite non-metacyclic 2-groups
G such that Ω∗

2(G) (the subgroup generated by all elements of order 4) is
metacyclic. However, if G is a finite 2-group such that Ω2(G) (the subgroup
generated by all elements of order ≤ 4) is metacyclic, then G is metacyclic.

1. Introduction

A famous result of N. Blackburn (see Proposition 1.4) states that if G is
a finite 2-group such that the subgroup Ω2(G) (the subgroup generated by all
elements of order ≤ 4) is metacyclic, then G is metacyclic. What can we say
in the case, where G is a finite 2-group and we know that only the subgroup
Ω∗

2(G) (the subgroup generated by all elements of order 4) is metacyclic? The
purpose of this paper is to classify finite non-metacyclic 2-groups G such that
Ω∗

2(G) is metacyclic. We have seen in Janko [3] that such a subgroup Ω∗
2(G)

has the strong influence on the structure of the whole group G so that the
structure of the 2-group G is almost uniquely determined, when Ω∗

2(G) is
known.

All groups considered here are finite and our notation is standard. In
particular,

M2n = 〈a, t | a2n−1

= t2 = 1, at = a1+2n−2

, n ≥ 4〉,
and 2-groups of maximal class are dihedral groups D2n (of order 2n, n ≥ 3),
generalized quaternion groups Q2n (of order 2n, n ≥ 3), and semi-dihedral
groups SD2n (of order 2n, n ≥ 4).

For convenience, we state here some known results which are used in this
paper.
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Proposition 1.1 ([5, Proposition 1.4]). Let G be a 2-group of order ≥
24 satisfying |Ω2(G)| ≤ 23. If Z(G) is noncyclic, then G is abelian of type
(2, 2n), n ≥ 3.

Proposition 1.2 ([5, Theorem 2.1]). Let G be a metacyclic 2-group
which is neither cyclic nor of maximal class. Then G has exactly three invo-
lutions.

Proposition 1.3 ([2, Theorem 4.1]). Let G be a 2-group of order > 24

all of whose elements of order 4 generate the subgroup H = Ω∗
2(G) of order

24. Assume in addition that G has exactly 6 cyclic subgroups of order 4 and
|Ω2(G)| > 24. Then we have the following possibilities:

(a) H ∼= Q8 × C2 and G ∼= SD24 × C2.
(b) H ∼= 〈a, b | a4 = b4 = 1, ab = a−1〉 and

G = 〈b, t | b4 = t2 = 1, bt = ab, a4 = 1, ab = a−1, at = a−1〉.
Here |G| = 25, H = 〈a, b〉, Φ(G) = 〈a, b2〉 ∼= C4 ×C2, Ω2(G) = G, and
Z(G) = 〈a2, b2〉 ∼= E4.

(c) H ∼= C4 × C4 and G has a metacyclic maximal subgroup M such that
Ω2(M) = H, G = M〈t〉, where t is an involution with CM (t) =
Ω1(M) ∼= E4 and t inverts each element of CM (H) so that CM (H)
is abelian. (The last statement actually follows from the proof of The-
orem 4.1 in [2].)

Proposition 1.4 (N. Blackburn, [2, Proposition 1.8]). If G is a 2-group
such that Ω2(G) is metacyclic, then G is metacyclic, too.

Proposition 1.5 ([4, Theorem 5.1]). Let G be a 2-group containing ex-
actly one abelian subgroup of type (4, 2). Then one of the following holds:

(a) |Ω2(G)| = 8.
(b) G ∼= C2 ×D2n+1 , n ≥ 2.

(c) G = 〈b, t | b2n+1

= t2 = 1, bt = b−1+2n−1

u, u2 = [u, t] = 1, bu =
b1+2n

, n ≥ 2〉. Here |G| = 2n+3, Z(G) = 〈b2n〉 is of order 2, Φ(G) =
〈b2, u〉, E = 〈b2n

, u, t〉 ∼= E8 is self-centralizing in G, Ω2(G) = 〈u〉 ×
〈b2, t〉 ∼= C2 × D2n+1 , G′ = 〈b2n

, u〉 ∼= E4 in case n = 2, and G′ =
〈b2u〉 ∼= C2n for n ≥ 3.

Proposition 1.6 ([4, Proposition 1.12]). Let G be a p-group with a non-
abelian subgroup P of order p3. If CG(P ) ≤ P , then G is of maximal class.

