FINITE 2-GROUPS G WITH $\Omega_{2}^{*}(G)$ METACYCLIC

Zvonimir Janko
University of Heidelberg, Germany

Abstract

In this paper we classify finite non-metacyclic 2-groups G such that $\Omega_{2}^{*}(G)$ (the subgroup generated by all elements of order 4) is metacyclic. However, if G is a finite 2 -group such that $\Omega_{2}(G)$ (the subgroup generated by all elements of order ≤ 4) is metacyclic, then G is metacyclic.

1. Introduction

A famous result of N. Blackburn (see Proposition 1.4) states that if G is a finite 2 -group such that the subgroup $\Omega_{2}(G)$ (the subgroup generated by all elements of order ≤ 4) is metacyclic, then G is metacyclic. What can we say in the case, where G is a finite 2 -group and we know that only the subgroup $\Omega_{2}^{*}(G)$ (the subgroup generated by all elements of order 4) is metacyclic? The purpose of this paper is to classify finite non-metacyclic 2-groups G such that $\Omega_{2}^{*}(G)$ is metacyclic. We have seen in Janko [3] that such a subgroup $\Omega_{2}^{*}(G)$ has the strong influence on the structure of the whole group G so that the structure of the 2 -group G is almost uniquely determined, when $\Omega_{2}^{*}(G)$ is known.

All groups considered here are finite and our notation is standard. In particular,

$$
M_{2^{n}}=\left\langle a, t \mid a^{2^{n-1}}=t^{2}=1, a^{t}=a^{1+2^{n-2}}, n \geq 4\right\rangle
$$

and 2-groups of maximal class are dihedral groups $D_{2^{n}}$ (of order $2^{n}, n \geq 3$), generalized quaternion groups $Q_{2^{n}}$ (of order $2^{n}, n \geq 3$), and semi-dihedral groups $S D_{2^{n}}$ (of order $2^{n}, n \geq 4$).

For convenience, we state here some known results which are used in this paper.

[^0]Proposition 1.1 ([5, Proposition 1.4]). Let G be a 2-group of order \geq 2^{4} satisfying $\left|\Omega_{2}(G)\right| \leq 2^{3}$. If $Z(G)$ is noncyclic, then G is abelian of type $\left(2,2^{n}\right), n \geq 3$.

Proposition 1.2 ([5, Theorem 2.1]). Let G be a metacyclic 2-group which is neither cyclic nor of maximal class. Then G has exactly three involutions.

Proposition 1.3 ([2, Theorem 4.1]). Let G be a 2-group of order $>2^{4}$ all of whose elements of order 4 generate the subgroup $H=\Omega_{2}^{*}(G)$ of order 2^{4}. Assume in addition that G has exactly 6 cyclic subgroups of order 4 and $\left|\Omega_{2}(G)\right|>2^{4}$. Then we have the following possibilities:
(a) $H \cong Q_{8} \times C_{2}$ and $G \cong S D_{2^{4}} \times C_{2}$.
(b) $H \cong\left\langle a, b \mid a^{4}=b^{4}=1, a^{b}=a^{-1}\right\rangle$ and

$$
G=\left\langle b, t \mid b^{4}=t^{2}=1, b^{t}=a b, a^{4}=1, a^{b}=a^{-1}, a^{t}=a^{-1}\right\rangle
$$

Here $|G|=2^{5}, H=\langle a, b\rangle, \Phi(G)=\left\langle a, b^{2}\right\rangle \cong C_{4} \times C_{2}, \Omega_{2}(G)=G$, and $Z(G)=\left\langle a^{2}, b^{2}\right\rangle \cong E_{4}$.
(c) $H \cong C_{4} \times C_{4}$ and G has a metacyclic maximal subgroup M such that $\Omega_{2}(M)=H, G=M\langle t\rangle$, where t is an involution with $C_{M}(t)=$ $\Omega_{1}(M) \cong E_{4}$ and t inverts each element of $C_{M}(H)$ so that $C_{M}(H)$ is abelian. (The last statement actually follows from the proof of Theorem 4.1 in [2].)
Proposition 1.4 (N. Blackburn, [2, Proposition 1.8]). If G is a 2-group such that $\Omega_{2}(G)$ is metacyclic, then G is metacyclic, too.

