FINITE 2-GROUPS G WITH $\Omega_2^*(G)$ METACYCLIC

Zvonimir Janko

University of Heidelberg, Germany

ABSTRACT. In this paper we classify finite non-metacyclic 2-groups G such that $\Omega_2^*(G)$ (the subgroup generated by all elements of order 4) is metacyclic. However, if G is a finite 2-group such that $\Omega_2(G)$ (the subgroup generated by all elements of order ≤ 4) is metacyclic, then G is metacyclic.

1. INTRODUCTION

A famous result of N. Blackburn (see Proposition 1.4) states that if G is a finite 2-group such that the subgroup $\Omega_2(G)$ (the subgroup generated by all elements of order ≤ 4) is metacyclic, then G is metacyclic. What can we say in the case, where G is a finite 2-group and we know that only the subgroup $\Omega_2^*(G)$ (the subgroup generated by all elements of order 4) is metacyclic? The purpose of this paper is to classify finite non-metacyclic 2-groups G such that $\Omega_2^*(G)$ is metacyclic. We have seen in Janko [3] that such a subgroup $\Omega_2^*(G)$ has the strong influence on the structure of the whole group G so that the structure of the 2-group G is almost uniquely determined, when $\Omega_2^*(G)$ is known.

All groups considered here are finite and our notation is standard. In particular,

$$M_{2^n} = \langle a, t \mid a^{2^{n-1}} = t^2 = 1, \ a^t = a^{1+2^{n-2}}, \ n \ge 4 \rangle,$$

and 2-groups of maximal class are dihedral groups D_{2^n} (of order 2^n , $n \ge 3$), generalized quaternion groups Q_{2^n} (of order 2^n , $n \ge 3$), and semi-dihedral groups SD_{2^n} (of order 2^n , $n \ge 4$).

For convenience, we state here some known results which are used in this paper.

71

²⁰⁰⁰ Mathematics Subject Classification. 20D15.

Key words and phrases. Finite 2-groups, 2-groups of maximal class, metacyclic groups.

Z. JANKO

PROPOSITION 1.1 ([5, Proposition 1.4]). Let G be a 2-group of order \geq 2^4 satisfying $|\Omega_2(G)| \leq 2^3$. If Z(G) is noncyclic, then G is abelian of type $(2,2^n), n \ge 3.$

PROPOSITION 1.2 ([5, Theorem 2.1]). Let G be a metacyclic 2-group which is neither cyclic nor of maximal class. Then G has exactly three involutions.

PROPOSITION 1.3 ([2, Theorem 4.1]). Let G be a 2-group of order $> 2^4$ all of whose elements of order 4 generate the subgroup $H = \Omega_2^*(G)$ of order 2^4 . Assume in addition that G has exactly 6 cyclic subgroups of order 4 and $|\Omega_2(G)| > 2^4$. Then we have the following possibilities:

- (a) $H \cong Q_8 \times C_2$ and $G \cong SD_{2^4} \times C_2$.
- (b) $H \cong \langle a, b \mid a^4 = b^4 = 1, a^b = a^{-1} \rangle$ and

 $G = \langle b, t \mid b^4 = t^2 = 1, \ b^t = ab, \ a^4 = 1, \ a^b = a^{-1}, \ a^t = a^{-1} \rangle.$

Here $|G| = 2^5$, $H = \langle a, b \rangle$, $\Phi(G) = \langle a, b^2 \rangle \cong C_4 \times C_2$, $\Omega_2(G) = G$, and $Z(G) = \langle a^2, b^2 \rangle \cong E_4.$

(c) $H \cong C_4 \times C_4$ and G has a metacyclic maximal subgroup M such that $\Omega_2(M) = H, G = M\langle t \rangle$, where t is an involution with $C_M(t) =$ $\Omega_1(M) \cong E_4$ and t inverts each element of $C_M(H)$ so that $C_M(H)$ is abelian. (The last statement actually follows from the proof of Theorem 4.1 in [2].)

PROPOSITION 1.4 (N. Blackburn, [2, Proposition 1.8]). If G is a 2-group such that $\Omega_2(G)$ is metacyclic, then G is metacyclic, too.

