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Abstract. In this paper we consider the linear elliptic equation of
the second order in domains in Rn thin in n − k directions, 0 < k < n.
We apply the Ansatz of the formal expansion method (with respect to the
small parameter (thickness)) which implies the scaling of the loads in the
equation that allows the reduction of the problem from dimension n to
dimension k. Appropriate convergence result together with correctors is
derived.

1. Introduction

Reduction of dimension for the Laplace equation was considered in [1] and
[8] and, for general linear elliptic equation of the second order (assuming the
reduction from dimension n to n−1) in [7]. Very general nonlinear monotone
equation was analyzed in [6]. We consider here the case of linear elliptic
equation of the second order, but assuming the reduction from dimension n
to dimension k, 0 < k < n.

The success in obtaining a lower–dimensional model without restriction
(compatibility condition) on source terms depends essentially on scaling them
(and coefficients) with respect to the small parameter (a thickness of the
domain). In the mentioned works (as in other earlier papers on asymptotic
analysis, see [2, 5, 10]) an a priori scaling was taken in order to guarantee the
existence of a low–dimensional model and convergence results. Using an idea
of the paper [9] we show here that an appropriate scaling is a consequence
of the Ansatz of formal expansion method (see [3, pp. 89-95, 269]). We also
prove a convergence theorem and find the first correctors.
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2. Statement of the problem and the main result

Let n, k ∈ N, 0 < k < n, Rn = Rk
x ×Rn−k

y . Let ω ⊂ Rk
x and σ ⊂ Rn−k

y be
bounded regular domain and

Ω = ω × σ, γ = ∂σ, Γ = ω × γ, Γ0 = ∂ω × σ.

For sufficiently small ε > 0 we define

σε = εσ, γε = ∂σε, Ωε = ω × σε, Γε = ω × γε, Γε
0 = ∂ω × σε.

Evidently the transformation

(xε, yε) = (x, εy)

is a bijection as a function from Ω → Ωε, Γ → Γε and Γ0 → Γε
0.

Let Aε ∈ L∞(Ωε; Sym(n)) and aε
0 ∈ L∞(Ωε). We assume that for each

ε > 0 the matrix Aε is positive definite (uniformly on Ωε) and aε
0 ≥ 0 on Ωε.

Let
V ε =

{
v ∈ H1(Ωε) : v = 0 on Γε

0

}
.

For given f ε ∈ L2(Ωε) and gε ∈ L2(Γε) we shall consider a boundary value
problem: find uε ∈ V ε such that for each vε ∈ V ε it holds
(2.1)
∫

Ωε

(Aε∇uε · ∇vε + aε
0u

εvε) dxεdyε =

∫

Ωε

fεvε dxεdyε +

∫

Γε

gεvε dxεdγε.

This problem has unique solution by the Lax-Milgram lemma.
The matrix Aε can be written in the form

Aε =

(
aε (bε)T

bε cε

)

,

where aε, bε and cε are respectively k × k, (n − k) × k and (n − k) × (n −
k) matrices. Note that the matrices aε and cε are positive definite as a
consequence of positivity of Aε. The problem (2.1) then takes the form:
find uε ∈ V ε such that

∫

Ωε

(
aε∇xεuε · ∇xεvε + (bε)T∇yεuε · ∇xεvε + bε∇xεuε · ∇yεvε

+cε∇yεuε · ∇yεvε + aε
0u

εvε
)
dxεdyε(2.2)

=

∫

Ωε

fεvε dxεdyε +

∫

Γε

gεvε dxεdγε, vε ∈ V ε.

For a function vε defined on Ωε we define the function v(ε) on Ω by the
composition

(2.3) v(ε)(x, y) = vε(x, εy).

Then, if vε belongs respectively to the space L∞(Ωε), L2(Ωε), L2(Γε) and V ε,
the function v(ε) belongs to the space L∞(Ω), L2(Ω), L2(Γ) and

V =
{
v ∈ H1(Ω) : v = 0 on Γ0

}
.
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The following fact is an immediate consequence of (2.3).

