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A NOTE ON CALCULATION OF ASYMPTOTIC ENERGY
FOR GINZBURG-LANDAU FUNCTIONAL WITH
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Abstract. We study asymptotic behavior of the Ginzburg-Landau
functional

Iε
gε

(v) =

∫

Ω

(

ε2v′′2(s) + W (v′(s)) + a(s)(v(s) + gε(s))2
)

ds

as ε → 0, where (gε) is a given sequence of 1-Lipschitz functions. In cases
where the sequence (gε) possesses some additional properties we calculate
(rescaled) minimal macroscopic energy associated to Iε

gε
as ε → 0. Thus

we obtain partial generalization of our previous results.

1. Introduction

The results presented in this note are contribution to the approach intro-
duced by G. Alberti and S. Müller in [1]. They developed framework which al-
lowed them to compute minimal asymptotic energy for a certain class of func-
tionals of Ginzburg-Landau type in one dimension and to rigorously describe
small-scale oscillations of the associated minimizing sequences (cf. also [8]).
We consider a variant of the energy in [10] (see also [1], p. 815) which is per-
turbed by a sequence of 1-Lipschitz penalizing functions (gε). The functional
Iε
g studied in [10],

(1.1) Iε
g (v) :=

∫

Ω

(

ε2v′′2(s) +W (v′(s)) + a(s)(v(s) + g(s))2
)

ds,
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is now replaced by

(1.2) Iε
gε

(v) :=

∫

Ω

(

ε2v′′2(s) +W (v′(s)) + a(s)(v(s) + gε(s))2
)

ds,

where Ω ⊂ R is open bounded interval, v ∈ H2
per(Ω), W ∈ C(R; [0,+∞)),

W (ξ) = 0 if and only if ξ ∈ {−1, 1}, W has superlinear growth in infinity, a
is L1(Ω)-function which is extended by periodicity to R2 and satisfies a(s) ≥
α > 0 (a.e. s ∈ Ω). Typical choice for W is W (ξ) := (ξ2 − 1)2. We consider

(1.3) Eε(gε) := min
v∈H2(Ω)

ε−2/3Iε
gε

(v), Eε
per(gε) := min

v∈H2
per(Ω)

ε−2/3Iε
gε

(v).

Typical problem in analysis of functionals like (1.2) is to determine the limit
of the sequence (Eε(gε)) as ε→ 0. The limit is usually referred to as (rescaled)
minimal asymptotic (or, equivalently, macroscopic) energy associated to (1.2)
and is usually recovered by using some kind of variational convergence, like
Γ-convergence, which proved to be a powerful tool in this respect (cf. [4] and
references therein). In [1] Alberti and Müller calculated minimal asymptotic
energy when g = 0 (cf. (3.2) in the case g = 0). There analysis also shows
the following: if vε minimizes functional (1.1) when g = 0, then (v′ε) for small
ε > 0 exhibits two-scale behavior as shown in Figure 1. In particular, it follows
that the internally created small scale of vε is of order ε1/3, a result which was
previously established in [8] by a quite different approach in the case when a is
strictly positive constant and g = 0. Results concerning some similar problems
can be found in [3, 5, 11]. In this note we consider the problem of stability of
the minima in terms of ε-dependent perturbation coming from the sequence
(gε). While we describe a few cases when we are able to compute minimal
asymptotic energy associated to Iε

gε
, we point out that our conclusions are far

from being complete. We expect that results can be consistently improved so
as to include optimal assumptions on (gε) (see Conjecture 4.5).

2. Some preliminaries

We consider a compact metric space (K, d) (the space of patterns), which
is defined as follows: K is the set of all measurable mappings x : R →
[−∞,+∞], endowed with the metric d defined by

d(x1, x2) :=
∞∑

k=1

1

2kαk

∣
∣
∣
∣

∫

R

yk

( 2

π
arctanx1 −

2

π
arctanx2

)

dλ

∣
∣
∣
∣
,

where λ is one-dimensional Lebesgue measure, (yk) is a sequence of bounded
functions which are dense in L1(R), such that the support of yk is a subset
of (−k, k), with αk := ‖yk‖L1 + ‖yk‖L∞ . As shown in [1], Lp

loc(R) embeds
continuously in K. The Banach space C(K) is the space of all continuous
real functions on K, whose dual is identified with the space of all finite real
Borel measures on K, denoted by M(K) (endowed with the corresponding
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Figure 1. Two-scale structure of (v′ε).