PROPOSITION 1.5 ([4, Theorem 5.1]). Let G be a 2-group containing exactly one abelian subgroup of type (4, 2). Then one of the following holds:

- (a) $|\Omega_2(G)| = 8.$
- (b) $G \cong C_2 \times D_{2^{n+1}}, n \ge 2.$ (c) $G = \langle b, t | b^{2^{n+1}} = t^2 = 1, b^t = b^{-1+2^{n-1}}u, u^2 = [u, t] = 1, b^u = b^{1+2^n}, n \ge 2 \rangle.$ Here $|G| = 2^{n+3}, Z(G) = \langle b^{2^n} \rangle$ is of order 2, $\Phi(G) = \langle b^{2^n} \rangle$ $\langle b^2, u \rangle, E = \langle b^{2^n}, u, t \rangle \cong E_8$ is self-centralizing in $G, \Omega_2(G) = \langle u \rangle \times$ $\langle b^2, t \rangle \cong C_2 \times D_{2^{n+1}}, G' = \langle b^{2^n}, u \rangle \cong E_4$ in case n = 2, and G' = $\langle b^2 u \rangle \cong C_{2^n}$ for n > 3.

PROPOSITION 1.6 ([4, Proposition 1.12]). Let G be a p-group with a nonabelian subgroup P of order p^3 . If $C_G(P) \leq P$, then G is of maximal class.

PROPOSITION 1.7 (Janko, [1, Proposition 1.10]). Let τ be an involutory automorphism acting on an abelian 2-group B so that $C_B(\tau) = W_0$ is contained in $\Omega_1(B)$. Then τ acts invertingly on $\mathfrak{V}_1(B)$ and on B/W_0 .

PROPOSITION 1.8 ([2, Introduction]). Suppose that a 2-group G is neither cyclic nor of maximal class. Then the number $c_n(G)$ (n > 1, n fixed) of cyclic subgroups of order 2^n is even. (This result is also due to G. A. Miller and appears in section 51 of the 1915 book on "Finite groups" by Miller-Blichfeldt-Dickson.)

We prove here the following new result.

THEOREM 1.9. Let G be a non-metacyclic 2-group of exponent > 2 such that $H = \Omega_2^*(G)$ is metacyclic. Then one of the following holds:

- (i) H ≅ C₄ × C₂ is the unique abelian subgroup of G of type (4,2) and G is isomorphic to one of the groups given in (b) and (c) of Proposition 1.5.
- (ii) $H \cong C_4 \times C_4$ and G is isomorphic to one of the groups given in (c) of Proposition 1.3.
- (iii) $G = \langle t, c \mid t^2 = c^{2^{n+1}} = 1, n \geq 2, tc = b, b^4 = [b^2, c] = 1 \rangle$, where $|G| = 2^{n+3}, n \geq 2, H = \Omega_2^*(G) = \langle c^2, b \rangle$ with $(c^2)^b = c^{-2}$ and H is a splitting metacyclic maximal subgroup , $\langle b^2 \rangle \times \langle c \rangle$ is the unique abelian maximal subgroup (of type $(2, 2^{n+1})), Z(G) = \langle b^2, c^{2^n} \rangle \cong E_4, G' = \langle c^2 b^2 \rangle \cong C_{2^n}, and \langle t, b^2, c^{2^n} \rangle \cong E_8$ (so that G is non-metacyclic).

2. Proof of Theorem 1.9

Let G be a non-metacyclic 2-group of exponent > 2 such that the subgroup $H = \Omega_2^*(G)$ is metacyclic. If $H = \Omega_2(G)$, then a result of N. Blackburn (Proposition 1.4) implies that G is metacyclic, a contradiction. Hence $\Omega_2(G) > H$ and so there exist involutions in G - H.

Suppose that H is cyclic. Then $H \cong C_4$ and so G has exactly one cyclic subgroup of order 4. But then Proposition 1.8 implies that G is metacyclic, a contradiction. Hence H is noncyclic.

Assume that H is abelian (of rank 2). Since $H = \Omega_2^*(H)$, we have either $H \cong C_4 \times C_2$ or $H \cong C_4 \times C_4$.

Suppose $H \cong C_4 \times C_2$. In that case H is the unique abelian subgroup of type (4, 2) in G. Suppose that this is not the case. Then there is an involution $i \in G - H$ which centralizes an element $v \in H$ of order 4, where $\langle i \rangle \times \langle v \rangle \cong C_2 \times C_4$. But then o(iv) = 4 and $iv \in G - H$, a contradiction. (We need this uniqueness proof so that we are able to use Proposition 1.5.) By Proposition 1.5, G is isomorphic to a group given in parts (b) and (c) of that proposition.