Lemma 2.1. The problem (2.2) is equivalent to the problem: find u(ε) ∈ V
such that

∫

Ω

(
εa(ε)∇xu(ε) · ∇xv + b(ε)T∇yu(ε) · ∇xv + b(ε)∇xu(ε) · ∇yv

+ε−1c(ε)∇yu(ε) · ∇yv + εa0(ε)u(ε)v
)
dxdy(2.4)

= ε

∫

Ω

f(ε)v dxdy +

∫

Γ

g(ε)v dxdγ, v ∈ V.

Assuming that the coefficients on the left hand side are of the same order
in ε, without loss of generality (see Ciarlet [4, p. 58]) one can take

a(ε) = a, b(ε) = b, c(ε) = c, a0(ε) = a0,

f(ε) = εpfp, g(ε) = εp+1gp+1,
(2.5)

where p ∈ Z, a, b, c, a0, f
p and gp+1 do not depend on ε (here superscripts on

f and g are not exponents, but denote the order of the force with respect to
ε). The equation (2.4) takes the form
∫

Ω

(
εa∇xu(ε) · ∇xv + bT∇yu(ε) · ∇xv + b∇xu(ε) · ∇yv + ε−1c∇yu(ε) · ∇yv

+εa0u(ε)v
)
dxdy = εp+1

∫

Ω

fpv dxdy + εp+1

∫

Γ

gp+1v dxdγ, v ∈ V.(2.6)

The form of the problem (2.6) suggests the following Ansatz of formal expan-
sion method:

A.1 There exists a number l ∈ Z such that for each (f p, gp+1) ∈ L2(Ω) ×
L2(Γ) there exist functions ul, ul+1, . . . ∈ H1(Ω), not depending on ε,
such that for a solution u(ε) of the problem (2.4), (2.5) there holds

(2.7) u(ε) = εlul + εl+1ul+1 + · · · ,
where the leading term ul is nontrivial for at least one pair (fp, gp+1).

A.2 The successive terms um,m = l, l+ 1, . . . in (2.7) satisfy the equations
obtained (after inserting (2.7) into (2.4)) by the cancellations of the
coefficients of εm, m ∈ Z.

A.3 The leading term ul belongs to the space V .

Because of the linearity of the problem (2.4) one can take l = 0, i.e.

(2.8) u(ε) = u0 + ε1u1 + · · · .
An inspection of coefficients of different powers of ε that appear in (2.4)

(under assumption (2.5)) shows that the pair (f p, gp+1) is trivial if p < −2.
Our purpose is to find the smallest number p for which the pair (f p, gp+1) is
not necessary trivial and to identify the corresponding leading term u0. We
shall prove the following results.
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Theorem 2.2. If for each pair (f, g) there exist terms u0, u1, u2 of the
expansion (2.8), then p = 0, i.e.

(2.9) f(ε) = f0, g(ε) = εg1.

The leading term u0 has the form

u0(x, y) = U0(x);

U0 ∈ H1
0 (ω) is the unique solution to the problem:

(2.10)

∫

ω

(
A∇xU

0 · ∇xη + a0U
0η
)
dx =

∫

ω

Fη dx, η ∈ H1
0 (ω),

where

A =

∫

σ

(
a+ (∇ywb)T

)
dy,

A0 =

∫

σ

a0 dy,

F =

∫

σ

f0 dy +

∫

γ

g1 dγ;

here w ∈ L∞(ω;H1(σ)k) is the unique solution of the problem:

(2.11)

∫

σ

(
∇ywcT + bT

)
∇yθdy = 0, θ ∈ H1(σ),

∫

σ

wdy = 0.

