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CONFIGURATIONS DEFINED ON FINITE RINGS

Andrzej Koz lowski and Krzysztof Prażmowski

University of Bia lystok, Poland

Abstract. Some configurations defined as structures of orbits under
families of linear maps of cyclic rings are introduced and studied. All the
admissible families which yield a connected configuration with small lines
(of size 3 or 4) over the ring Zpn with prime p are found and characterized.
The automorphisms of rank 3 configurations of this type are determined.

Introduction

Quite frequently geometrical structures of various types can be defined
in terms of some families of transformations. As one of the most important
examples we quote the construction of the structure of graphs of a sufficiently
transitive transformation group (cf. [2, 10]) which, in particular cases, yields
affine planes and Minkowskian planes. Another construction of this kind can
be found in [2]: the family of blocks of a chain geometry is the orbit of some
”typical” chain under the group of projective transformations of the projective
line over a ring; these two constructions were further generalized, e.g. in [4, 8].
Closer to the subject of our paper is the André construction (cf. [1]); here,
given a transformation group G of a set X we define blocks to be all orbits
G〈x〉[y]∪{x} of elements y of X under point stabilizers G〈x〉 (x 6= y), suitably
completed.

To obtain an interesting incidence structure the underlying family of
transformations need not to be a group. For example, in [7] incidence struc-
tures with blocks which are graphs of polynomial functions were successfully
studied. Other examples, more important for us, as exactly these are gene-
ralized in our paper, are incidence structures determined by difference sets.
Recall that given a difference set D in a group G (cf. [3, Chapter VI], [6]) we
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define blocks as all cosets Dg with g ∈ G. Under certain assumptions on D
this construction produces linear spaces. Replacing these assumptions with
some weaker ones we obtain the notion of a quasi difference set, and then
the incidence structure determined by a quasi difference set is a partial linear
space (see [9] for details). It is evident that blocks Dg can be seen as orbits
of elements of G under some family of translations of G.

In the paper we consider incidence structures with blocks which are orbits
of elements of a finite commutative ring R under some family F of ”affine”
maps of R. Clearly, some limitations must be imposed upon this general
project. First, it seems reasonable to consider families F of two types only,
consisting of maps f of the form f(x) = ax+b with either common coefficient
a, or common coefficient b. The first approach yields the structure which is
just a substructure of the structure determined by a quasi difference set in
the additive group of R and thus its geometry can be simply derived from the
already known geometry. Consequently, in the paper we concentrate ourselves
on families F of the second type and after that we restrict ourselves mainly to
the rings R = Zpn = Z�pnZ for a prime number p. It seems that in this case
we can obtain the most regular, new, and interesting incidence structures; in
particular, some interesting partial linear spaces. Finally, we consider in some
details only structures with small blocks (of rank κ = 3 and κ = 4). The case
κ = 5 is only mentioned, and κ > 5 is passed over.

Principal results obtained in the paper can be sketched as follows. Let F
be a family of linear maps f of the ring Zpn of the form f(x) = ax. In Section
2 we give some general necessary (Proposition 2.5) and sufficient (Proposition
2.14) conditions for the set of coefficients of elements of F which assure that
the resulting incidence structure is a connected partial linear space of the given
size of lines κ = |F | and we establish parameters of the obtained structures
(Propositions 2.10, 2.9). Explicit formulas which characterize families F de-
termining partial linear spaces of rank κ = 3 (Theorem 3.3) and of rank κ = 4
(Theorem 5.4, Lemma 5.1) are given in Sections 3 and 5. In the case κ = 4
some additional assumptions on p are necessary for the existence of a suitable
family F (Propositions 5.2, 5.6). Since the arising incidence structures with
κ = 3 have an interesting fractal-like structure we pay some more attention
to them and in Example 3.4 and Section 4 we roughly explain their shape and
the structure of their automorphism group. In Section 6 some conditions are
found, which are necessary to obtain a connected partial linear space of rank
κ = 5 with the method proposed in the paper (Theorem 6.1, Fact 6.2), and
some examples are given, but the problem to characterize all the admissible
families F remains open. In the closing Section 7 we discuss again the general
case of arbitrary finite κ and indicate the way how to decompose the resulting
partial linear space into some cyclic subconfigurations.
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1. General construction

Let X be a nonempty set and F = {F1, . . . , Fl} be a finite set of maps
defined on X . For x ∈ X we write

F [x] = {f(x) : f ∈ F}
and then we set

F = F [X ] = {F [x] : x ∈ X}.
Let us recall a standard example of the above construction, frequently

used to define finite configurations.

Example 1.1. Let D be a quasi difference set in an abelian group G =
〈G,+, θ〉 i.e. assume that for every g ∈ G, g 6= θ there is at most one pair
(d1, d2) ∈ D × D with g = d1 − d2 (see [9]). To every g ∈ G we assign the
translation τg over G, τg(x) = x+ g. Set X = G and F = {τd : d ∈ D}. Then
〈X,F [X ]〉 =: D(G, D) is a partial linear space with lines of the size κ = |D|.
If G is a cyclic group, we call D(G, D) a cyclic configuration.

In the sequel we shall analyze some particular classes of structures which
can be represented in the form 〈Zk,F〉 with F being a family of linear maps
defined over a cyclic ring Zk = Z�kZ. Formally, elements of Zk are classes
x + kZ with x ∈ Z. However, it will be more convenient to us to consider
elements of the ring Zk as integers in {0, 1, . . . , k − 1} =: Zk, with addition
and multiplication defined modulo k (in particular, consequently, if k1|k2 then
elements of Zk1 are simply elements of Zk2 as well).

We use the symbol [x]k for the remainder of x modulo k, and
(
x
p

)
stands for

the Legendre symbol. By GCD(a, b) we denote the greatest common divisor
of a, b. Let Z∗

k stand for the set of all invertible elements of Zk; clearly, it is
a (multiplicative) group (denoted by Z∗

k). It is seen that

Z∗
k = {x ∈ Zk : x 6= 0, GCD(x, k) = 1} and

Zk \ Z∗
k = {x ∈ Zk : x · y ≡ 0 mod k for some y ∈ Zk \ {0}}.

We write ϕ for the Euler function; ϕ(k) is the number of integers x such
that x < k and GCD(k, x) = 1. In other words, ϕ(k) = |Z∗

k |.
The following is a folklore:

Fact 1.2 (see [5]). Let a ∈ Zk be an integer with GCD(a, k) = 1. Then
aϕ(k) ≡ 1 mod k, and thus the the rank r of the cyclic group 〈a〉 generated
by a in Z∗

k divides ϕ(k). In particular, if k = pn is a prime power, then the
group Z∗

k is cyclic.

Since most of our results concern incidence structures defined over the
ring Zpn where p 6= 2 is a prime number we briefly recall some representation
of elements of Zpn , which will be useful in the sequel. Namely, for every
x ∈ Zpn there are (uniquely determined) x0, . . . , xn−1 ∈ Zp such that

(1.1) x = xn−1p
n−1 + . . . x1p+ x0.
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Indeed, x0 = [x]p, x1p + x0 = [x]p2 , and so on. It is seen that if x has form
(1.1), then x ∈ Z∗

pn iff x0 6= 0 (this observation simply justifies that |Z∗
pn | =

pn−1(p − 1)). Generally, if 1 ≤ m < n, then pm | x iff x0 = . . . = xm−1 = 0
(and xm, . . . , xn−1 are arbitrary). Consequently,

(1.2) |{x ∈ Zpn : pm | x}| = pn−m.

We write Z(m)
pn =

{
pmd ∈ Zpn : d ∈ Z∗

pn

}
with m = 0, . . . , n. Clearly, Z(0)

pn =

Z∗
pn and Z(n)

pn = {0}. It is seen that elements of Z (m)
pn (m < n) can be

characterized as those x ∈ Zpn which satisfy pm | x, pm+1 6 | x. Evidently,

(1.3) |Z(m)
pn | = pn−m−1(p− 1).