Proposition 1.5 ([4, Theorem 5.1]). Let G be a 2-group containing exactly one abelian subgroup of type $(4,2)$. Then one of the following holds:
(a) $\left|\Omega_{2}(G)\right|=8$.
(b) $G \cong C_{2} \times D_{2^{n+1}}, n \geq 2$.
(c) $G=\langle b, t| b^{2^{n+1}}=t^{2}=1, b^{t}=b^{-1+2^{n-1}} u, u^{2}=[u, t]=1, b^{u}=$ $\left.b^{1+2^{n}}, n \geq 2\right\rangle$. Here $|G|=2^{n+3}, Z(G)=\left\langle b^{2^{n}}\right\rangle$ is of order $2, \Phi(G)=$ $\left\langle b^{2}, u\right\rangle, E=\left\langle b^{2^{n}}, u, t\right\rangle \cong E_{8}$ is self-centralizing in $G, \Omega_{2}(G)=\langle u\rangle \times$ $\left\langle b^{2}, t\right\rangle \cong C_{2} \times D_{2^{n+1}}, G^{\prime}=\left\langle b^{2^{n}}, u\right\rangle \cong E_{4}$ in case $n=2$, and $G^{\prime}=$ $\left\langle b^{2} u\right\rangle \cong C_{2^{n}}$ for $n \geq 3$.
Proposition 1.6 ([4, Proposition 1.12]). Let G be a p-group with a nonabelian subgroup P of order p^{3}. If $C_{G}(P) \leq P$, then G is of maximal class.

Proposition 1.7 (Janko, [1, Proposition 1.10]). Let τ be an involutory automorphism acting on an abelian 2-group B so that $C_{B}(\tau)=W_{0}$ is contained in $\Omega_{1}(B)$. Then τ acts invertingly on $\mho_{1}(B)$ and on B / W_{0}.

Proposition 1.8 ([2, Introduction]). Suppose that a 2-group G is neither cyclic nor of maximal class. Then the number $c_{n}(G)(n>1$, n fixed) of cyclic
subgroups of order 2^{n} is even. (This result is also due to G. A. Miller and appears in section 51 of the 1915 book on "Finite groups" by Miller-BlichfeldtDickson.)

We prove here the following new result.
Theorem 1.9. Let G be a non-metacyclic 2-group of exponent >2 such that $H=\Omega_{2}^{*}(G)$ is metacyclic. Then one of the following holds:
(i) $H \cong C_{4} \times C_{2}$ is the unique abelian subgroup of G of type $(4,2)$ and G is isomorphic to one of the groups given in (b) and (c) of Proposition 1.5.
(ii) $H \cong C_{4} \times C_{4}$ and G is isomorphic to one of the groups given in (c) of Proposition 1.3.
(iii) $G=\left\langle t, c \mid t^{2}=c^{2^{n+1}}=1, n \geq 2, t c=b, b^{4}=\left[b^{2}, c\right]=1\right\rangle$, where $|G|=2^{n+3}, n \geq 2, H=\Omega_{2}^{*}(G)=\left\langle c^{2}, b\right\rangle$ with $\left(c^{2}\right)^{b}=c^{-2}$ and H is a splitting metacyclic maximal subgroup , $\left\langle b^{2}\right\rangle \times\langle c\rangle$ is the unique abelian maximal subgroup (of type $\left(2,2^{n+1}\right)$), $Z(G)=\left\langle b^{2}, c^{2^{n}}\right\rangle \cong E_{4}$, $G^{\prime}=\left\langle c^{2} b^{2}\right\rangle \cong C_{2^{n}}$, and $\left\langle t, b^{2}, c^{2^{n}}\right\rangle \cong E_{8}$ (so that G is non-metacyclic).

2. Proof of Theorem 1.9

Let G be a non-metacyclic 2-group of exponent >2 such that the subgroup $H=\Omega_{2}^{*}(G)$ is metacyclic. If $H=\Omega_{2}(G)$, then a result of N. Blackburn (Proposition 1.4) implies that G is metacyclic, a contradiction. Hence $\Omega_{2}(G)>H$ and so there exist involutions in $G-H$.