Remark 2.3. The auxiliary problem (2.11) can be formulated for com-
ponents of w: find wi ∈ L∞(ω;H1(σ)) such that

(2.12)

∫

σ

(c∇ywi + bi) · ∇yθdy = 0, θ ∈ H1(σ),

∫

σ

widy = 0,

where bi is ith column of the matrix b. As c is positive definite (uniformly on
Ω) this problem has unique solution.

Remark 2.4. Positive definiteness of A = Aε implies that for all vx ∈ Rk

one has (denote v = (vx,∇ywb
T vx)):

mA‖v‖2 ≤ Av · v
= avx · vx + bT∇yw

T vx · vx + bvx · ∇yw
T vx + c∇yw

T vx · ∇yw
T vx

= avx · vx + 2bT∇yw
T vx · vx + ∇ywc∇yw

T vx · vx

=
(
a+ 2bT∇yw

T + ∇ywc∇yw
T
)
vx · vx.

Taking the integral over σ one gets

(2.13) mA|σ|‖vx‖2 ≤
∫

σ

(
a+ 2bT∇yw

T + ∇ywc∇yw
T
)
dy vx · vx.

Inserting wj for the test function in (2.12) we obtain
∫

σ

(c∇ywi · ∇ywj + bi · ∇ywj) dy = 0.
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This equation can be written as
∫

σ

(
∇ywc∇yw

T + bT∇yw
T
)
dy = 0.

Using this in (2.13) we obtain that A is positive definite uniformly on ω and
therefore the problem (2.10) has unique solution.

Remark 2.5. One can easily see that in the case k = n− 1 (n > 1) there
holds

Aij =

∫

σ

(

aij −
bibj
c

)

dy, i, j = 1, 2, . . . , n− 1.

Theorem 2.6. Let

u0,ε(xε, yε) = U0(xε), (xε, yε) ∈ Ωε.

Then
1

|Ωε|1/2
‖uε − u0,ε‖L2(Ωε) → 0, ε→ 0.

Note that |Ωε| = εn−k|Ω|.
Remark 2.7. In order to get the appropriate convergence of the approx-

imation in H1(Ωε) (actually the convergence of the gradient in L2(Ωε)n) one
needs to involve the corrector into the approximation:

u1,ε(xε, yε) = U0(xε) + εw(
yε

ε
) · ∇xεU0(xε).

For this approximation we need higher smoothness of the coefficients in the
equations to be able to apply the regularity result. Moreover, the boundary
condition is no longer satisfied for the approximation.

Remark 2.8. The result (2.9) shows that the ratio between (some appro-
priate measure) of body (surface) source term and coefficients must behave
like ε0 (ε1).

As we assumed, without loss of generality, that the expansions for the
coefficients A(ε) and the solutions u(ε) start with the power 0, we can now
go back and restate the previous conclusion. Denote

A(ε) = εrA,
u(ε) = εlul + εl+1ul+1 + · · · ,
f(ε) = εpfp, g(ε) = εp+1gp+1.

Then the result (2.9) shows that

p− r − l = 0.

Then, for instance, we can draw the following interpretation: if the loads (p)
are too strong (p − r < 0) for the material (r), then the solution is singular
(l < 0).
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3. Proof of Theorem 2.2

The equations for successive terms of expansion (2.8) will be found by the
use of assumptions A.2 and A.3. We shall divide the proof into three steps.

STEP 1. As we noticed before, p ≥ −2. Let p = −2, i.e.

f(ε) = ε−2f−2, g(ε) = ε−1g−1.

By cancellation of the coefficient of ε−1 in (2.6) we obtain

(3.1)

∫

Ω

c∇yu
0 · ∇yv dxdy =

∫

Ω

f−2v dxdy +

∫

Γ

g−1v dxdγ.

Setting v(x, y) = η(x), η ∈ H1
0 (ω) we have

∫

Ω

f−2η dxdy +

∫

Γ

g−1ηdxdγ = 0,

or equivalently
∫

σ

f−2 dy +

∫

γ

g−1dγ = 0.