2. ”Quasi difference sets” in the multiplicative structure of a

ring

Let A = {a1, . . . , al} ⊆ Zk \ {0}. We define functions Fi by the formula
Fi(x) = ai · x and we put F = {Fi : i = 1 . . . , l}. Then we consider the family
of blocks

F = F [Zk \ {0}] =
{
F [x] : x ∈ Zk, x 6= 0

}

and, finally, we set
D∗(Zk,A) := 〈Zk,F〉.

To avoid the trivial case when F is a set of affine maps of a field, in the
sequel we assume that Zk is not a field (i.e. k is not a prime number).

In this section we first establish properties of the set A which assure
that the incidence structure D∗(Zk ,A) satisfies certain natural geometrical
conditions: namely, to be a connected structure without isolated points with
the constant rank of its blocks. (Recall that a point q of an incidence structure
M is isolated if no block passes through q, and the structure M is connected
if any two its points can be joined by a polygonal path i.e. by a sequence of
blocks such that any two consecutive blocks in this sequence share a point.)

Lemma 2.1. The following conditions are equivalent:

(i) |F [x]| = l for every x ∈ Zk \ {0};
(ii) (ai − aj) ∈ Z∗

k for every i, j = 1, . . . , l with i 6= j.

Proof. Evidently, |F [x]| < l for some x 6= 0 is equivalent to aix = ajx
for some i, j, i.e. to (ai − aj)x = 0 for some i 6= j and some x 6= 0.

Lemma 2.2. The structure D∗(Zk,A) has isolated points iff A∩ Z∗
k = ∅.

If a ∈ A ∩ Z∗
k then D∗(Zk,A) ∼= D∗(Zk, a

−1 · A) and, clearly, 1 ∈ a−1 · A.

Proof. Let A ∩ Z∗
k = ∅; then F [x] ∩ Z∗

k = ∅ for every x ∈ Zk so, points
in Z∗

k are isolated.
If a ∈ A ∩ Z∗

k then the map x 7−→ a−1x is an isomorphism of D∗(Zk ,A)
onto D∗(Zk , a

−1 · A), and evidently, the latter has no isolated points.
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In view of Lemma 2.2, in the sequel we shall assume that a1 = 1 ∈ A.

Lemma 2.3. Let A ⊆ Z∗
k . Then D∗(Zk ,A) is not connected.

Proof. Assume that A ⊆ Z∗
k . Then, for every x ∈ Zk, x 6= 0 either

x ∈ Z∗
k , and then F [x] ⊆ Z∗

k , or x ∈ Zk \ Z∗
k , and then F [x] ∩ Z∗

k = ∅.
Consequently, if x ∈ Z∗

k and y /∈ Z∗
k , then x and y cannot be connected by a

polygonal path.

The following observation appears useful in the sequel.

Fact 2.4. Let a1, a2 ∈ A, a1 6= a2, and a1, a2 /∈ Z∗
pn . Then D∗(Zpn ,A)

is not a partial linear space with all lines of the same size.

Proof. From assumptions, ai = pkiti for i = 1, 2 and ti ∈ Z∗
pn , ki ∈

N\{0}. Then p | p(pk1−1t1−pk2−1t2) = a1−a2, which contradicts Lemma 2.1.

Therefore, if we want D∗(Zpn ,A) to be a connected partial linear space
with constant line rank we must assume that A has exactly one element
a ∈ Zpn \ Z∗

pn , a 6= 0.
For every A ⊆ Zk we set A∗ = A∩Z∗

k . Since Z∗
k is a multiplicative group

we can consider the incidence structure D(Z∗
k ,A∗), which is a substructure of

D∗(Zk ,A) – blocks of D(Z∗
k,A∗) are parts of some blocks of D∗(Zk ,A).

If D∗(Zk,A) is a partial linear space, then D(Z∗
k,A∗) must be a partial

linear space as well. To this aim A∗ must be a quasi difference set in the
multiplicative group Z∗

k, which means that the following must hold:

c′1c
′′
1
−1

= c′2c
′′
2
−1

yields that c′1 = c′2, c
′′
1 = c′′2 , or c′1 = c′′1 , c

′
2 = c′′2 ,

for all c′1, c
′
2, c

′′
1 , c

′′
2 ∈ A∗.

(2.1)

Note that the assumptions of (2.1) can be written, equivalently, in the form
c′1c

′′
2 = c′2c

′′
1 . Note also (cf. Fact 1.2) that D(Z∗

pn ,A∗) is, in fact, a cyclic
configuration defined on the cyclic group C(p−1)pn−1 .

In the sequel we shall analyze some types of incidence structures of the
form D∗(Zpn ,A) defined over the ring Zpn , where p > 2 is a prime number
and n a positive integer. Not necessarily all of them will be partial linear
spaces. Nevertheless, we believe that all of them are of some interest. In
view of Lemmas 2.1, 2.2, 2.3, and Fact 2.4 to obtain geometrically reasonable
structures we always assume that the set A ⊂ Zpn \ {0} fulfills the following
conditions:

A = {c0, c1, . . . , cl+1} with c0 = 1, ci ∈ Z∗
pn for i = 1, . . . , l,

and cl+1 /∈ Z∗
pn ;

(2.2)

(2.3) ci − cj ∈ Z∗
pn for all 0 ≤ i < j ≤ l + 1.
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Our main goal is to construct (and investigate) some partial linear spaces
which can be presented in the form D∗(Zpn ,A). Let us start with some more
properties of A that are necessary to this aim.

Proposition 2.5. Let A have form (2.2), where cl+1 = bpm with b ∈ Z∗
pn

for some 1 ≤ m < n. Assume that (2.3) holds and set M = D∗(Zpn ,A).
Moreover, assume that M is a partial linear space.

(i) For every i = 1, . . . , l there is a permutation αi of the set L :=
{0, . . . , l} such that

(2.4) αi(i) = 0 and cj ≡ cicαi(j) mod pm

for every j ∈ L.

(ii) If ci = cjct + pµd for some d ∈ Z∗
pn and j, t 6= 0, then µ ≤ m.

(iii) Consequently, we can write ci = cjcαi(j) + pmdi,j for some di,j ∈ Z∗
pn .

Proof. (i) Let x = pn−m and y = cip
n−m for i ∈ {1, . . . , l}. Consider

the lines F [x] and F [y] of M. It is seen that 0 = cl+1x = cl+1y and cip
n−m =

cix = c0y are their common points so, F [x] = F [y]. In particular, for every
j ∈ L, cjx ∈ F [y], i.e. cjx = cicαi(j)x for some (unique) αi(j). This yields

pn−(n−m) | (cj − cicαi(j)), as required.

(ii) Suppose that ci ≡ cjct mod pµ for some µ > m. Then cip
n−µ ≡

cjctp
n−µ mod pn so, the lines F [pn−µ] and F [ctp

n−µ] of M have two points
cip

n−µ and ctp
n−µ in common. Therefore, F [pn−µ] = F [ctp

n−µ]; in particular

{bpn−µ+m} = F [pn−µ]∩Z(n−µ+m)
pn = F [ctp

n−µ]∩Z(n−µ+m)
pn = {ctbpn−µ+m}.

This gives, however, pµ−m | b(ct − 1), which is impossible.
(iii) is an immediate consequence of (i) and (ii).

The condition 2.5(i) can be expressed in a less elementary, but much more
elegant way as follows:

Corollary 2.6. Under assumptions of Proposition 2.5 the set A∗ yields
a subgroup A∗�pmZpn =

{
1, [a1]pm , . . . , [al]pm

}
of Z∗

pm .

Let A have form (2.2), cl+1 = bpm, and M = D∗(Zpn ,A) be a partial
linear space with rank κ = l + 2. Then, in particular, (2.3) holds. After
Proposition 2.5 some fundamental parameters of M can be computed.

Lemma 2.7. Let x ∈ Zpn \ {0}. Then 0 ∈ F [x] iff x = tpn−m for some t,
i.e. iff pn−m | x.

Proof. Assume that 0 ∈ F [x]. Then: cix = 0 for some i = 0, . . . , l, or
bpmx = 0. Since x ∈ Zpn \ {0}, we have cix 6= 0 as well, and thus 0 ∈ F [x]
yields bpmx = 0, i.e. x = tpn−m for some t.