Suppose that H is cyclic. Then $H \cong C_{4}$ and so G has exactly one cyclic subgroup of order 4. But then Proposition 1.8 implies that G is metacyclic, a contradiction. Hence H is noncyclic.

Assume that H is abelian (of rank 2). Since $H=\Omega_{2}^{*}(H)$, we have either $H \cong C_{4} \times C_{2}$ or $H \cong C_{4} \times C_{4}$.

Suppose $H \cong C_{4} \times C_{2}$. In that case H is the unique abelian subgroup of type $(4,2)$ in G. Suppose that this is not the case. Then there is an involution $i \in G-H$ which centralizes an element $v \in H$ of order 4, where $\langle i\rangle \times\langle v\rangle \cong C_{2} \times C_{4}$. But then $o(i v)=4$ and $i v \in G-H$, a contradiction. (We need this uniqueness proof so that we are able to use Proposition 1.5.) By Proposition 1.5, G is isomorphic to a group given in parts (b) and (c) of that proposition.

Suppose $H \cong C_{4} \times C_{4}$. In that case G has exactly 6 cyclic subgroups of order 4 and $\Omega_{2}(G)>H$ and so G is isomorphic to a group given in the part (c) of Proposition 1.3.

From now on we assume that H is nonabelian. Suppose in addition that H has a cyclic subgroup of index 2 . Since $\Omega_{2}^{*}(H)=H$, we get $H \cong Q_{2^{n}}, n \geq 3$. Let $H_{0} \cong Q_{8}$ be a quaternion subgroup of H so that $C_{H}\left(H_{0}\right)=Z\left(H_{0}\right)=$ $Z(H) \cong C_{2}$. If $C_{G}\left(H_{0}\right) \leq H_{0}$, then G is of maximal class (Proposition 1.6)
and so G is metacyclic, a contradiction. Hence $D=C_{G}\left(H_{0}\right) \not \leq H_{0}$ so that $D \cap H=Z\left(H_{0}\right), D>Z\left(H_{0}\right)$, and D must be elementary abelian. Let $d \in D-Z\left(H_{0}\right)$ and $s \in H_{0}$ with $o(s)=4$. Then $o(d s)=4$ and $d s \notin H$, a contradiction.

Our subgroup $H=\Omega_{2}^{*}(G)$ is metacyclic nonabelian and H has no cyclic subgroup of index 2 and so, by Proposition 1.2, H has exactly three involutions and $\Omega_{1}(H) \cong E_{4}$. Let $Z=\langle a\rangle$ be a cyclic normal subgroup of H such that H / Z is cyclic and we have $|H / Z| \geq 4$. Let K / Z be the subgroup of index 2 in H / Z. Since $\Omega_{2}^{*}(H)=H$, there is an element b of order 4 in $H-K$. This implies $|H / Z|=4, H=\langle a\rangle\langle b\rangle$ with $\langle a\rangle \cap\langle b\rangle=\{1\}$ and so H is splitting over Z. We set $o(a)=2^{n}$ with $n \geq 2$ since H is nonabelian. Since $K=\langle a\rangle\left\langle b^{2}\right\rangle$ contains exactly three involutions, K is either abelian of type $\left(2,2^{n}\right), n \geq 2$ or $K \cong M_{2^{n+1}}, n \geq 3$. In the last case, $\langle b\rangle \cong C_{4}$ acts faithfully on $\langle a\rangle$ and so in that case $n \geq 4$.

First assume $K \cong M_{2^{n+1}}, n \geq 4$, where $\langle b\rangle$ acts faithfully on $Z=\langle a\rangle$. We have $a^{b}=a v$ or $a^{b}=a^{-1} v$, where v is an element of order 4 in $\langle a\rangle$. Set $v^{2}=z$, where $z \in Z(H)$.