This is in contradiction with the assumption A.1 that u0 exists for an arbitrary
(f−2, g−1); therefore

(3.2) p ≥ −1.

Setting now in (2.4) v(x, y) = η(x)θ(y), η(x) ∈ H1
0 (ω), θ ∈ H1(σ) and taking

into account (3.2), we obtain
∫

σ

c∇yu
0 · ∇yθ dy = 0;

because of positive definiteness of c we conclude that

(3.3) u0(x, y) = U0(x),

where (because of A.3)

U0 ∈ H1
0 (ω).

STEP 2. Because of (3.2) we take p = −1, i.e.

f(ε) = ε−1f−1, g(ε) = g0.

By the cancellation of the coefficient of ε0 in (2.6) we obtain for all v ∈ V

(3.4)

∫

Ω

(
b∇xu

0 · ∇yv + c∇yu
1 · ∇yv

)
dxdy =

∫

Ω

f−1v dxdy +

∫

Γ

g0v dxdγ.

Setting v(x, y) = η(x), η ∈ H1
0 (ω) and taking into account (3.3) we have

(3.5)

∫

σ

f−1 dy +

∫

γ

g0dγ = 0

and therefore

p ≥ 0.
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Setting now in (3.4) v(x, y) = η(x)θ(y), η(x) ∈ H1
0 (ω), θ ∈ H1(σ) and taking

into account (3.3) and (3.5) we obtain

(3.6)

∫

σ

(
b∇xU

0 · ∇yθ + c∇yu
1 · ∇yθ

)
dy = 0.

From (3.6) we conclude that there exists U 1 ∈ H1(ω) such that

(3.7) u1 = U1 + w · ∇xU
0,

where w is a solution of the problem (2.11).
STEP 3. Because of (3.5) we take

f(ε) = f0, g(ε) = εg1.

By the cancellation of the coefficient of ε1 in (2.6) we obtain
∫

Ω

(
a∇xu

0 · ∇xv + bT∇yu
1 · ∇xv + b∇xu

1 · ∇yv + c∇yu
2 · ∇yv

+a0u
0v
)
dxdy =

∫

Ω

f0v dxdy +

∫

Γ

g1v dxdγ, v ∈ V.

Setting v(x, y) = η(x), η ∈ H1
0 (ω) and taking into account (3.3) and (3.7) we

have
∫

Ω

(
a∇xU

0 · ∇xη + bT∇yw
T∇xU

0 · ∇xη + a0U
0η
)
dxdy

=

∫

Ω

f0η dxdy +

∫

Γ

g1η dxdγ,

and hence (2.10).

4. Proof of Theorem 2.6

For f(ε) = f0 and g(ε) = εg1 we are able to prove a priori estimates,
uniform with respect to ε, for the solution u(ε) of (2.4). These estimates imply
weak convergence of u(ε) toward a function which is uniquely determined as
a solution of (2.10).

Uniform positive definiteness of A implies that there is mA > 0 such that
∫

Ω

A
(

∇xv
1
ε∇yv

)

·
(

∇xv
1
ε∇yv

)

dxdy ≥ mA

(

‖∇xv‖2
L2(Ω) +

1

ε2
‖∇yv‖2

L2(Ω)

)

,

for all v ∈ V . Application of this estimate to (2.4), divided by ε, using (2.9),
implies

mA

(

‖∇xu(ε)‖2
L2(Ω) +

1

ε2
‖∇yu(ε)‖2

L2(Ω)

)

≤
∫

Ω

f0u(ε) dxdy +

∫

Γ

g1u(ε) dxdγ

≤ ‖f0‖L2(Ω)‖u(ε)‖L2(Ω) + ‖g1‖L2(Γ)‖u(ε)‖L2(Γ).
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Application of the Poincaré inequality and continuity of the trace implies

mA

(

‖∇xu(ε)‖2
L2(Ω) +

1

ε2
‖∇yu(ε)‖2

L2(Ω)

)1/2

≤ ‖f0‖L2(Ω) + ‖g1‖L2(Γ),

which implies the a priori estimates uniform with respect to ε
(4.1)

∃C > 0, ‖u(ε)‖L2(Ω) ≤ C, ‖∇xu(ε)‖L2(Ω)k ≤ C,
1

ε
‖∇yu(ε)‖L2(Ω)n−k ≤ C.