Conversely, let x = tpn−m for some t. Then 0 = bpmtpn−m ∈ F [tpn−m] =
F [x], as required.
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Lemma 2.8. Let x, y ∈ Zpn \ {0}. Then F [x] = F [y] iff x = tpn−m for
some t and y = cix for some i = 0, . . . , l.

Proof. Suppose that F [x] = F [y]. Considering the sets F [x] ∩Z (j)
pn and

F [y] ∩ Z(j)
pn we get that there is j0 with x, y ∈ Z(j0)

pn . Since y ∈ F [x], we have
y = ci0x for some i0 ∈ {0, . . . , l} and thus we can write F [x] = F [ci0x]. In
particular, this yields that for every i there is i′ with ci′ci0x = cix. From this
we deduce pn−j0 | (ci′ci0 − ci) and then from Proposition 2.5(ii) we come to
n− j0 ≤ m. Consequently, j0 ≥ n−m i.e. pn−m | x.

Conversely, a straightforward computation gives that if (2.4) holds and
x = tpn−m, then F [x] = F [cix] for every i = 0, . . . , l.

From Lemma 2.8 we get the number of lines of M.

Proposition 2.9. Under assumptions of Proposition 2.5, the partial lin-

ear space M has pn − 1 − l · pm−1
l+1 lines.

Proof. From definition, for every x ∈ Zpn \ {0} we obtain some line
F [x], so we have |Zpn \ {0}| = pn − 1 symbols of the form F [x]. However,
in Lemma 2.8 we showed that ν of them can be grouped into (l+ 1)-element
families which denote the same set, where ν = |{y ∈ Zpn : y 6= 0, pn−m | y}|.
Therefore M has pn −1−ν+ 1

l+1ν lines. From (1.2), ν = pm−1; substituting
we obtain the desired formula.

Now, we can count how many lines pass through a point of M.

Proposition 2.10. Let y ∈ Zpn \ {0}, and r be the rank of y.

(i) If y ∈ Z∗
pn , then r = l + 1.

(ii) Let y = epi, where e ∈ Z∗
pn and i ≥ 1. Then

r =

{
pm + 1 if n−m ≤ i,
pm + l + 1 if n−m > i,

and r =

{
1 if n−m ≤ i,
l + 1 if n−m > i,

for m ≤ i < n, for 1 ≤ i < m.

(iii) Point 0 is on pm−1
l+1 lines.

(iv) If y ∈ Z(i)
pn , then the points collinear with y are in Z (i)

pn ∪ Z(i+m)
pn ∪

Z(i−m)
pn .

Proof. Let x ∈ Zpn \ {0}. From definition, y ∈ F [x] iff one of the
following holds:

(a) y = cix, for some i = 0, . . . , l, or

(b) y = bpmx.

For every y ∈ Zpn \{0} every equation of (a) always has one (unique) solution.
(i) Since equation (b) has no solution for y ∈ Z∗

pn , the rank of a point y
in this case is l + 1.
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(ii) Now, let y /∈ Z∗
pn . Then y = epi for some e ∈ Z∗

pn and 1 ≤ i ≤ n− 1.

We can write equation (b) in Zpn in the form pmx ≡ b−1epi mod pn, where
b−1 is the inverse of b in Zpn .

First, suppose that i ≥ m. Then we have to solve the congruence x ≡
b−1epi−m mod pn−m, which has pm solutions in Zpn (we use equation (1.2)
here) of the form x = b−1epi−m + t, where t ∈ Zpn and pn−m | t. Since
pn−m 6 | x (n −m ≤ i − m is impossible), from Lemma 2.8 we get that the
obtained lines F [x] are pairwise distinct. However, if pn−m | y i.e. n−m ≤ i,
the solutions of the equations of (a) yield the same line F [y].

Next, suppose that i < m. There is no solution of the congruence xpm−i ≡
b−1e mod pn−i. Consequently, only solutions of (a) are admissible and thus
we obtain either a single line through y (if pn−m | y), or l + 1 distinct lines.

(iii) From Lemma 2.7 we know, that 0 ∈ F [x] holds iff x = epn−m for
some e i.e. iff pn−m | x. But Lemma 2.8 gives F [epn−m] = F [ciep

n−m] for

every i. Therefore, using formula (1.2) we obtain that 0 is on pm−1
l+1 lines.

(iv) Let y = pie, where e ∈ Z∗
pn , and z be a point collinear with y. If z

is on a line F [x], where x is a solution of (a), then z is one of the following:

y, ciy, c
−1
i y ∈ Z(i)

pn , or pm+ieb, pm+ic−1
i eb ∈ Z(i+m)

pn . If x is a solution of (b)

(to this aim i ≥ m is necessary), then z is one of the following: b−1epi ∈ Z(i)
pn ,

or b−1epi−m + pn−mt, b−1ecip
i−m + pn−mcit ∈ Z(i−m)

pn .

As we see in Proposition 2.10 the structure M may contain points with distinct
ranks. But, in some sense, these ranks characterize corresponding points:

Fact 2.11. The four possible values of ranks of points in Zpn \(Z∗
pn

∪{0})
are pairwise distinct.

The structure M has points from y ∈ Zpn \ (Z∗
pn ∪ {0}) of rank:

(i) pm + l + 1 iff 2m > n,

(ii) 1 iff m > 1 and 2m > n, and

(iii) l + 1 iff m > 1 and n > m+ 1.

(iv) M always has points of rank pm + 1.

Point 0 has rank:

(a) 1 iff pm = l + 2 = κ,
(b) l+ 1 iff pm = (l + 1)2 + 1 = (κ − 1)2 + 1.

Point 0 never has rank pm + 1 or pm + l+ 1.

Proof. The first statement is evident, since the numbers pm +1, 1, l+1,
and pm + l + 1 are pairwise distinct (note that pm = l gives a contradiction:

(l+ 1)|(l− 1)). The statements (i)–(iv) are evident, as to get y ∈ Z (i)
pn with a

desired rank, in accordance with Proposition 2.10, we must find i in suitable

intervals in Z. From Proposition 2.10, point 0 has rank pm−1
l+1 . Then (a) and

(b) are evident. To prove the last statement assume that the point 0 has rank
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pm + l + 1. Then pm−1
l+1 = pm + l + 1, so lpm + (l + 1)2 + 1 = 0, which is

impossible. Analogously, pm−1
l+1 = pm +1 gives, inconsistently, lpm + l+2 = 0.

As a corollary to Proposition 2.10(iv) we obtain

Corollary 2.12. If y ∈ Z (i)
pn , y 6= 0, then the distance between y and 0

(i.e. the minimal length of a polygonal path joining y and 0) is

min{k : n−m ≤ i+ km} + 1.

Finally, from Proposition 2.10(iii), we get

Corollary 2.13. If there is a set A of the form assumed in Proposition
2.5 such that D∗(Zpn ,A) is a connected partial linear space with constant line
rank κ, then (κ − 1) | pm − 1.

We close this part with a result converse to Proposition 2.5.

Proposition 2.14. Assume that the set A has form (2.2), where cl+1 =
bpm. Moreover, assume that A satisfies (2.3), and (2.4) for suitable permu-
tations αi, as claimed in Proposition 2.5(i). Finally, assume the following
(2.5)
pµ | (ci′ci′′ − cj′cj′′) yields i′ = j′, i′′ = j′′, or i′ = j′′, i′′ = j′, or µ ≤ m,

for all 0 ≤ i′,′′ , j′, j′′ ≤ l. Then the structure M = D∗(Zpn ,A) is a partial
linear space with line rank κ = l + 2.

Proof. It suffices to prove that, under the above assumptions, if x1, x2 ∈
Zpn , x1, x2 6= 0, and |F [x1] ∩ F [x2]| ≥ 2, then F [x1] = F [x2].