Suppose $a^{b}=a v$ so that $H^{\prime}=\langle v\rangle$ and $\left(a^{4}\right)^{b}=(a v)^{4}=a^{4}$. Since $\langle v\rangle \leq\left\langle a^{4}\right\rangle$, we have $H^{\prime} \leq Z(H)$. If $x, y \in H$ with $o(x) \leq 8$ and $o(y) \leq 8$, then $(x y)^{8}=x^{8} y^{8}[y, x]^{28}=1$ and so $\Omega_{3}(H)<H$ because $o(a) \geq 2^{4}$. This is a contradiction since we must have $\Omega_{2}^{*}(H)=H$ but $\Omega_{2}^{*}(H) \leq \Omega_{3}(H)$.

Assume $a^{b}=a^{-1} v$ so that $\left(a^{2}\right)^{b}=\left(a^{-1} v\right)^{2}=a^{-2} z$ and $\left(a^{4}\right)^{b}=\left(a^{-1} v\right)^{4}=$ a^{-4}. Therefore b inverts $\left\langle a^{4}\right\rangle$ and so $v^{b}=v^{-1}$. Also,

$$
a^{b^{2}}=\left(a^{-1} v\right)^{b}=\left(a^{-1} v\right)^{-1} v^{-1}=a v^{-2}=a z, \quad \text { and } \quad a=\left(a^{b^{-1}}\right)^{-1} v^{b^{-1}}
$$

which gives $a^{b^{-1}}=a^{-1} v^{-1}$ and $a^{b^{\eta}}=a^{-1} v^{\eta}$, where $\eta= \pm 1$. We compute:

$$
\left(b a^{2}\right)^{2}=b a^{2} b a^{2}=b^{2}\left(a^{2}\right)^{b} a^{2}=b^{2} a^{-2} z a^{2}=b^{2} z
$$

and so $o\left(b a^{2}\right)=4$. This implies $\Omega_{2}^{*}(H) \geq\left\langle b, a^{2}\right\rangle$, where $L=\left\langle b, a^{2}\right\rangle$ is a maximal subgroup of H. We claim that the set $H-L$ contains no elements of order 4 and this gives us a contradiction. Indeed, each element in $H-L$ has the form $\left(b^{j} a^{2 i}\right) a=b^{j} a^{2 i+1}(i, j$ are integers $)$. If $j=2$, then

$$
\left(b^{2} a^{2 i+1}\right)^{2}=b^{2} a^{2 i+1} b^{2} a^{2 i+1}=b^{4}\left(a^{b^{2}}\right)^{2 i+1} a^{2 i+1}=(a z)^{2 i+1} a^{2 i+1}=\left(a^{4 i} z\right) a^{2}
$$

which is an element of order ≥ 8. If $j=\eta= \pm 1$, then

$$
\begin{aligned}
\left(b^{\eta} a^{2 i+1}\right)^{2} & =b^{\eta} a^{2 i+1} b^{\eta} a^{2 i+1}=b^{2 \eta}\left(a^{b^{\eta}}\right)^{2 i+1} a^{2 i+1} \\
& =b^{2}\left(a^{-1} v^{\eta}\right)^{2 i+1} a^{2 i+1}=b^{2}\left(v^{\eta}\right)^{2 i} v^{\eta}=b^{2} z^{i} v^{\eta}
\end{aligned}
$$

which is an element of order 4 since $\left[b^{2}, v\right]=1$.
We have proved that $K=\left\langle b^{2}, a\right\rangle$ must be abelian of type $\left(2,2^{n}\right), n \geq 2$, $E_{4} \cong \Omega_{1}(H)=\left\langle b^{2}, z\right\rangle \leq Z(H)$, where we have set $z=a^{2^{n-1}}$. The element b induces on $\langle a\rangle$ an involutory automorphism and so we have either $a^{b}=a z$, $n \geq 3$ or $a^{b}=a^{-1} z^{\epsilon}, \epsilon=0,1, n \geq 2($ and if $\epsilon=1$, then $n \geq 3)$.