weak-star topology). A K-valued Young measure on Ω (or Young measure

on micropatterns) is a map ν ∈ L∞
w∗(Ω;M(K)) (where by L∞

w∗(Ω;M(K)) we
denote the dual of L1(Ω; C(K)), cf. [2] for details) such that νs is a probability
measure for almost every s ∈ Ω. The set of all Young measures is denoted by
YM(Ω;K) and it is always endowed with the topology of L∞

w∗(Ω;M(K)). The
elementary Young measure associated to a measurable map u : Ω → K is the
map δu : Ω → M(K) given by δu(s) := δu(s), s ∈ Ω. We say that a sequence

of measurable maps uk : Ω → K generates the Young measure ν, if the
corresponding elementary Young measures δuk converge to ν in the topology
of L∞

w∗(Ω;M(K)). The fundamental theorem of Young measures can be found
in [2]. We say that µ ∈ M(K) is invariant with respect to translations if for
every g ∈ C(K) and every τ ∈ R there holds 〈µ, g〉 = 〈µ, g ◦ Tτ 〉, where
Tτ : K → K is defined by Tτx(t) := x(t − τ), x ∈ K, t ∈ R. I(K) denotes
the class of all invariant probability measures on K. By H2

per(Ω) we denote
a set of all real functions on Ω, extended to R by periodicity, which belong
to H2

loc(R). If g : Ω → R is a Lipschitz-continuous function, Lip(g) denotes
the Lipschitz constant of g. Sx denotes the set of all points where function
x ∈ K is not continuous, while |Sx| denotes cardinality of the set Sx.

Definition 2.1 (Γ-convergence and continuous convergence). Let X be
a metric space. A sequence of functions F ε : X → [0,+∞] Γ-converges to F
on X, and we write F ε Γ−→F , if the following is fulfilled:

(i) Lower-bound inequality: for every x ∈ X and a sequence (xε) in X
such that xε → x it holds lim infε F

ε(xε) ≥ F (x).
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(ii) Upper-bound inequality: For any y in X there exists a sequence (yε)
in X such that yε → y and lim supε F

ε(yε) ≤ F (y).
Functions F ε continuously converge to F on X if F ε(xε) → F (x)

whenever xε → x, which is written as F ε C−→F .

3. Formulation of the problem

Asymptotic analysis for the functional (1.1) in the case g = 0 is based on
the following main steps (cf. [1]):

Step 1. Characterize the class of all Young measures ν ∈ YM(Ω;K) which
are generated by sequences of ε-blowups s 7→ Rε

sv
ε of functions vε ∈

H2
loc(R), where Rε

sv(τ) := ε−1/3v(s+ ε1/3t), t ∈ R.

Step 2. Rewrite the rescaled functionals ε−2/3Iε
0(v) as

∫

Ω
fε

s (Rε
sv)ds for a suit-

able choice of Rε
sv and fε

s .

Step 3. Identify the Γ-limit fs of fε
s in the topology of K for almost every

s ∈ Ω.

Step 4. Identify the Γ-limit of naturally defined relaxed functionals on the
space YM(Ω;K).

Step 5. Determine the minimizer for the relaxed functional in the limit and
prove its uniqueness.

The steps above were subsequently successfully adjusted to the case gε = g,
Lip(g) < 1 in [10], where ε-blowup s 7→ Rε,g

s defined by

(3.1) Rε,g
s v(t) := ε−1/3

(

v(s+ ε1/3t) + g(s) + g′(s)ε1/3t
)

was used. Theorem 4.17 in [10] implies that there holds

Proposition 3.1. For every g ∈ W1,∞(Ω) such that Lip(g) < 1 there
holds

(3.2) lim
ε→0

Eε(g) = lim
ε→0

Eε
per(g) = E(g),

where E(g) can be written as E(g) =
∫

Ω
ψ(a(s), g′(s))ds for some smooth

function ψ : (0,+∞) × (−1, 1) → [0,+∞) (which can be explicitly recovered).