Proposition 1.7 (Janko, [1, Proposition 1.10]). Let τ be an involutory
automorphism acting on an abelian 2-group B so that CB(τ) = W0 is con-
tained in Ω1(B). Then τ acts invertingly on f1(B) and on B/W0.

Proposition 1.8 ([2, Introduction]). Suppose that a 2-group G is neither
cyclic nor of maximal class. Then the number cn(G) (n > 1, n fixed ) of cyclic
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subgroups of order 2n is even. (This result is also due to G. A. Miller and
appears in section 51 of the 1915 book on “Finite groups” by Miller-Blichfeldt-
Dickson.)

We prove here the following new result.

Theorem 1.9. Let G be a non-metacyclic 2-group of exponent > 2 such
that H = Ω∗

2(G) is metacyclic. Then one of the following holds:

(i) H ∼= C4 × C2 is the unique abelian subgroup of G of type (4, 2) and G
is isomorphic to one of the groups given in (b) and (c) of Proposition
1.5.

(ii) H ∼= C4 ×C4 and G is isomorphic to one of the groups given in (c) of
Proposition 1.3.

(iii) G = 〈t, c | t2 = c2
n+1

= 1, n ≥ 2, tc = b, b4 = [b2, c] = 1〉, where
|G| = 2n+3, n ≥ 2, H = Ω∗

2(G) = 〈c2, b〉 with (c2)b = c−2 and H
is a splitting metacyclic maximal subgroup , 〈b2〉 × 〈c〉 is the unique
abelian maximal subgroup (of type (2, 2n+1)), Z(G) = 〈b2, c2n〉 ∼= E4,
G′ = 〈c2b2〉 ∼= C2n , and 〈t, b2, c2n〉 ∼= E8 (so that G is non-metacyclic).

2. Proof of Theorem 1.9

Let G be a non-metacyclic 2-group of exponent > 2 such that the sub-
group H = Ω∗

2(G) is metacyclic. If H = Ω2(G), then a result of N. Black-
burn (Proposition 1.4) implies that G is metacyclic, a contradiction. Hence
Ω2(G) > H and so there exist involutions in G−H .

Suppose that H is cyclic. Then H ∼= C4 and so G has exactly one cyclic
subgroup of order 4. But then Proposition 1.8 implies that G is metacyclic,
a contradiction. Hence H is noncyclic.

Assume that H is abelian (of rank 2). Since H = Ω∗
2(H), we have either

H ∼= C4 × C2 or H ∼= C4 × C4.
Suppose H ∼= C4 × C2. In that case H is the unique abelian subgroup

of type (4, 2) in G. Suppose that this is not the case. Then there is an
involution i ∈ G − H which centralizes an element v ∈ H of order 4, where
〈i〉 × 〈v〉 ∼= C2 × C4. But then o(iv) = 4 and iv ∈ G − H , a contradiction.
(We need this uniqueness proof so that we are able to use Proposition 1.5.)
By Proposition 1.5, G is isomorphic to a group given in parts (b) and (c) of
that proposition.

Suppose H ∼= C4 × C4. In that case G has exactly 6 cyclic subgroups of
order 4 and Ω2(G) > H and so G is isomorphic to a group given in the part
(c) of Proposition 1.3.

From now on we assume thatH is nonabelian. Suppose in addition that H
has a cyclic subgroup of index 2. Since Ω∗

2(H) = H , we get H ∼= Q2n , n ≥ 3.
Let H0

∼= Q8 be a quaternion subgroup of H so that CH(H0) = Z(H0) =
Z(H) ∼= C2. If CG(H0) ≤ H0, then G is of maximal class (Proposition 1.6)
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and so G is metacyclic, a contradiction. Hence D = CG(H0) 6≤ H0 so that
D ∩ H = Z(H0), D > Z(H0), and D must be elementary abelian. Let
d ∈ D − Z(H0) and s ∈ H0 with o(s) = 4. Then o(ds) = 4 and ds 6∈ H , a
contradiction.