First assume $a^{b}=a z, n \geq 3$, where $H^{\prime}=\langle z\rangle$ and so H is of class 2. In that case, if $x, y \in H$ with $o(x) \leq 4$ and $o(y) \leq 4$, then $(x y)^{4}=x^{4} y^{4}[y, x]^{6}=1$ and so $\exp \left(\Omega_{2}(H)\right)=4$. But $o(a)=2^{n} \geq 8$ and so $\Omega_{2}^{*}(H) \leq \Omega_{2}(H)<H$, a contradiction.

We have proved that $a^{b}=a^{-1} z^{\epsilon}, \epsilon=0,1, n \geq 2$, and if $\epsilon=1$, then $n \geq 3$. Assume $n=2$ so that $H=\left\langle a, b \mid a^{4}=b^{4}=1, a^{b}=a^{-1}\right\rangle$. By Proposition 1.3(b), G is isomorphic to the following (uniquely determined) group of order 2^{5} :

$$
\begin{equation*}
G=\left\langle b, t \mid b^{4}=t^{2}=1, b^{t}=a b, a^{4}=1, a^{b}=a^{-1}, a^{t}=a^{-1}\right\rangle \tag{2.1}
\end{equation*}
$$

where $\Omega_{2}^{*}(G)=\langle a, b\rangle, \Phi(G)=\left\langle a, b^{2}\right\rangle \cong C_{4} \times C_{2}$, and $\Omega_{2}(G)=G$.
It remains to study the case $n \geq 3$, where

$$
H=\left\langle a, b \mid a^{2^{n}}=b^{4}=1, n \geq 3, a^{b}=a^{-1} z^{\epsilon}, \epsilon=0,1, z=a^{2^{n-1}}\right\rangle
$$

$H^{\prime}=\left\langle a^{2}\right\rangle \cong C_{2^{n-1}}, \Omega_{1}(H)=Z(H)=\left\langle b^{2}, z\right\rangle \cong E_{4}$, and $K=\left\langle b^{2}, a\right\rangle$ is the unique abelian maximal subgroup (of type $\left(2,2^{n}\right)$) of H.

Let t be an involution in $G-H$ and set $L=H\langle t\rangle$. Since $\langle z\rangle=\Omega_{1}\left(H^{\prime}\right)$, $z \in Z(G)$ and let $\langle v\rangle$ be the cyclic subgroup of order 4 in H^{\prime} so that $\langle v\rangle$ is normal in G. Note that $v^{b}=v^{-1}$ and $C_{H}(v)=K$ so that $C=C_{G}(v)$ covers G / H. Set $C_{0}=C_{L}(v)$ and we see that

$$
|G: C|=\left|L: C_{0}\right|=2, L=C_{0}\langle b\rangle, G=C\langle b\rangle, C \cap H=K .
$$

If t does not centralize $Z(H)=\left\langle b^{2}, z\right\rangle$, then $\langle t, Z(H)\rangle \cong D_{8}$ and $t b^{2}$ is an element of order 4 in $L-H$, a contradiction. Thus t centralizes $Z(H)$ and so $Z(H) \leq Z(L)$. Also, t does not centralize any element of order 4 in H and so $C_{H}(t)=\left\langle b^{2}, z\right\rangle=\Omega_{1}(H)$.

Since $\langle v\rangle$ is central in C, there are no involutions in $C-K$. But there are no elements of order 4 in $C-K$ and so $\Omega_{2}(C)=\Omega_{2}(K)=\left\langle b^{2}\right\rangle \times\langle v\rangle \cong C_{2} \times C_{4}$. The fact that $C_{K}(t)=Z(H)$ also implies $C_{C}(t)=Z(H)=\Omega_{1}(C)$. Note that $Z(H) \leq Z(L)$ implies that $Z\left(C_{0}\right) \geq\left\langle b^{2}, z\right\rangle$ and so $Z\left(C_{0}\right)$ is noncyclic. By Proposition 1.1, C_{0} is abelian of type $\left(2,2^{n+1}\right)$.