In particular, if g = 0, we get minimal asymptotic energy in [1]. In the
present note we discuss a more general case when (gε) is certain sequence
of 1-Lipschitz functions. Throughout the note we always assume that there
holds

(3.3) gε ∈ W1,∞(Ω), sup{Lip(gε) : ε ∈ (0, ε0)} ≤ 1 − δ, δ ∈ (0, 1).
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In effect, it is natural to assume that there exists g ∈ W1,∞(Ω) such that
gε

∗−⇀g in W 1,∞(Ω). Euler-Lagrange equation associated to minimization
problem for Iε

gε
,

ε2 d
4

ds4
v − d

ds
σ
( d

ds
v
)

+ av = −gε, σ := W ′, a := 1,

suggests that minimizers of Iε
gε

are close to minimizers of Iε
g . Then assump-

tion (3.3) ensures that function g satisfies Lip(g) < 1. Consequently, it is
reasonable to expect that the minimization problem associated to (1.2) (ac-
cording to Step 4 and Step 5) when ε → 0 has the unique minimizer, which
can be well-approximated by sawtooth functions with minimal period of or-
der O(ε1/3)) (cf. Corollary 4.4). We conjecture that formula for asymptotic
energy

(3.4) lim
ε→0

Eε(gε) = lim
ε→0

Eε
per(gε) = E(g)

can be obtained in this case, but we were not able to prove it. In this note we
essentially require the stronger assumption so as to get (3.4), namely that the
sequence (gε) is strongly pre-compact in W1,p(Ω) for some p ∈ [1,+∞] (say).
In the case when assumption (3.3) is not satisfied, however, minimizers of Iε

gε

are not easily approximated by sawtooth functions (see, for instance, Propo-
sition 4.3 in [10]). Thus, a completely different behavior of the minimizers is
expected when Lip(g) > 1.

4. Some results

To begin with, we recall the following version of the Poincaré inequality
(cf. [6], Theorem 2, p. 141):

Proposition 4.1. Consider p ∈ [1,+∞). Then there exists C0 = C0(p)
such that for every g ∈ W1,p(Ω) there holds

(4.1) ‖g −−
∫

Ω

g‖
Lp(Ω)

≤ C0‖g′‖Lp(Ω).

Theorem 4.2. Let

(4.2) gε ∈ W1,∞(Ω), g ∈ W1,∞(Ω),

(4.3) g′ε(s)−→g′(s) (a.e. s ∈ Ω) (or g′ε
Lp(Ω)−−→g′ for some p ∈ [1,+∞]).

Then (3.4) holds.

Proof. To begin with, we note that without loss of generality we can
assume that for every ε ∈ (0, 1) there holds

(4.4) −
∫

Ω

gε(s)ds = −
∫

Ω

g(s)ds,
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since we can replace s 7→ gε(s) by s 7→ gε(s)−−
∫

Ω
gε +−

∫

Ω
g without changing the

value of Eε(gε) (Eε
per(gε), resp.). This is due to the fact that v 7→ v+−

∫

Ωgε−−
∫

Ωg

is one-to-one map from H2(Ω) to H2(Ω) (form H2
per(Ω) to H2

per(Ω), resp.). Idea
of the proof is to consider ε-blowup (3.1). Therefore Step 1 and Step 2 can
be easily completed as in [10]. In particular, every ν ∈ YM(Ω;K) which is
generated by a sequence of ε-blowups (3.1) satisfies νs ∈ I(K) (a.e. s ∈ Ω).
Consider the functional f ε

s : K → [0,+∞] defined by

fε
s (x) := −

∫ r

−r

(

ε2/3x′′2(t) + ε−2/3W (x′(t) − g′(s))
)

dt+ hε
s(x), x ∈ H2(−r, r)

(and fε
s (x) := +∞ otherwise), where r > 0 is some fixed number, and hε

s :
K → [0,+∞] defined by

hε
s(x) := −

∫ r

−r

a(s+ ε1/3t)
(

x(t) −Rε,g
s (−gε)(t)

)2

dt, x ∈ L2(−r, r)

(and hε
s(x) := +∞ otherwise). Then for every v ∈ H2

per(Ω) there holds

(4.5) ε−2/3Iε
gε

(v) =

∫

Ω

fε
s (Rε,g

s v)ds.