These estimates imply that there exist a subsequence, still denoted by u(ε),
and functions u ∈ L2(Ω) and γ ∈ L2(Ω)n−k such that

u(ε) ⇀ u weakly in L2(Ω),

∇xu(ε) ⇀ ∇xu weakly in L2(Ω)k ,(4.2)

1

ε
∇yu(ε) ⇀ γ weakly in L2(Ω)n−k.

The last convergence implies

∇yu(ε) → 0 strongly in L2(Ω)n−k

and by uniqueness of the limit function ∇yu = 0. Hence there exists a function
U ∈ L2(ω) such that

u(x, y) = U(x).

Moreover convergence (4.2) imply that

(4.3) u(ε) ⇀ u weakly in V.

Therefore u ∈ V and consequently U ∈ H1
0 (ω).

We can take more information out of (4.2). Take ϕ ∈ H1
0 (Ω)n−k such

that divy ϕ = 0. Then from (4.2) it follows

0 = −1

ε

∫

Ω

u(ε) divy ϕ =

∫

Ω

1

ε
∇yu(ε) · ϕ →

∫

Ω

γ · ϕ.

Therefore there is Φ ∈ L2(ω;H1(σ)) such that

(4.4) γ = ∇yΦ.

Now we identify U more precisely.
STEP 1. Take the limit ε→ 0 in (2.4). The limit equation is

(4.5)

∫

Ω

b∇xU · ∇yv + cγ · ∇yv = 0, v ∈ V.

Let us define
γ

H = γ −∇y (w · ∇xU) ,

where w ∈ H1(ω)k is defined in (2.11). Insertion of this γ into (4.5) implies
the equation for γ

H :
∫

Ω

cγH · ∇yv = 0, v ∈ V.
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As γ
H is of the form (4.4) as well, this equation and positive definiteness of

c imply γ
H = 0. Therefore

γ = ∇y (w · ∇xU) .

STEP 2. Setting v(x, y) = η(x), η ∈ H1
0 (ω) in (2.4), dividing it by ε, and

taking ε→ 0 imply
∫

Ω

(
a∇xU · ∇xη + bT γ · ∇xη + a0Uη

)
dxdy =

∫

ω

Fη dx.

Inserting the obtained form of γ we obtain (2.10). By uniqueness of the
solution of (2.10) one has U = U 0. Moreover, the whole family u(ε) converges
to U0.

Let us define the approximation of the starting problem (2.1), on a ε
dependent domain:

u0,ε(xε, yε) = U0(xε).

Then (4.4) implies

1

|Ωε|1/2
‖uε − u0,ε‖L2(Ωε) =

1

|Ω|1/2
‖u(ε) − U0‖L2(Ω) → 0.

This concludes the proof of Theorem 2.6.

4.1. The strong convergence in H1(Ωε). In order to get the strong conver-
gence in H1(Ωε) we need the strong convergence of the gradient. Inspection
of (4.2) forces the definition of the approximation

u1(ε)(x, y) = U0(x) + εw(y) · ∇xU
0(x).