We act with the involution t on the abelian group C_{0} and apply Proposition 1.7. It follows that t acts invertingly on $C_{0} /\left\langle b^{2}, z\right\rangle$. We get $a^{t}=a^{-1} s$, where $s \in\left\langle b^{2}, z\right\rangle$. Then $(t a)^{2}=t a t a=a^{t} a=a^{-1} s a=s$ and so $s=1$ since $t a \notin H$ and $t a$ cannot be an element of order 4 . We get $a^{t}=a^{-1}$ and so t acts invertingly on K. On the other hand, $b=t c_{0}$ with $c_{0} \in K$ and so $a^{b}=a^{t c_{0}}=\left(a^{-1}\right)^{c_{0}}=a^{-1}$ because C_{0} is abelian. We have proved that $\epsilon=0$ and so b also acts invertingly on K.

We show that the involution $b^{2} z$ is not a square in H. Indeed, for any $x \in K$, we get

$$
(b x)^{2}=b x b x=b^{2} x^{b} x=b^{2} x^{-1} x=b^{2}
$$

On the other hand, b^{2} and z are squares in H and so $\left\langle b^{2} z\right\rangle$ is a characteristic subgroup of H and therefore $b^{2} z \in Z(G)$. It follows that $Z(H)=\left\langle b^{2}, z\right\rangle \leq$ $Z(G)$.

We use again Proposition 1.1 and get that C is also abelian (of type $\left.\left(2,2^{k}\right), k \geq n+1\right)$. If $C \neq C_{0}$, then there is an element $d \in C_{0}-K$ such that $d \in \mho_{1}(C)$. By Proposition 1.7, t acts invertingly on $\mho_{1}(C)$ and so $d^{t}=t^{-1}$. But then t inverts each element in C_{0} which implies that all elements in $t C_{0}=L-C_{0}$ are involutions. This is a contradiction since $b \in L-C_{0}$ and $o(b)=4$.

We have proved that $C=C_{0}$ and so $G=L$. Since t acts invertingly on K, all elements in $t K$ are involutions. But b is not an involution and so $b=t c$ with a suitable element $c \in C_{0}-K$ so that $o(c)=2^{n+1}$. Since C_{0} is abelian, we have $\left[b^{2}, c\right]=1$. We have obtained the following group of order 2^{n+3} :

$$
\begin{equation*}
G=\left\langle c, t \mid c^{2^{n+1}}=t^{2}=1, n \geq 3, t c=b, b^{4}=\left[b^{2}, c\right]=1\right\rangle \tag{2.2}
\end{equation*}
$$

where $\Omega_{2}^{*}(G)=\left\langle c^{2}, b\right\rangle$ with $\left(c^{2}\right)^{b}=c^{-2}$.
If we set $n=2$ in (2.2), we get a group G of order 2^{5} with

$$
\Omega_{2}^{*}(G)=\left\langle c^{2}, b \mid\left(c^{2}\right)^{4}=b^{4}=1,\left(c^{2}\right)^{b}=c^{-2}\right\rangle
$$

and $\Omega_{2}(G)=G$ and so this group G (because Proposition 1.3(b) implies the uniqueness of such a group) must be isomorphic to the group given in (2.1). We have obtained the groups given in part (iii) of our theorem for all $n \geq 2$.

References

[1] Z. Janko, Finite 2-groups with a self-centralizing elementary abelian subgroup of order 8, J. Algebra 269 (2003), 189-214.
[2] Z. Janko, Finite 2-groups with exactly four cyclic subgroups of order 2^{n}, J. Reine Angew. Math. 566 (2004), 135-181.
[3] Z. Janko, Elements of order at most 4 in finite 2-groups, J. Group Theory 7 (2004), 431-436.
[4] Z. Janko, Finite 2-groups G with $\left|\Omega_{2}(G)\right|=16$, Glasnik Mat. 40(60) (2005), 71-86.
[5] Z. Janko, A classification of finite 2-groups with exactly three involutions, J. Algebra 291 (2005), 505-533.
Z. Janko

Mathematical Institute
University of Heidelberg
69120 Heidelberg
Germany
E-mail: janko@mathi.uni-heidelberg.de
Received: 13.7.2005.
Revised: 22.9.2005.

[^0]: 2000 Mathematics Subject Classification. 20D15.
 Key words and phrases. Finite 2-groups, 2-groups of maximal class, metacyclic groups.