Suppose $H \cong C_4 \times C_4$. In that case G has exactly 6 cyclic subgroups of order 4 and $\Omega_2(G) > H$ and so G is isomorphic to a group given in the part (c) of Proposition 1.3.

From now on we assume that H is nonabelian. Suppose in addition that H has a cyclic subgroup of index 2. Since $\Omega_2^*(H) = H$, we get $H \cong Q_{2^n}$, $n \ge 3$. Let $H_0 \cong Q_8$ be a quaternion subgroup of H so that $C_H(H_0) = Z(H_0) = Z(H) \cong C_2$. If $C_G(H_0) \le H_0$, then G is of maximal class (Proposition 1.6) and so G is metacyclic, a contradiction. Hence $D = C_G(H_0) \not\leq H_0$ so that $D \cap H = Z(H_0), D > Z(H_0)$, and D must be elementary abelian. Let $d \in D - Z(H_0)$ and $s \in H_0$ with o(s) = 4. Then o(ds) = 4 and $ds \notin H$, a contradiction.

Our subgroup $H = \Omega_2^*(G)$ is metacyclic nonabelian and H has no cyclic subgroup of index 2 and so, by Proposition 1.2, H has exactly three involutions and $\Omega_1(H) \cong E_4$. Let $Z = \langle a \rangle$ be a cyclic normal subgroup of H such that H/Z is cyclic and we have $|H/Z| \ge 4$. Let K/Z be the subgroup of index 2 in H/Z. Since $\Omega_2^*(H) = H$, there is an element b of order 4 in H - K. This implies |H/Z| = 4, $H = \langle a \rangle \langle b \rangle$ with $\langle a \rangle \cap \langle b \rangle = \{1\}$ and so H is splitting over Z. We set $o(a) = 2^n$ with $n \ge 2$ since H is nonabelian. Since $K = \langle a \rangle \langle b^2 \rangle$ contains exactly three involutions, K is either abelian of type $(2, 2^n)$, $n \ge 2$ or $K \cong M_{2^{n+1}}$, $n \ge 3$. In the last case, $\langle b \rangle \cong C_4$ acts faithfully on $\langle a \rangle$ and so in that case $n \ge 4$.

First assume $K \cong M_{2^{n+1}}$, $n \ge 4$, where $\langle b \rangle$ acts faithfully on $Z = \langle a \rangle$. We have $a^b = av$ or $a^b = a^{-1}v$, where v is an element of order 4 in $\langle a \rangle$. Set $v^2 = z$, where $z \in Z(H)$.

Suppose $a^b = av$ so that $H' = \langle v \rangle$ and $(a^4)^b = (av)^4 = a^4$. Since $\langle v \rangle \leq \langle a^4 \rangle$, we have $H' \leq Z(H)$. If $x, y \in H$ with $o(x) \leq 8$ and $o(y) \leq 8$, then $(xy)^8 = x^8 y^8 [y, x]^{28} = 1$ and so $\Omega_3(H) < H$ because $o(a) \geq 2^4$. This is a contradiction since we must have $\Omega_2^*(H) = H$ but $\Omega_2^*(H) \leq \Omega_3(H)$.

Assume $a^b = a^{-1}v$ so that $(a^2)^b = (a^{-1}v)^2 = a^{-2}z$ and $(a^4)^b = (a^{-1}v)^4 = a^{-4}$. Therefore b inverts $\langle a^4 \rangle$ and so $v^b = v^{-1}$. Also,

$$a^{b^2} = (a^{-1}v)^b = (a^{-1}v)^{-1}v^{-1} = av^{-2} = az$$
, and $a = (a^{b^{-1}})^{-1}v^{b^{-1}}$,

which gives $a^{b^{-1}} = a^{-1}v^{-1}$ and $a^{b^{\eta}} = a^{-1}v^{\eta}$, where $\eta = \pm 1$. We compute:

$$(ba^2)^2 = ba^2ba^2 = b^2(a^2)^ba^2 = b^2a^{-2}za^2 = b^2z,$$

and so $o(ba^2) = 4$. This implies $\Omega_2^*(H) \ge \langle b, a^2 \rangle$, where $L = \langle b, a^2 \rangle$ is a maximal subgroup of H. We claim that the set H - L contains no elements of order 4 and this gives us a contradiction. Indeed, each element in H - L has the form $(b^j a^{2i})a = b^j a^{2i+1}$ (i, j are integers). If j = 2, then