Note, first, that if x ∈ Z(i)
pn for some i, then F [x] ∩ Z(j)

pn 6= ∅ iff j = i or

j = min{n, i+ m}. In the first case F |[x] ∩ Z (j)
pn | = l + 1, in the second one

|F [x] ∩ Z(j)
pn | = 1.

Assume that |F [x1] ∩ F [x2]| ≥ 2. In view of the above it suffices to
consider two cases:

(a) ci1x1 = ci2x2 and bpmx1 = bpmx2 holds in Zpn , or

(b) ci1x1 = ci2x2, cj1x1 = cj2x2, and ci1x1 6= cj1x1 holds in Zpn ,

for some i1, i2, j1, j2 ≤ l. Let us start with case (a). We get pn−m | (x2−x1) so,
x2 = x1+epn−m for some e. Substituting we obtain pn−m | x1(ci2−ci1). From
(2.3) we conclude with: ci1 = ci2 (which gives x1 = x2) or pn−m | x1. There
is t such that ci1ct ≡ ci2 mod pm and thus ci1x1 ≡ ci2x2 ≡ ci1ctx2 mod pn.
This gives, finally, x1 ≡ ctx2 mod pn. From the assumed Proposition 2.5(i)
we directly compute now F [x1] = F [x2].

Next, let (b) holds. We have x1 = c−1
i1
ci2x2 so, cj1c

−1
i1
ci2x2 = cj2x2 holds

in Zpn i.e. pn | (cj1c
−1
i1
ci2 − cj2)x2. Therefore we can write pn−µ | x2 and

pµ | (cj1c
−1
i1
ci2 −cj2). Suppose that µ > m; then pµ | (cj1ci2 −ci1cj2) and from
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condition (2.5) we infer that ci1 = cj1 (which is impossible) or ci1 = ci2 , which
gives x1 = x2. If µ ≤ m, then pn−m | x2, x1. In particular, bpmx1 = bpmx2;
from (a) we obtain F [x1] = F [x2].

It is worth to point out that condition (2.5) guarantees, in particular, that
condition (2.1) holds and thus D(Z∗

pn ,A∗) is a partial linear space.

3. Structures of rank κ = 3

We begin with structures D∗(Zpn ,A) with blocks of rank 3 (some of these
structures will turn out to be partial Steiner triple systems). To this aim we
consider A = {1, c, b′} with c ∈ Z∗

pn and b′ ∈ Zpn \ (Z∗
pn ∪ {0}) i.e.

(3.1) A = {1, c, bpm}, where GCD(c, p) = 1 = GCD(b, p) and 1 ≤ m < n,

and M = D∗(Zpn ,A).
We write rν = min{i : pν | (ci − 1)} for the rank of the cyclic group 〈c〉ν

generated by c in the multiplicative group Z∗
pν , ν = 1, . . . , n.

Note that M need not to be a partial linear space. A counterexample, with
arbitrary A of the form (3.1), can be obtained by the following observation:

Fact 3.1. Let GCD(c − 1, p) = 1 so, in view of Lemma 2.1 |F [a]| = 3
for every a ∈ Zpn \ {0}. Assume that n > 1. Then either pm | c + 1, or
D∗(Zpn ,A) is not a partial linear space.

Proof. Assume that D∗(Z∗
pn ,A) is a partial linear space. From Proposi-

tion 2.5 we obtain that (cf. (2.4)) pm | c2−1 = (c−1)(c+1). Since p 6 | (c−1),
we get the claim.

As an immediate consequence of Fact 3.1 and Proposition 2.5(ii) we obtain

Fact 3.2. Let p 6= 2 and let c ≡ −1 mod pm i.e. let c + 1 = d · pm+k

for some d ∈ Z∗
pn and some 0 ≤ k < n−m. If D∗(Zpn ,A) is a partial linear

space, then k = 0.

Then, finally, we get that D∗(Zpn , {1, p, c}) is a partial linear space for
some ”sporadic” values of c. As an immediate consequence of Facts 3.1 and
3.2 we obtain the following characterization:

Theorem 3.3. Let A = {1, c, bpm}, p be a prime number distinct from 2,
GCD(b, p) = 1, and n > m ≥ 1. Then the following conditions are equivalent:

(i) The structure M = D∗(Zpn ,A) is a partial linear space with constant
line rank equal to 3.

(ii) c = d · pm − 1 for some d ∈ Z∗
pn .

Proof. In view of Facts 3.1 and 3.2, (i) immediately implies (ii).
Assume (ii). Since p | c+1, we cannot have p | (c−1) and from Lemma 2.1

we get |F [x]| = 3 for every x ∈ Zpn \ {0}. The condition (2.5) reduces to the
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following: if pµ | (c2 − 1), then µ ≤ m, which is evidently valid. To close the
proof it suffices to use Proposition 2.14.

Example 3.4. As a direct consequence of Theorem 3.3 we get that if n ≥
k > 1, then the structure D∗(Zpn , {1, pk − 1, p}) is not a partial linear space,
and the structure D∗(Zpn , {1, p− 1, p}) is a partial linear space. Though, in
particular, M = D∗(Zpn , {1, pn − 1, p}) with n ≥ 2 is not a partial linear
space, it has a quite regular, fractal-like structure. To give an idea how such
a structure looks like we use several times the following construction. Let
a be a point of M. Through the points a,−a, if a 6= −a, there pass two
blocks: F [a] and F [−a]. Their third points are ap and −ap, respectively,
Through these two points we have next two blocks F [ap] and F [−ap] with
ap2,−ap2 as corresponding third points. Continuing, we obtain a sequence
of pairs of points {api,−api} = {ui, vi} such that {ui−1, vi−1} ⊂ Ai, Bi,
ui ∈ Ai, vi ∈ Bi, and {ui, vi} ⊂ Ai+1, Bi+1 for some blocks Ai, Ai+1, Bi, Bi+1.
Assume that GCD(a, p) = 1; then with i = n − 1 our procedure closes:
F [apn−1] = F [−apn−1] 3 0. Examples of structures obtained in this way are
presented in Figures 1 and 2.

We see that after identifying every pair of the form (a,−a) we obtain a
tree. Therefore, the automorphism group of the structure D∗(Zpn , {1, p,−1})
can be presented as follows: Let f be an automorphism of M. If 0 ∈ L
and x, y ∈ L for some block L of M, then f(0) ∈ f(L) and f(x), f(y) ∈
f(L). When we remove the blocks which contain the point 0, we obtain p−1

2
isomorphic substructures.

Let x ∈ Z(n−1)
pn so, x = epn−1 with e ∈ Z∗

p and thus F [x] is (an arbitrary,
in fact) block through 0. Set Fn−1[x] = {x,−x} = F [x] \ {0}. Blocks, which
cross F [x], are exactly those, which pass through the points x and −x; they
have form F [y], where py = x or py = −x. Let us represent a point y from
Zpn in the form

y = yn−1p
n−1 + yn−2p

n−2 + ...+ y2p
2 + y1p+ y0

(cf. (1.1)). Then F [y] crosses F [x] iff yn−2 = e or yn−2 = −e and yn−3 =
. . . = y0 = 0. Note that the points on F [y] not on F [x] are y and −y;

they are in Z(n−2)
pn . Let us denote by Fn−2[x] the family of such points.

Continuing, we consider other blocks that pass through these points, and new
points on these blocks; let Fn−3[x] be the set of them. It is seen that the

elements of Fn−3[x] can be characterized as those y ∈ Z (n−3)
pn which have

representation y =
∑n−1

i=0 yip
i, where yn−3 = e or yn−3 = −e and yn−4 =

. . . = y0 = 0. Inductively, we construct the family F [x] =
⋃{Fi[x] : i =

0, . . . , n − 1} of points, which form one ”leaf” around F [x]. Elements y of

F [x] are characterized by the condition: if y ∈ Z (i)
pn , then yi = ±e in the

representation given in (1.1).
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Figure 1. The structure D∗(Z53 , {1, 5,−1}).