Our subgroup H = Ω∗
2(G) is metacyclic nonabelian and H has no cyclic

subgroup of index 2 and so, by Proposition 1.2, H has exactly three involutions
and Ω1(H) ∼= E4. Let Z = 〈a〉 be a cyclic normal subgroup of H such that
H/Z is cyclic and we have |H/Z| ≥ 4. Let K/Z be the subgroup of index 2
in H/Z. Since Ω∗

2(H) = H , there is an element b of order 4 in H −K. This
implies |H/Z| = 4, H = 〈a〉〈b〉 with 〈a〉 ∩ 〈b〉 = {1} and so H is splitting over
Z. We set o(a) = 2n with n ≥ 2 since H is nonabelian. Since K = 〈a〉〈b2〉
contains exactly three involutions, K is either abelian of type (2, 2n), n ≥ 2
or K ∼= M2n+1 , n ≥ 3. In the last case, 〈b〉 ∼= C4 acts faithfully on 〈a〉 and so
in that case n ≥ 4.

First assume K ∼= M2n+1 , n ≥ 4, where 〈b〉 acts faithfully on Z = 〈a〉.
We have ab = av or ab = a−1v, where v is an element of order 4 in 〈a〉. Set
v2 = z, where z ∈ Z(H).

Suppose ab = av so that H ′ = 〈v〉 and (a4)b = (av)4 = a4. Since
〈v〉 ≤ 〈a4〉, we have H ′ ≤ Z(H). If x, y ∈ H with o(x) ≤ 8 and o(y) ≤ 8,
then (xy)8 = x8y8[y, x]28 = 1 and so Ω3(H) < H because o(a) ≥ 24. This is
a contradiction since we must have Ω∗

2(H) = H but Ω∗
2(H) ≤ Ω3(H).

Assume ab = a−1v so that (a2)b = (a−1v)2 = a−2z and (a4)b = (a−1v)4 =
a−4. Therefore b inverts 〈a4〉 and so vb = v−1. Also,

ab2 = (a−1v)b = (a−1v)−1v−1 = av−2 = az, and a = (ab−1

)−1vb−1

,

which gives ab−1

= a−1v−1 and abη

= a−1vη , where η = ±1. We compute:

(ba2)2 = ba2ba2 = b2(a2)ba2 = b2a−2za2 = b2z,

and so o(ba2) = 4. This implies Ω∗
2(H) ≥ 〈b, a2〉, where L = 〈b, a2〉 is a

maximal subgroup of H . We claim that the set H − L contains no elements
of order 4 and this gives us a contradiction. Indeed, each element in H − L
has the form (bja2i)a = bja2i+1 (i, j are integers). If j = 2, then

(b2a2i+1)2 = b2a2i+1b2a2i+1 = b4(ab2)2i+1a2i+1 = (az)2i+1a2i+1 = (a4iz)a2,

which is an element of order ≥ 8. If j = η = ±1, then

(bηa2i+1)2 = bηa2i+1bηa2i+1 = b2η(abη

)2i+1a2i+1

= b2(a−1vη)2i+1a2i+1 = b2(vη)2ivη = b2zivη,

which is an element of order 4 since [b2, v] = 1.
We have proved that K = 〈b2, a〉 must be abelian of type (2, 2n), n ≥ 2,

E4
∼= Ω1(H) = 〈b2, z〉 ≤ Z(H), where we have set z = a2n−1

. The element b
induces on 〈a〉 an involutory automorphism and so we have either ab = az,
n ≥ 3 or ab = a−1zε, ε = 0, 1, n ≥ 2 (and if ε = 1, then n ≥ 3).
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First assume ab = az, n ≥ 3, where H ′ = 〈z〉 and so H is of class 2. In
that case, if x, y ∈ H with o(x) ≤ 4 and o(y) ≤ 4, then (xy)4 = x4y4[y, x]6 = 1
and so exp(Ω2(H)) = 4. But o(a) = 2n ≥ 8 and so Ω∗

2(H) ≤ Ω2(H) < H , a
contradiction.

We have proved that ab = a−1zε, ε = 0, 1, n ≥ 2, and if ε = 1, then
n ≥ 3. Assume n = 2 so that H = 〈a, b | a4 = b4 = 1, ab = a−1〉. By
Proposition 1.3(b), G is isomorphic to the following (uniquely determined)
group of order 25:

(2.1) G = 〈b, t | b4 = t2 = 1, bt = ab, a4 = 1, ab = a−1, at = a−1〉,

where Ω∗
2(G) = 〈a, b〉, Φ(G) = 〈a, b2〉 ∼= C4 × C2, and Ω2(G) = G.