We claim that the sequence (f ε
s ) Γ-converges (for almost every s ∈ Ω) to the

limit fs : K → [0,+∞] defined by

(4.6) fs(x) :=
A0

2r
|Sx′ ∩ [−r, r)| + a(s) −

∫ r

−r

x2(t)dt,

if x is a sawtooth function with slope {−1 + g′(s), 1 + g′(s)} (and fs(x) :=
+∞ otherwise). To show this, it is enough to prove that the sequence (hε

s)
continuously converges (for almost every s ∈ Ω) to the limit hs : K → [0,+∞]
defined by

hs(x) := a(s) −
∫ r

−r

x2(t)dt,

if x ∈ L2(r,−r) (and hs(x) := +∞ otherwise). Then the sequence (f ε
s ) Γ-

converges by the well-known theorem of L. Modica and S. Mortola (cf. [7], see
also Proposition 3.3 in [1]). Once we have proved that there holds

(4.7) Rε,g
s (−gε) → 0 (a.e. s ∈ R),

the convergence of (hε
s) follows by the dominated convergence theorem. We

rewrite Rε,g
s (−gε) as

Rε,g
s (−gε)(t) = ε−1/3

(

g(s+ ε1/3t) − gε(s+ ε1/3t)
)

− ε−1/3
(

g(s+ ε1/3t) − g(s) − g′(s)ε1/3t
)

.
(4.8)

One readily checks that the second term in (4.8) tends to zero. By (4.3) for
arbitrary subsequence (εk) there holds gεk

→ g in H1(Ω). Therefore by the
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Egoroff theorem (cf. [6], p. 16) for every m ∈ N there exists a measurable set
Ωm ⊆ Ω such that there holds

lim
k→+∞

‖g − gεk
‖W1,∞(Ωm) = 0, λ(Ω\Ωm) ≤ 1

m
.

Set σk := ε
1/3
k , k ∈ N. Consider ϕk(s) := g(s) − gεk

(s), s ∈ Ω (and extend
ϕk to R by periodicity) and ϕk(ξ) := ϕk(σkξ), ξ ∈ R. By (4.4) ϕk ∈ H1(Ω)
and ϕk ∈ H1(σ−1

k Ω) satisfy

−
∫

Ω

ϕk = 0, −
∫

σ−1
k Ω

ϕk = 0.

Consequently, by Proposition 4.1 we get

σ−1
k

∫

Ω

−
∫ r

−r

|ϕk(s+ σkt)|dtds = −
∫ r

−r

∫

σ−1
k Ω

|ϕk(σkρ)|dρdt

≤ C1 −
∫ r

−r

∫

σ−1
k Ω

∣
∣
∣
∣

d

dρ
ϕk(σkρ)

∣
∣
∣
∣
dρdt

= C1σk

∫

σ−1
k Ω

|ϕ′
k(σkρ)|dρ.

Further on, we estimate
∫

σ−1
k Ω

|ϕ′
k(σkρ)|dρ ≤

∫

σ−1
k Ωm

|ϕ′
k(σkρ)|dρ+

∫

σ−1
k (Ω\Ωm)

|ϕ′
k(σkρ)|dρ

≤ σ−1
k λ(Ωm)‖g′ − g′εk

‖
L∞(Ωm)

+ 2Lip(g)σ−1
k λ(Ω\Ωm).

By passing to the limit as k → +∞ and then as m→ +∞, we conclude that
there exists a subsequence (εkm) with properties limm→+∞ εkm = 0,

lim
m→+∞

ε
−1/3
km

−
∫ r

−r

(

g(s+ ε
1/3
km
t) − gεkm

(s+ ε
1/3
km
t)
)

dt = 0 (a.e. s ∈ Ω).