Now, it is evident that for two x′ = pn−1e′, x′′ = pn−1e′′ ∈ Z(n−1)
pn the

map

f :

n−i+1∑

j=n−1

yjp
j + e′pn−i 7−→

n−i+1∑

j=n−1

yjp
j + e′′pn−i



CONFIGURATIONS DEFINED ON FINITE RINGS 127

0 27 54

63

18

72

975

6

52

29

56

25

79

2

60

21

47

34

20

61

7

74

48

33

70

11

65

16

43 38

51

30

17

64

10

71

37

44

57

24

46

35

73

8

19

62

78

3

53

28

1

80

26

55

45

36

69
12

58

23

77

4

50

31 66

15

5
76

22

59

32

49

42 39

41

40

67

1413

68

Figure 2. The structure D∗(Z34 , {1, 3,−1}).

is an isomorphism between the substructures F [x′] and F [x′′] of M.
Finally, note that every of the substructures F [x] is isomorphic with the

structure D∗(Zpn−1 , {1, p,−1}); to this aim it suffices to consider the map
F [pn−1e] 3 y 7−→ py with e = 1. To establish the automorphism group of
M we note, first, that arbitrary element f ∈ Aut(M) determines a permu-
tation of the lines through 0 and thus it determines a permutation of the
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substructures F [pn−1e] with e ∈ Z∗
p. Then, in every such a substructure

the map which interchanges pn−1e and −pn−1e is its automorphism. Fi-
nally, we inductively reduce the problem, since Aut(D∗(Zpn , {1, p,−1})) ∼=
S p−1

2
n
(
C2 ⊕ Aut(D∗(Zpn−1 , {1, p,−1}))

)
.

4. Multiply wound polygons and their automorphisms

Here, we shall explain (in more geometrical terms) the nature of a partial
linear space determined by A of the form (3.1). To make the picture more
clear, let us begin with a more general construction. First, for an arbitrary k-
gon C we label its points with symbols (i) and sides with symbols [i] (i ∈ Ck)
in such a way that [i] joins (i) and (i+ 1). Thus, we identify C with the group
Ck – more formally, with the cyclic configuration D(Ck , {0, 1}) (consult [9]
for details). For arbitrary v ∈ Ck we consider the maps τv, σv defined by
τv(i) = i+ v, σv(i) = −i+ v. These maps form the dihedral group Dk, and
yield all the automorphisms of C acting on its points and lines as follows:

τv : (i) 7−→ (τv(i)), τv : [i] 7−→ [τv(i)],

σv : (i) 7−→ (σv(i)), σv : [i] 7−→ [σv−1(i)].

Let C be an arbitrary k1-gon (so identified with Ck1), and let k2 be an
arbitrary positive integer. We spool on C a (k1·k2)-gon C′ such that each vertex
(i) of C (i ∈ Ck1) is on k2 sides of C′ of the form [i+ jk1] (j ∈ Ck2). On the
other hand this situation can be seen as a k-gon with k = k1 ·k2, represented as
D(Ck , {0, 1}), on whose sides new points were added in such a way that edges
[i] and [i+jk1] of C′ are extended with a common point for j = 0, 1, . . . , k2−1.
Then C results as a k1-gon inscribed into C′, joining the new points. After
that, the procedure can be iterated, so as a (k3k2k1)-gon C′′ is wound round
C′, and so on, for arbitrary sequence of positive integers k1, k2, . . . , km. The
resulting configuration K which is the union of the polygons C, C ′, . . . , Cm−1

will be written as Ck1,k2,...,km and will be called a hank of polygons. The
polygon Cm−1 will be referred to as the border of K, and C is its kernel. Let
us write down a simple observation

Fact 4.1. Let k = k1k2 . . . km. We consider the series of configurations
Ki = Ck1,...,ki . Let Ci (= Ck1·...·ki) be corresponding polygons, where Ci+1

is ki+1-times wound on Ci, and Ki is the union of C1, . . . , Ci. For arbitrary
v ∈ Ck the maps τv and σv determine automorphisms of all the polygons C i

and thus they are automorphisms of Ki for i = 1, . . . ,m.

Proof. Set C = Cm and C′ = Cm−1. Let [i] and [i + km] be two sides
of C, which have the same point of C ′. Then τv maps them onto sides [i+ v]
and [i + v + km] which, evidently, have a common point of C ′. The function
σv maps the sides [i] and [i + km] onto the sides [−i+ v − 1] and [−i+ v −
1 + k1 . . . km−1(km − 1)] which have a common point of C ′ as well. Therefore,
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both τv and σv determine permutations of the points of C ′. It is clear that
neighbor sides of C are mapped onto neighbor sides. This, finally, proves that
the maps τv and σv determine automorphisms of C ′. By induction, we get our
claim.

It is immediate from definition that (in notation of Fact 4.1) for j < m
the points of Cj have rank 2 + kj+1 in Km, and points of Cm have rank 2.
From Fact 4.1 we thus obtain

Fact 4.2. Aut(Ck1 ,k2,...,km) ∼= Dk1·k2·...·km .

Now, we are coming back to the incidence structure

M = D∗(Zpn , {1, bpm, dpm − 1})

with b, d ∈ Zpn = Z(0)
pn . Set, as usual, c = dpm − 1.

Let δ, µ be integers such that

(4.1) n− 1 = δm+ µ, 0 ≤ µ < m, δ ≥ 0.

This means that δm ≤ n− 1 < (δ+ 1)m i.e. (δ− 1)m < n−m ≤ δm. In view
of Corollary 2.12 this yields that

Fact 4.3. dist(x, 0) = δ + 1 for x ∈ Z (0)
pn .

Now, let x = epi ∈ Z(i)
pn be arbitrary. Then F [x] = {x, cx, bpmx} and,

clearly, cepi = cx ∈ Z(i)
pn . It is seen that the points xcj form a closed polygon

contained in Z(i)
pn . Its length ρi is determined as the minimum min{j : pn |

(cjepi − epi)} so, ρi = min{j : pn−i | (cj − 1)} and thus this polygon has rn−i

points, which form the set x · 〈c〉n−i. For better readability we write

ρi = rn−i = the lenght of (epi, c1epi, c2epi, . . .)

for e ∈ Z∗
pn .

Next, let us observe the ”third points” of M on sides of a polygon C := x ·
〈c〉n−i. They have form bpmxcj = bepm+icj for j = 1, 2, . . . . Two consecutive

third points bpmxcj and bpmxcj+1 are joined by the line F [bpmxcj ]. Thus,
in fact, these points form the polygon C ′ := bpmx · 〈c〉n−i−m such that C is
wound (pm times, cf. Proposition 2.10 with l = 1) on C ′. The length of C′ is

rn−i−m and C′ is contained in Z(i+m)
pn . This justifies the following recursive

formula
ρ(i) = pmρ(i+m).

Continuing this procedure we obtain a series of polygons Cj = ebjpi+jm ·
〈c〉n−i−jm such that Cj is contained in Z(i+jm)

pn and is wound on Cj+1; the

length of Cj is ρi+jm = rn−i−jm. One can also say that the family of points

thus constructed starting from a given x ∈ Z (i)
pn form a hank of polygons,

whose kernel is a 2-gon, each next polygon being pm-times wound on the
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previous one, and whose border is x·〈c〉n−i. It is seen that the above procedure

of ”inscribing” stops (Cj is a 2-gon), when pn−m | pi+jm i.e. n−m ≤ i+ jm.
The minimal value of j with n−m ≤ i+ jm is βi − 1, where βi = dist(epi, 0)
(with arbitrary e ∈ Z∗

pn).

Finally, the two sides of Cβi−1 are identified, and the point 0 of M is
placed on this side.

Let us consider a point x = epi ∈ Z(i)
pn of rank 2; from Proposition 2.10,

0 ≤ i < m. Therefore, n−m < n− i ≤ n. We have

dist(x, 0) =

{
δ + 1 for δm < n− i ≤ n
δ for n−m < n− i ≤ δm

,

and thus, from the above recursive formula we get

ρi =

{
2pδm if δm < n− i ≤ n

2p(δ−1)m if n−m < n− i ≤ δm.