Here we assume additional smoothness of the coefficients in (2.10) so addi-
tional regularity of the solution, U 0 ∈ H2(ω), is obtained. One has
∫

Ω

A∇ε(u(ε) − u1(ε)) · ∇ε(u(ε) − u1(ε)) + a0(u(ε) − u1(ε))2

=

∫

Ω

f0u(ε) +

∫

Γ

g1u(ε)

−2

∫

Ω

A
(

∇xu(ε)
1
ε∇yu(ε)

)

·
(

∇xU
0 + ε∇x(w · ∇xU

0)
∇yw

T∇xU
0

)

+ a0u(ε)u1(ε))

+

∫

Ω

A
(

∇xU
0 + ε∇x(w · ∇xU

0)
∇yw

T∇xU
0

)

·
(

∇xU
0 + ε∇x(w · ∇xU

0)
∇yw

T∇xU
0

)

+a0(U0 + εw · ∇xU
0)2

→
∫

ω

FU0 − 2

∫

Ω

A
(

∇xU
0

∇yw
T∇xU

0

)

·
(

∇xU
0

∇yw
T∇xU

0

)

+ a0(U0)2

+

∫

Ω

A
(

∇xU
0

∇yw
T∇xU

0

)

·
(

∇xU
0

∇yw
T∇xU

0

)

+ a0(U0)2 =: L.
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For the limit L it follows

L =

∫

ω

FU0 −
∫

Ω

A
(

∇xU
0

∇yw
T∇xU

0

)

·
(

∇xU
0

∇yw
T∇xU

0

)

+ a0(U0)2

= −
∫

Ω

(
b∇xU

0 + c∇yw
T∇xU

0
)
· ∇y

(
w

T∇xU
0
)

= −
∫

Ω

(
b+ c∇yw

T
)
∇xU

0 · ∇y

(
w

T∇xU
0
)

= −
∫

Ω

∇xU
0 ·
(
bT + ∇ywcT

)
∇y

(
w

T∇xU
0
)

= −
∫

ω

∇xU
0 ·
∫

σ

(
bT + ∇ywcT

)
∇y

(
w

T∇xU
0
)

= 0.

We define

u1,ε(xε, yε) = u0,ε(xε, yε) + εw(
yε

ε
) · ∇xεu0,ε(xε, yε).

As A is uniformly positive definite one has

1

|Ωε| ‖∇u
ε −∇u1,ε‖2

L2(Ωε)n

= ‖∇xu(ε) −∇xu
1(ε)‖2

L2(Ω)k +
1

ε2
‖∇yu(ε) −∇yu

1(ε)‖2
L2(Ω)n−k → 0,

as ε→ 0.

Remark 4.1. If bε = 0, then w = 0 and

1

|Ωε| ‖∇u
ε −∇u0,ε‖2

L2(Ωε)n → 0,

so no corrector is necessary.

5. The ”overlooked” models

If p < 0, then the pair (fp, gp+1) must satisfy the compatibility condition
∫

σ

fp dy +

∫

γ

gp+1 dγ = 0.

If we neglect the assumption A.1 of the Ansatz, the pair (f p, gp+1) is not
necessary trivial. The analysis shows that if p < −1, there appear new com-
plicated compatibility conditions without a clear interpretation. Therefore we
shall assume p = −1. Let

∫

σ

f−1 dy +

∫

γ

g0 dγ = 0.
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Then (3.3) and (3.4) hold true. Let U 1 ∈ L2(ω;H1(σ)∩L2
0(σ)) be the unique

solution to the problem

(5.1)

∫

σ

c∇yU
1 · ∇yθ dy =

∫

σ

f−1θ dy +

∫

γ

g0θdγ.

From (3.4) it follows

(5.2) u1 = z1 + U1 + w · ∇xU
0,

where

z1 ∈ H1(ω).

By the cancellation of the coefficient of ε1 in (2.6) and taking into account
(3.3) and (5.2) we conclude that U 0 is a unique solution to the problem

∫

ω

(
(A∇xU

0 +B) · ∇xη + a0U
0η
)
dx = 0, η ∈ H1

0 (ω),

where

B =

∫

σ

bT∇yU
1 dy.

References
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