Thus we proved (4.7). In effect, an application of Proposition 2.11 and Propo-
sition 3.3 in [1] yields f

εkm
s

Γ−→fs on K (a.e. s ∈ Ω) as m → +∞. Since the
argument above can be carried out for arbitrary subsequence (εk), Step 3 can
be completed. Moreover, Step 4 and Step 5 now can be restated precisely as
in [10]: we define the functionals F ε

gε
, Fg : YM(Ω;K) → [0,+∞] by

F ε
gε

(ν) :=

{ ∫

Ω
〈νs, f

ε
s 〉ds, if ν = δRε,gv for some v ∈ H2

per(Ω)
+∞, otherwise,

(4.9)

Fg(ν) :=

{ ∫

Ω〈νs, fs〉ds, if νs ∈ I(K) for a.e. s ∈ Ω
+∞, otherwise.

(4.10)

Then (taking into account definition of Fg , property Lip(g) < 1 and Propo-
sition 4.3 in [10]) property f ε

s
Γ−→fs (a.e. s ∈ Ω) implies that there holds
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F ε
gε

Γ−→Fg . In particular, by (4.5) there holds

min
ν

F ε
gε

(ν) = min
v
ε−2/3Iε

gε
(v).

Therefore, it follows

lim
ε→0

Eε(gε) = lim
ε→0

min
ν

F ε
gε

(ν) = min
ν

Fg(ν).

Hence, by Corollary 5.4 in [10] we deduce (3.4).

It is interesting to note that in some cases it is more natural to consider
different ε-blowup rather than to use assumption (4.4) (for example, if gε(s) =
αεs+βε, where αε → α and βε → β as ε→ 0). Precise argument is considered
in the following result.

Theorem 4.3. Let

(4.11) gε ∈ C1(Ω), g ∈ C1(Ω),

(4.12) g′ε
C−→g′on Ω.

Then (3.4) holds.

Proof. Idea is to consider ε-blowup

(4.13) Rε,ε
s v(t) := ε−1/3

(

v(s+ ε1/3t) + gε(s) + g′ε(s)ε1/3t
)

.

We perform the same calculations as in [10]. First, we claim that every Young
measure ν ∈ YM(Ω;K) generated by a sequence of ε-blowups (4.13) associ-
ated to some sequence (vε) is invariant with respect to translations. To prove
this, for s ∈ Ω we put uε,ε

s := Rε,ε
s vε and we calculate

T−1
τ uε,ε

s (t) − uε,ε
s+ε1/3τ

(t) = uε,ε
s (t+ τ) −Rε,ε

s+ε1/3τ
vε(t)

= ε−1/3gε(s) − g′ε(s+ ε1/3τ)t

−ε−1/3gε(s+ ε1/3τ) + g′ε(s)(t+ τ).

Invariance of ν is easily obtained by means of Lemma 2.7 and Proposition
3.1 in [1]. Indeed, (4.12) implies that for every t ∈ R, τ ∈ R and s ∈ Ω it
results limε→0 g

′
ε(s + ε1/3τ)t = g′(s)t. On the other hand by the Lagrange

mean value theorem we can write

ε−1/3gε(s+ ε1/3τ) − ε−1/3gε(s) = g′ε(θε)τ,

where θε → s as ε→ 0. Thus (4.12) implies that for every τ ∈ R the functions
s 7→ d(T−1

τ uε
s, u

ε
s+ε1/3τ

) converge in measure to 0 as ε → 0. By Remark 2.6

in [1], sequences
(

T−1
τ uε

s

)

and
(

uε
s+ε1/3τ

)

generate the same Young measure

ν as ε → 0. Lemma 2.7 in [1] implies that sequences
(

uε
s+ε1/3τ

)

and
(

uε
s

)

also generate the same Young measure as ε→ 0, which is therefore also equal
to ν. Then we can check that there holds νs ∈ I(K) (a.e. s ∈ Ω) exactly as in
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Proposition 3.1 in [1], which completes Step 1. In the second step we rewrite
ε−2/3Iε

gε
(v) as

∫

Ω f
ε,ε
s (Rε,ε

s v)ds, where the functional f ε,ε
s : K → [0,+∞] is

defined by

fε,ε
s (x) := −

∫ r

−r

(

ε2/3x′′2(t) + ε−2/3W (x′(t)− g′ε(s))
)

dt+hε,ε
s (x), x ∈ H2(−r, r)