Therefore, M has (p−1)pn−i−1�2pδm = p−1
2 pn−i−1−δm polygons contained in

Z(i)
pn with δm < n− i ≤ n, and (p− 1)pn−i−1�2p(δ−1)m = p−1

2 pn−i−1−(δ−1)m

polygons contained in Z(i)
pn with n−m < n− i ≤ δm; consequently, these are

numbers of hanks which have border polygons build from points of rank 2 of
M (on the other hand, their sum is the number of lines through 0). With a
careful computation (use: n− i = δm+ µ+ 1 − i) we obtain finally

Fact 4.4. The structure M contains 1
2 (pµ+1−1) hanks with border points

at distance δ+ 1 from 0, and pµ+1

2 (pm−µ−1 − 1) = pm−1
2 − pµ+1−1

2 hanks with
border points at distance δ from 0.

Now, assume that

either m = 1, or 2m ≤ n

so, as a consequence of Fact 2.11 with l = 1, no point x 6= 0 of M has rank
1. Then M can be seen as a union of the hanks given in Fact 4.4. The case,
when M has points of rank 1 needs only small modification of the reasoning
below.

Note, first, that the representation of M defined in Fact 4.4 depends
entirely on the parameters p, n, and m. Slightly informally we can say that

M consists of γ1 := pµ+1−1
2 copies of the hank C

2,pm, . . . , pm

︸ ︷︷ ︸
δ times

, and γ2 :=

pm−1
2 − pµ+1−1

2 copies of the hank C
2,pm, . . . , pm

︸ ︷︷ ︸
(δ−1) times

, if γ2 > 0, i.e. if 2 < m+ 1 <

n (cf. Fact 2.11). These copies are linked with 0 by lines passing through
kernels of the hanks. On the other hand, this gives also that M uniquely
determines the values of the parameters µ and δ. This yields, as an immediate
consequence
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Corollary 4.5. Let b, d ∈ Z∗
pn . The structures D∗(Zpn , {1, pm, pm − 1})

and D∗(Zpn , {1, bpm, dpm − 1}) are isomorphic. If 1 ≤ m1,m2 < n and m1 6=
m2 then D∗(Zpn , {1, pm1 , pm1 − 1}) and D∗(Zpn , {1, pm2 , pm2 − 1}) are not
isomorphic.

Another important consequence is

Theorem 4.6. Let G be the automorphism group G = Aut(M). Then

G ∼=
{
Sγ1 n

(
D2pδm

)γ1
if γ2 ≤ 0

Sγ1 n
(
D2pδm

)γ1 ⊕ Sγ2 n
(
D2p(δ−1)m

)γ2
if γ2 > 0.

Proof. Clearly, every automorphism of M must leave the set of points
of rank 2 invariant. One can note that the point 0, even if it has rank 2,
cannot be interchanged with other points of rank 2 (which, as it follows from
the above considerations, are the border points of hanks defined in Fact 4.4).

Let f ∈ G. Particularly, from the above, f fixes 0. Suppose that f
preserves one of the hanks K whose border is a polygon C lying at distance
δ+1 from 0. Then C ∼= C2pδm and g = f � C must be an element of the dihedral
group D2pδm . From Fact 4.2, g determines uniquely an automorphism of the
hank K. Moreover, g may be an arbitrary element of D2pδm . Analogous
reasoning applies to a hank K with border at distance δ from 0, and then for
f preserving K, f � K can be considered as an element of D2p(δ−1)m . Since
arbitrary f ∈ Aut(M) determines, first, a permutation of the hanks with
borders at the same distance from 0, and then it constitutes isomorphisms
between corresponding hanks, we conclude with the desired formula.

A representation involving series of wound polygons and families of hanks
can be given generally, for arbitrary incidence structure D∗(Zpn ,A), where
A has form (3.1). Note that for some values of the parameter c we can
obtain structures, which look like ”mixtures” of the fractal-like structures
of the form D∗(Zpn′ , {1,−1, p}), and the partial linear spaces of the form

D∗(Zpn′′ , {1, p, pd− 1}). This happens, when on some level the polygon Cj

degenerates to a 2-gon, but this one does not yield a line through 0. As an
example, we can quote the structure D∗(Zpn , {1, pk − 1, p}) for 1 < k < n.
On Figure 3 we give the schema of the structure of this type for p = 3, n = 3,
and k = 2.

5. Structures of rank κ = 4

Now, let us pay attention to structures D∗(Zpn ,A), where |A| = 4. In
accordance with our general stipulation we have

(5.1) A = {1, b′, c1, c2} for some c1, c2 ∈ Z∗
pn and b′ ∈ Zpn \ (Z∗

pn ∪ {0}).

Consequently, b′ = bpm for some b ∈ Z∗
pn and 1 ≤ m < n.
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Figure 3. The structure D∗(Z33 , {1, 3, 8}).

Note, first, that the requirement similar to the one given in Theorem 3.3 is
defective: if ci = pmidi−1 for some d1, d2 ∈ Z∗

pn and mi ≥ 1, then p | (c1−c2),
which contradicts global assumptions (2.3).

Now, let us state some conditions necessary to get a partial linear space
with A of the form (5.1).

Lemma 5.1. Let D∗(Z∗
pn ,A) be a partial linear space with rank 4 lines,

where A = {1, bpm, c1, c2} for some b, c1, c2 ∈ Z∗
pn . Then the following condi-

tions hold.

(i) pm | c1c2 − 1;

(ii) pm | c21 − c2 and pm | c22 − c1;

(iii) pm | c1 + c2 + 1;

(iv) c21 − c2 = pmg and c22 − c1 = pmf for some g, f ∈ Z∗
pn ;

(v) c1c2 − 1 = pmh for some h ∈ Z∗
pn .

The condition (iii) is a consequence of (ii); clearly, (i) follows from (v), and
(ii) follows from (iv).

Proof. In view of Proposition 2.5 it suffices to determine the correspond-
ing permutations α. It is seen, that the only possible are two:

(a) pm | (c21 − 1) and pm | (c2 − c1c2), or

(b) pm | (1 − c1c2) and pm | (c2 − c21).
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In the case (a) we have pm | c2(c1 − 1), which is impossible. Therefore, (b)
holds, which immediately implies (i) and (ii).

Now, assume (ii). Then pm | ((c21 − c2)− c22 − c1) = (c1 − c2)(c1 + c2 + 1),
which, since pm 6 | (c1 − c2) gives (iii).

Finally, (iv) and (v), in view of (i) and (ii) follow directly from Proposi-
tion 2.5(iii).

Lemma 5.2. Let c1, c2 satisfy conditions (i) and (iii) of Lemma 5.1. Let
r = [c1]pm and s = [c2]pm . Then r and s are solutions of the equation

(5.2) λ2 + λ+ 1 = 0

in the ring Zpm .

Proof. Let us write c1 = tpm + r, where r ∈ {0, 1, . . . , pm − 1}. Since
pm|(c2 + c1 + 1) we can write c2 = dpm+k − c1 − 1 = dpm+k − tpm − r− 1 for
some k ≥ 1 and d ∈ Z∗

pn \ {0}. Then pm | (c1c2 − 1) = (tpm + r)(dpm+k −
tpm− r−1)−1 = tdp2m+k + t2p2m + tpmr− tpm +dpm+kr− rtpm− r2 − r−1
yields pm | (r2 + r+ 1), as required. For s the reasoning runs analogously.

Then, some other necessary conditions appear. Let us state them here.

Lemma 5.3. Let A = {1, bpm, c1, c2}, where b, c1, c2 ∈ Z∗
pn , c1 6= c2.

(i) Let M = D∗(Zpn ,A) be a partial linear space with all lines of rank 4.
Then p > 3.

(ii) Let p > 3 and let c1, c2 satisfy the conditions (iv) and (v) of
Lemma 5.1. Then p 6 | (c1 − c2), (c1 − 1), (c2 − 1).