$$(b^{2}a^{2i+1})^{2} = b^{2}a^{2i+1}b^{2}a^{2i+1} = b^{4}(a^{b^{2}})^{2i+1}a^{2i+1} = (az)^{2i+1}a^{2i+1} = (a^{4i}z)a^{2},$$

which is an element of order ≥ 8 . If $j = \eta = \pm 1$, then

$$\begin{aligned} (b^{\eta}a^{2i+1})^2 &= b^{\eta}a^{2i+1}b^{\eta}a^{2i+1} = b^{2\eta}(a^{b^{\eta}})^{2i+1}a^{2i+1} \\ &= b^2(a^{-1}v^{\eta})^{2i+1}a^{2i+1} = b^2(v^{\eta})^{2i}v^{\eta} = b^2z^iv^{\eta} \end{aligned}$$

which is an element of order 4 since $[b^2, v] = 1$.

We have proved that $K = \langle b^2, a \rangle$ must be abelian of type $(2, 2^n)$, $n \geq 2$, $E_4 \cong \Omega_1(H) = \langle b^2, z \rangle \leq Z(H)$, where we have set $z = a^{2^{n-1}}$. The element b induces on $\langle a \rangle$ an involutory automorphism and so we have either $a^b = az$, $n \geq 3$ or $a^b = a^{-1}z^{\epsilon}$, $\epsilon = 0, 1, n \geq 2$ (and if $\epsilon = 1$, then $n \geq 3$).

First assume $a^b = az$, $n \ge 3$, where $H' = \langle z \rangle$ and so H is of class 2. In that case, if $x, y \in H$ with $o(x) \le 4$ and $o(y) \le 4$, then $(xy)^4 = x^4y^4[y, x]^6 = 1$ and so $exp(\Omega_2(H)) = 4$. But $o(a) = 2^n \ge 8$ and so $\Omega_2^*(H) \le \Omega_2(H) < H$, a contradiction.

We have proved that $a^b = a^{-1}z^{\epsilon}$, $\epsilon = 0, 1, n \ge 2$, and if $\epsilon = 1$, then $n \ge 3$. Assume n = 2 so that $H = \langle a, b | a^4 = b^4 = 1, a^b = a^{-1} \rangle$. By Proposition 1.3(b), G is isomorphic to the following (uniquely determined) group of order 2^5 :

(2.1)
$$G = \langle b, t \mid b^4 = t^2 = 1, b^t = ab, a^4 = 1, a^b = a^{-1}, a^t = a^{-1} \rangle,$$

where $\Omega_2^*(G) = \langle a, b \rangle$, $\Phi(G) = \langle a, b^2 \rangle \cong C_4 \times C_2$, and $\Omega_2(G) = G$. It remains to study the case $n \geq 3$, where

$$H = \langle a, b \, | \, a^{2^n} = b^4 = 1, \ n \ge 3, \ a^b = a^{-1} z^{\epsilon}, \ \epsilon = 0, 1, \ z = a^{2^{n-1}} \rangle,$$

 $H' = \langle a^2 \rangle \cong C_{2^{n-1}}, \ \Omega_1(H) = Z(H) = \langle b^2, z \rangle \cong E_4$, and $K = \langle b^2, a \rangle$ is the unique abelian maximal subgroup (of type $(2, 2^n)$) of H.

Let t be an involution in G - H and set $L = H\langle t \rangle$. Since $\langle z \rangle = \Omega_1(H')$, $z \in Z(G)$ and let $\langle v \rangle$ be the cyclic subgroup of order 4 in H' so that $\langle v \rangle$ is normal in G. Note that $v^b = v^{-1}$ and $C_H(v) = K$ so that $C = C_G(v)$ covers G/H. Set $C_0 = C_L(v)$ and we see that

$$|G:C| = |L:C_0| = 2, \ L = C_0 \langle b \rangle, \ G = C \langle b \rangle, \ C \cap H = K.$$

If t does not centralize $Z(H) = \langle b^2, z \rangle$, then $\langle t, Z(H) \rangle \cong D_8$ and tb^2 is an element of order 4 in L - H, a contradiction. Thus t centralizes Z(H) and so $Z(H) \leq Z(L)$. Also, t does not centralize any element of order 4 in H and so $C_H(t) = \langle b^2, z \rangle = \Omega_1(H)$.