(and fε,ε
s (x) := +∞ otherwise), where r > 0 is some fixed number, and

hε,ε
s : K → [0,+∞] is defined by

hε,ε
s (x) := −

∫ r

−r

a(s+ ε1/3t)
(

x(t) −Rε,ε
s (−gε)(t)

)2

dt, x ∈ L2(−r, r)

(and hε,ε
s (x) := +∞ otherwise). We can easily check that the sequence (f ε,ε

s )
Γ-converges (for almost every s ∈ Ω) to the limit fs defined by (4.6). Indeed,
consider t > 0 (or, equivalently, t < 0). By the Lagrange mean value theorem
there exists θε ∈ (s, s+ ε1/3t) such that θε → s as ε→ 0 and such that there
holds

Rε,ε
s (−gε)(t) = −g′ε(θε)t+ g′ε(s)t.

(4.12) implies Rε,ε
s (−gε) → 0 (a.e. s ∈ R) which (similarly as in the proof

of Theorem 4.2) furnishes Step 3. We consider the functionals F ε,ε
gε
, Fg :

YM(Ω;K) → [0,+∞] by

F ε,ε
gε

(ν) :=

{ ∫

Ω〈νs, f
ε,ε
s 〉ds, if ν = δRε,εv for some v ∈ H2

per(Ω)
+∞, otherwise,

(4.14)

Fg(ν) :=

{ ∫

Ω
〈νs, fs〉ds, if νs ∈ I(K) for a.e. s ∈ Ω

+∞, otherwise.
(4.15)

As in the proof of Theorem 4.2, it follows F ε,ε
gε

Γ−→Fg . Finally, we get (3.4).

Convergence result established in Step 4 in the proof of Theorem 4.3 (com-
bined with the stability of minima for Γ-convergent sequences) provides the
following interpretation of asymptotic behavior of the minimizing sequences
of Iε

gε
:

Corollary 4.4. Suppose that (4.11) and (4.12) holds. For small ε > 0
ε-blowups (4.13) of minimizers of Iε

gε
are (in the neighborhood of s ∈ Ω) well

approximated by periodic sawtooth function with slope ±1 + g′ε(s) and with
minimal period

hε(s) :=
(48A0

a(s)

)1/3

(1 − g′2ε (s))−2/3ε1/3.

In particular, for small ε > 0 minimizers of Iε
gε

are well-approximated by
sawtooth functions with slope ±1. Besides, minimizers of Iε

gε
are close to

minimizers of Iε
g .
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Proof. Consider s ∈ Ω. First claim is a consequence of the Theorem 4.3.
Indeed, Theorem 4.3 shows that ε-blowups (4.13) of minimizers vε generate
(in the point s ∈ Ω as ε → 0) the unique probability measure supported on

the set of all translations of h(s)-periodic sawtooth function ys ∈ K, where
ys has slope ±1 + g′(s), period h(s) is defined by

h(s) :=
(48A0

a(s)

)1/3

(1 − g′2(s))−2/3,

and there holds −
∫ h(s)

0 ys(τ)dτ = 0 (the proof of this fact is essentially contained
in Theorem 4.17 and Corollary 5.4 in [10]). On the other hand, if for every
ε ∈ (0, ε0) wε minimizes Iε

g , by Theorem 4.17 in [10] and the later conclusion
we obtain

δRε,ε
s vε − δRε,g

s wε
∗−⇀0 in M(K) (a.e. s ∈ Ω),

which furnishes the second claim of the Corollary.

We conclude our discussion by noting that strong convergence of (gε)
considered in Theorem 4.2 and Theorem 4.3 was crucial. Therefore the proofs
above can not be adjusted in an obvious way so as to provide the results for
the general sequence (gε). We conjecture that there holds (cf. [9]) :

Conjecture 4.5 (Stability with respect to weak-star convergence). If
gε ∈ W1,∞(Ω), g ∈ W1,∞(Ω) such that Lip(gε) ≤ 1 − δ,

g′ε
L∞(Ω)∗−−−−⇀g′,

(or in Lp(Ω) (weakly)) then (3.4) holds. In particular, Corollary 4.4 holds.
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