Proof. To prove (i) assume that equation (5.2) has a solution in Zpm .
Then (5.2) has a solution also in Zp. Suppose that p = 3. Since 1 is the only
solution of equation (5.2) in Z3, we can write r = 3u + 1 for some u ∈ N .
Then r2 + r + 1 = (3u + 1)2 + (3u + 1) + 1 = 9u2 + 6u + 3u + 1 + 1 + 1 =
9u2 +9u+3 = 3(3u2 +3u+1) ≡ 0 mod 3m i.e. 3u2 +3u+1 ≡ 0 mod 3m−1.
Consider two cases. If m > 1, then 3|1, which is inconsistent. If m = 1, then
3 | (c1 − c2), which contradicts (2.3).

Next, to prove (ii) suppose that p | (c1 − 1), which gives [c1]p = 1. From
Lemma 5.1 we get that the conditions (i) and (iii) of Lemma 5.1 are also valid.
In view of Lemma 5.2, 12 + 1 + 1 = 0 holds in Zpm , so p = 3. Next, suppose
that p | (c1−c2); we get c2 = c1 +pd for some d. Then c22 = p2d2 +2pdc1 +c21.
From p | (c22 − c1) we obtain p | (c21 − c1) = c1(c1 −1), which is impossible.

Finally, we note that the conditions established in the above lemmas turn
out to be sufficient to obtain a partial linear space.

Theorem 5.4. Let A = {1, bpm, c1, c2}, where 1 ≤ m < n, b, c1, c2 ∈ Z∗
pn

with p > 3, and c1, c2 satisfy conditions (iv) and (v) of Lemma 5.1, Then the
structure D∗(Zpn ,A) is a partial linear space with lines of rank 4.
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Proof. At the beginning, from Lemma 5.3(ii) and Lemma 2.1 we get
that lines of M = D∗(Zpn ,A) have rank 4.

Now, assume that pµ divides one of the following.

c1c2 − 1, c21 − c2, c22 − c1: from Lemma 5.1 we infer that µ ≤ m.
c21 − 1, c22 − 1: since p 6 | (c1 − 1), we obtain pµ | c1 + 1. Suppose that
µ > 0; from Lemma 5.1(iii) we have p | c2, which is impossible.

c21 − c22: since p 6 | (c1 − c2), we get pµ | (c1 + c2). Suppose that µ > 0;
from Lemma 5.1(iii) we obtain, inconsistently, p | 1.

It is clear that the other conditions of the form pµ | (c′c′′ − c′′′c′′′′) with
µ > 0, c′, c′′, c′′′, c′′′′ ∈ {1, c1, c2}, and c′ 6= c′′′, c′′′′ cannot hold. In view of
Proposition 2.14, the above proves that M is a partial linear space.

It is worth to note here (cf. Corollary 2.6) the following, evident

Proposition 5.5. Under assumptions of Theorem 5.4, the set A∗ yields
a subgroup of Z∗

pn isomorphic to C3.

Clearly, in view of Lemmas 5.1 and 5.2, to construct a partial linear
space of the form D∗(Zpn ,A) with A = {1, bpm, c1, c2}, equation (5.2) must
be solvable in Zpm , so in Zp as well. To this aim, there must exist a square
root of −3 in Zp, which eliminates some values of p. In particular, p 6= 5 and
the least possible value is p = 7. One can check that, indeed, the structure
D∗(Z72 , {1, 7, 2, 11}) is a partial linear space.

To make our investigations more complete we formulate explicitly a
strengthening of Corollary 2.13.

Proposition 5.6. Assume that there is a set A ⊂ Zpn such that 1, pm ∈
A and D∗(Zpn ,A) is a partial linear space with rank 4 lines. Then

(−3
p

)
= 1

and, consequently, p = 3k + 1 for some natural k.

Proof. Clearly, the solvability of equation (5.2) in Zp implies
(−3

p

)
= 1.

Since
(−3

p

)
=
(−1

p

)(
3
p

)
=
(p

3

)
=
([p]3

3

)
,
(

1
3

)
= 1, and

(
2
3

)
= −1, we get [p]3 = 1,

as required.

6. Structures of rank κ = 5

Finally, let us pay attention to structures D∗(Zpn ,A), where |A| = 5.
Consider the general case

A = {1, b′, c1, c2, c3} for some c1, c2, c3 ∈ Z∗
pn

and b′ ∈ Zpn \ (Z∗
pn ∪ {0}).

(6.1)

Theorem 6.1. Let A = {1, bpm, c1, c2, c3}, where b, c1, c2, c3 ∈ Z∗
pn , m is

a positive integer < n, and p a prime number. If the structure D∗(Zpn ,A)
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is a partial linear space with lines of rank 5, then the following congruences
must be satisfied

cα(1) ≡ −1 mod pm(6.2)

cα(2) ≡ −cα(3) mod pm(6.3)

cα(2) · cα(3) ≡ 1 mod pm(6.4)

for some permutation α of {1, 2, 3}.
Then also the following holds: 1 ≡ c2

α(1) mod pm and c2α(2), c
2
α(3) ≡ −1

mod pm.
In particular (cf. Corollary 2.6), the set A∗ yields a C4-subgroup of Z∗

pm .

Proof. Suppose that D∗(Zpn ,A) is a partial linear space and consider
the lines

L0 = F [pn−m] = { pn−m, 0, c1p
n−m, c2p

n−m, c3p
n−m },

L1 = F [c1p
n−m] = { c1p

n−m, 0, c2
1p

n−m, c1c2p
n−m, c1c3p

n−m },

L2 = F [c2p
n−m] = { c2p

n−m, 0, c1c2p
n−m, c2

2p
n−m, c2c3p

n−m },

L3 = F [c3p
n−m] = { c3p

n−m, 0, c1c3p
n−m, c2c3p

n−m, c2
3p

n−m }.

It is seen that 0, cip
n−m ∈ L0, Li so, all the Li must coincide; in particular,

L0 = L1, and therefore one of the following must be true.

(a) pn−m = c21p
n−m, c2p

n−m = c1c2p
n−m, and c3p

n−m = c1c3p
n−m,

(b) pn−m = c21p
n−m, c2p

n−m = c1c3p
n−m, and c3p

n−m = c1c2p
n−m,

(c) pn−m = c1c2p
n−m, c2p

n−m = c21p
n−m, and c3p

n−m = c1c3p
n−m,

(d) pn−m = c1c2p
n−m, c2p

n−m = c1c3p
n−m, and c3p

n−m = c21p
n−m,

(e) pn−m = c1c3p
n−m, c2p

n−m = c21p
n−m, and c3p

n−m = c1c2p
n−m,

(f) pn−m = c1c3p
n−m, c2p

n−m = c1c2p
n−m, and c3p

n−m = c21p
n−m.

In the cases (a) and (f) we get pm | c2(c1 − 1), which is impossible. Similarly,
in the case (c) we obtain pm | c3(c1 − 1), which is impossible, as well.

Now, let us consider case (b). We obtain pm | (c1c3 − c2) and pm |
(c1c2−c3). Therefore pm | (c1c3−c2 +(c1c2−c3)) = c1(c3 +c2)−1(c3 +c2) =
(c1 − 1)(c3 + c2), which gives c3 ≡ −c2 mod pm. Similarly, pm | (c21 − 1), and
thus c1 ≡ −1 mod pm.

Then, comparing L0 and L2 we get two possibilities: either c22p
n−m =

pn−m, which yields, inconsistently, c2 ≡ −1 ≡ c1 mod p, or c2c3p
n−m =

pn−m and c22p
n−m = c1p

n−m. Finally, comparing L0 and L3 we obtain
c23p

n−m = c1p
n−m. It is seen that c22 ≡ c1, c32 ≡ c3, and c42 ≡ 1 mod pm.

This proves our claim with α = id.
In cases (d) and (e) we get our claim with different α’s only.

The conditions found in Theorem 6.1, which are, in fact, suitable spe-
cializations of Proposition 2.5(i), are not sufficient for D∗(Zpn ,A) with A
of the form (6.1) to be a partial linear space. In particular, in M =
D∗(Z52 , {1, 5, 4, 3, 2}) the lines Li defined above coincide, though M is not
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a partial linear space. However, in this case assumptions (2.1) are not valid!
Note that from Theorem 6.1 we obtain another necessary condition (cf. Corol-
lary 2.13).