Since $\langle v \rangle$ is central in C, there are no involutions in C - K. But there are no elements of order 4 in C - K and so $\Omega_2(C) = \Omega_2(K) = \langle b^2 \rangle \times \langle v \rangle \cong C_2 \times C_4$. The fact that $C_K(t) = Z(H)$ also implies $C_C(t) = Z(H) = \Omega_1(C)$. Note that $Z(H) \leq Z(L)$ implies that $Z(C_0) \geq \langle b^2, z \rangle$ and so $Z(C_0)$ is noncyclic. By Proposition 1.1, C_0 is abelian of type $(2, 2^{n+1})$.

We act with the involution t on the abelian group C_0 and apply Proposition 1.7. It follows that t acts invertingly on $C_0/\langle b^2, z \rangle$. We get $a^t = a^{-1}s$, where $s \in \langle b^2, z \rangle$. Then $(ta)^2 = tata = a^t a = a^{-1}sa = s$ and so s = 1 since $ta \notin H$ and ta cannot be an element of order 4. We get $a^t = a^{-1}$ and so t acts invertingly on K. On the other hand, $b = tc_0$ with $c_0 \in K$ and so $a^b = a^{tc_0} = (a^{-1})^{c_0} = a^{-1}$ because C_0 is abelian. We have proved that $\epsilon = 0$ and so b also acts invertingly on K.

We show that the involution $b^2 z$ is not a square in H. Indeed, for any $x \in K$, we get

$$(bx)^2 = bxbx = b^2x^bx = b^2x^{-1}x = b^2.$$

Z. JANKO

On the other hand, b^2 and z are squares in H and so $\langle b^2 z \rangle$ is a characteristic subgroup of H and therefore $b^2 z \in Z(G)$. It follows that $Z(H) = \langle b^2, z \rangle \leq Z(G)$.

We use again Proposition 1.1 and get that C is also abelian (of type $(2, 2^k), k \ge n+1$). If $C \ne C_0$, then there is an element $d \in C_0 - K$ such that $d \in \mathcal{O}_1(C)$. By Proposition 1.7, t acts invertingly on $\mathcal{O}_1(C)$ and so $d^t = t^{-1}$. But then t inverts each element in C_0 which implies that all elements in $tC_0 = L - C_0$ are involutions. This is a contradiction since $b \in L - C_0$ and o(b) = 4.

We have proved that $C = C_0$ and so G = L. Since t acts invertingly on K, all elements in tK are involutions. But b is not an involution and so b = tc with a suitable element $c \in C_0 - K$ so that $o(c) = 2^{n+1}$. Since C_0 is abelian, we have $[b^2, c] = 1$. We have obtained the following group of order 2^{n+3} :

(2.2)
$$G = \langle c, t \mid c^{2^{n+1}} = t^2 = 1, n \ge 3, tc = b, b^4 = [b^2, c] = 1 \rangle$$

where $\Omega_2^*(G) = \langle c^2, b \rangle$ with $(c^2)^b = c^{-2}$.

If we set n = 2 in (2.2), we get a group G of order 2^5 with

$$\Omega_2^*(G) = \langle c^2, b \mid (c^2)^4 = b^4 = 1, \ (c^2)^b = c^{-2} \rangle$$

and $\Omega_2(G) = G$ and so this group G (because Proposition 1.3(b) implies the uniqueness of such a group) must be isomorphic to the group given in (2.1). We have obtained the groups given in part (iii) of our theorem for all $n \ge 2$.

References

- Z. Janko, Finite 2-groups with a self-centralizing elementary abelian subgroup of order 8, J. Algebra 269 (2003), 189-214.
- [2] Z. Janko, Finite 2-groups with exactly four cyclic subgroups of order 2ⁿ, J. Reine Angew. Math. 566 (2004), 135-181.
- [3] Z. Janko, Elements of order at most 4 in finite 2-groups, J. Group Theory 7 (2004), 431-436.
- [4] Z. Janko, Finite 2-groups G with $|\Omega_2(G)| = 16$, Glasnik Mat. **40(60)** (2005), 71-86.
- [5] Z. Janko, A classification of finite 2-groups with exactly three involutions, J. Algebra 291 (2005), 505-533.

Z. Janko Mathematical Institute University of Heidelberg 69120 Heidelberg Germany *E-mail*: janko@mathi.uni-heidelberg.de *Received*: 13.7.2005. *Revised*: 22.9.2005.