It remains to study the case n ≥ 3, where

H = 〈a, b | a2n

= b4 = 1, n ≥ 3, ab = a−1zε, ε = 0, 1, z = a2n−1〉,

H ′ = 〈a2〉 ∼= C2n−1 , Ω1(H) = Z(H) = 〈b2, z〉 ∼= E4, and K = 〈b2, a〉 is the
unique abelian maximal subgroup (of type (2, 2n) ) of H .

Let t be an involution in G −H and set L = H〈t〉. Since 〈z〉 = Ω1(H ′),
z ∈ Z(G) and let 〈v〉 be the cyclic subgroup of order 4 in H ′ so that 〈v〉 is
normal in G. Note that vb = v−1 and CH (v) = K so that C = CG(v) covers
G/H . Set C0 = CL(v) and we see that

|G : C| = |L : C0| = 2, L = C0〈b〉, G = C〈b〉, C ∩H = K.

If t does not centralize Z(H) = 〈b2, z〉, then 〈t, Z(H)〉 ∼= D8 and tb2 is an
element of order 4 in L−H , a contradiction. Thus t centralizes Z(H) and so
Z(H) ≤ Z(L). Also, t does not centralize any element of order 4 in H and so
CH(t) = 〈b2, z〉 = Ω1(H).

Since 〈v〉 is central in C, there are no involutions in C−K. But there are
no elements of order 4 in C−K and so Ω2(C) = Ω2(K) = 〈b2〉×〈v〉 ∼= C2×C4.
The fact that CK(t) = Z(H) also implies CC(t) = Z(H) = Ω1(C). Note that
Z(H) ≤ Z(L) implies that Z(C0) ≥ 〈b2, z〉 and so Z(C0) is noncyclic. By
Proposition 1.1, C0 is abelian of type (2, 2n+1).

We act with the involution t on the abelian group C0 and apply Propo-
sition 1.7. It follows that t acts invertingly on C0/〈b2, z〉. We get at = a−1s,
where s ∈ 〈b2, z〉. Then (ta)2 = tata = ata = a−1sa = s and so s = 1 since
ta 6∈ H and ta cannot be an element of order 4. We get at = a−1 and so
t acts invertingly on K. On the other hand, b = tc0 with c0 ∈ K and so
ab = atc0 = (a−1)c0 = a−1 because C0 is abelian. We have proved that ε = 0
and so b also acts invertingly on K.

We show that the involution b2z is not a square in H . Indeed, for any
x ∈ K, we get

(bx)2 = bxbx = b2xbx = b2x−1x = b2.



76 Z. JANKO

On the other hand, b2 and z are squares in H and so 〈b2z〉 is a characteristic
subgroup of H and therefore b2z ∈ Z(G). It follows that Z(H) = 〈b2, z〉 ≤
Z(G).

We use again Proposition 1.1 and get that C is also abelian (of type
(2, 2k), k ≥ n+ 1). If C 6= C0, then there is an element d ∈ C0 −K such that
d ∈ f1(C). By Proposition 1.7, t acts invertingly on f1(C) and so dt = t−1.
But then t inverts each element in C0 which implies that all elements in
tC0 = L − C0 are involutions. This is a contradiction since b ∈ L − C0 and
o(b) = 4.

We have proved that C = C0 and so G = L. Since t acts invertingly on
K, all elements in tK are involutions. But b is not an involution and so b = tc
with a suitable element c ∈ C0 −K so that o(c) = 2n+1. Since C0 is abelian,
we have [b2, c] = 1. We have obtained the following group of order 2n+3:

(2.2) G = 〈c, t | c2n+1

= t2 = 1, n ≥ 3, tc = b, b4 = [b2, c] = 1〉,
where Ω∗

2(G) = 〈c2, b〉 with (c2)b = c−2.
If we set n = 2 in (2.2), we get a group G of order 25 with

Ω∗
2(G) = 〈c2, b | (c2)4 = b4 = 1, (c2)b = c−2〉

and Ω2(G) = G and so this group G (because Proposition 1.3(b) implies the
uniqueness of such a group) must be isomorphic to the group given in (2.1).
We have obtained the groups given in part (iii) of our theorem for all n ≥ 2.
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