Fact 6.2. If D∗(Zpn ,A) with A of the form (6.1) is a partial linear space,
then p ≡ 1 mod 4.

Proof. From (6.3) and (6.4) we get that there exists c with c2 ≡ −1

mod pm. Consequently, c2 ≡ −1 mod p and thus (−1)
p−1
2 =

(−1
p

)
= 1,

which proves the statement.

A couple of examples of partial linear spaces with rank 5 lines can be
obtained as follows. Let p ≡ 1 mod 4; consider c ∈ Zp with c2 ≡ −1 mod p
(cf. Fact 6.2). Clearly, (p− 1) ≡ −1 mod p and c+ (p− c) ≡ 0 mod p. The
following are partial linear spaces:

1. D∗(Z52 , {1, 5, 5− 1, c+ 5 · (5 − c), (5 − c) + 5 · c}): c = 3 (c1 = 4,
c2 = 13, c3 = 17);

2. D∗(Z53 , {1, 5, 5− 1, c+ 5 · (5 − c), (5 − c) + 5 · c}): c = 3 (c1 = 4,
c2 = 13, c3 = 17);

3. D∗(Z132 , {1, 13, 13− 1, c, (13 − c)}): c = 5 (c1 = 12, c2 = 5, c3 = 8);

4. D∗(Z172 , {1, 17, 17− 1, c+ 17 · (17 − c), (17 − c) + 17 · c}): c = 4
(c1 = 16, c2 = 225, c3 = 81);

5. D∗(Z292 , {1, 29, 29− 1, c, (29 − c)}): c = 12 (c1 = 28, c2 = 12, c3 =
17);

6. D∗(Z372 , {1, 37, 37− 1, c+ 37 · (37 − c), (37 − c) + 37 · c}): c = 6
(c1 = 36, c2 = 1153, c3 = 253).

The following are not partial linear spaces:

D∗(Z52 , {1, 5, 4, 3, 2}),D∗(Z53 , {1, 5, 4, 3, 2}),D∗(Z132 , {1, 13, 12, 109, 73}),

D∗(Z172 , {1, 17, 16, 4, 13}),D∗(Z372 , {1, 37, 36, 6, 31}).

An example, a schema of the structure M = D∗(Z52 ,A) with A =
{1, 5, 4, 13, 17} is presented in Figure 4. Solid lines on Figure 4 represent
the structure D(Z25, {1, 4}) (corresponding polygons). Solid lines extended
with thick dashed lines represent the structure D∗(Z25, {1, 5, 4}) – in this
case it is a partial linear space as well, cf. Theorem 3.3. Finally, solid
lines extended with thick and thin dashed lines represent M. It is worth
to note that solid lines extended with thick dashed lines represent the struc-
ture M∗ = D(Z∗

25, {1, 4, 13, 17}) ∼= D(C20, {0, 1, 7, 17}), which can be seen as
a 20-gon (inscribed into itself). A schema of M∗ is given in Figure 5.
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Figure 4. The structure D∗(Z25, {1, 5, 4, 13, 17}).

7. Remarks on geometrical representation of partial linear

spaces of the form D∗(Z∗
pn ,A)

Let M = D∗(Zpn ,A) be a partial linear space, where A has form (2.2).
We take cl+1 = bpm, where b ∈ Z∗

pn and then A∗ = {1, c1, . . . , cl}.
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Figure 5. The structure D(Z∗
25, {1, 4, 13, 17}).

To visualize the schema of M let us recall (cf. (2.1)) that the structure
M∗ = D(Z∗

pn ,A∗) is a partial linear space, thus given by a quasi difference
set A∗ (cf. [9]). Therefore, constructing M we can begin with drawing this
structure. Note that the conditions given in Proposition 2.5 do not assure
that the set A∗ generates Z∗

pn and thus M∗ may be not connected. We write,
for short, |[x]| for the line x · A∗ = {x, c1x, . . . , clx} of M∗.

Then on every line |[x]| of M∗ the point bxpm is added. Since bpmx′ ≡
bpmx′′ mod pn gives 1 ≡ x′−1

x′′ mod pn−m which, for given x′ has distinct
solutions x′′ = x′ + tpn−m with arbitrary t ≤ pm, some distinct lines of M∗

are extended with a common point. This procedure can be considered as a
kind of ”introducing a parallelism” into the M∗. Formally, we can define this
parallelism by the formula

(7.1) |[x]| ‖ |[y]| iff pn−m | (x− y).

It is seen that the directions of lines of M∗ with respect to the parallelism
defined by (7.1) correspond uniquely to ”added points” of M and thus they

correspond to the elements of Z (m)
pn . On the other hand, they can be identified

with elements of Z∗
pn−m under the map Z∗

pn−m 3 y 7−→ ypm. Note that the
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lines of M, which link directions of M∗ have form

{xbpm, c1xbp
m, . . . , clxbp

m, xbp2m} = pm · |[xb]|′ ∪ {xbp2m},
where |[xb]|′ is a line of D(Z∗

pn−m ,A∗). This justifies the following observation

Fact 7.1. The horizon of D(Z∗
pn ,A∗) (i.e. the set of directions of lines

of M∗ together with lines of M which join these points) is isomorphic to
D(Z∗

pn−m ,A∗). Shortly, M∗∞ ∼= D(Z∗
pn−m ,A∗).

This means, in particular, that A∗ yields a quasi difference set in Z∗
pn−m

so, (2.1) must hold in it.
After that, the procedure is iterated, some new lines are added on the

horizon of M∗∞, which link its directions, and again new horizon is defined.
The construction stops, when 0 appears as an element of the defined new
lines. In view of Corollary 2.6 and Lemma 2.7 this means that the horizon
reduces to a parallel pencil, in the next step closed with a single point 0.

The construction sketched above does not exhaust all the points of M,
though. Similarly as in the case investigated in Section 4 one sees that the
points of M which are obtained as elements of the above series of ”horizons”

form the set
⋃{Z(jm)

pn : j = 0, 1, β−1}, where β = dist(b, 0). However, we can
repeat a portion of the investigations of Section 4 and note that for every i

with 0 ≤ i < n −m a line K of M which crosses Z (i)
pn in at least two points

can be written in the form K = pi · |[x]| ∪ {bpm+ix} =: |[x]|′ for some x ∈ Z∗
pn .

As above, we note that K can be associated (uniquely) with x′ ∈ Z∗
pn−i (such

that x ≡ x′ mod pn−i) and thus we conclude with the following

Fact 7.2. The substructure of M obtained as the restriction of M to the

set Z(i)
pn is isomorphic under the map Z∗

pn−i 3 x 7−→ xpi to the structure

D(Z∗
pn−i ,A∗).

Its horizon with respect to the parallelism defined by the condition:

(7.2) |[x]|′ ‖ |[y]|′ iff pn−i−m | (x− y)

is isomorphic to D(Z∗
pn−i−m ,A∗).

This enables us to cover M with a family of series of structures of the

form M
j
i , where M

j
i
∼= D(Zpn−i−jm ,A∗) is the restriction of M to Z (i+jm)

pn ,

0 ≤ i < m. Moreover, M
j+1
i is the horizon of M

j
i ; we can write M

j+1
i = M

j
i

∞
.

One can note now that the problem to determine the automorphism group
of M reduces to the problem of determining the groups Gn−i of those auto-
morphisms of the structures D(Z∗

pn−i ,A∗) with 0 ≤ i < m, which preserve

the parallelism (7.2). Let τd be a translation over the group Z∗
pn−i ; thus τd is

defined by the formula τd(x) = dx for x, d ∈ Z∗
pn−i . In accordance with the

general theory, τd ∈ Aut(D(Z∗
pn−i ,A∗)). It is seen that τd maps a line |[x]|

onto the line |[dx]|, from which we deduce that τd ∈ Gn−i. As we learn from
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the results of Section 4, Gn−i may contain some other maps as well. The
solution of the problem to determine the whole group Gn−i depends, finally,
on the set A∗ and the geometry of the structure D(Z∗

pn−i ,A∗).
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