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Abstract. Several authors have recently attempted to show that the
intersection of three simply connected subcontinua of the plane is simply
connected provided it is non-empty and the intersection of each two of the
continua is path connected. In this note we give a very short complete
proof of this fact. We also confirm a related conjecture of Karimov and
Repovš.

1. Introduction

A homology (resp., singular) cell is a compact metric space whose Vietoris
(resp., singular) homology groups are trivial. Helly [6] proved the following
result which is now known as the Topological Helly Theorem:

Theorem 1.1. Let S = {S0, ..., Sm}, m ≥ n, be a finite family of ho-
mology cells in Rn such that the intersection of every subfamily H of S is
nonempty if the cardinality |H| ≤ n+ 1 and it is a homology cell if |H| ≤ n.
Then ∩i=m

i=0 Si is a homology cell.

Versions of Theorem 1.1 for singular homology have been proved by De-
brunner [5]. Alexandroff and Hopf [1, p. 295] also established a simple proof
of a combinatorial version of the Helly theorem.

A topological space is said to be simply connected if it is path connected
and has trivial fundamental group. It is known [4] that a compact subspace
of the plane is a singular cell if and only if it is simply connected.
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In Section 2 of the paper [6] Helly proved that if Si, i = 1, . . . , 4, are
singular cells in R2 such that all intersections Si1 ∩Si2 ∩Si3 are singular cells,
then ∩i=4

i=1Si is not empty. Hence to prove the Topological Helly Theorem for

singular cells in R2, it suffices to prove the following:

Proposition 1.2. Let S0, S1 and S2 be three simply connected compacta
in the plane such that the intersection of any two of them is path connected
and ∩i=2

i=0Si 6= ∅. Then ∩i=2
i=0Si is simply connected.

Bogatyi [2] has pointed out that no complete proof of this proposition
can be found in the literature. He proved the proposition in the special case
that Si are Peano continua. Karimov and Repovš [7], established that, with
the hypotheses of Proposition 1.2, ∩i=2

i=0Si is cell-like connected (i.e., every
two points can be connected by a cell-like continuum). We prove Proposition
1.2 by showing that ∩i=2

i=0Si is path connected. We also give an affirmative
answer to a conjecture of Karimov and Repovš [7] by proving the following
proposition:

Proposition 1.3. If X and Y are compact AR’s in the plane, then so is
each component of X ∩ Y .

2. Proof of Proposition 1.2

Since the intersection of any family of simply connected sets in the plane
has a trivial fundamental group with respect to each of its points, it suffices
to show that ∩i=2

i=0Si is path connected. Let 0, 1 ∈ ∩i=2
i=0Si and I ⊂ S0 ∩ S1,

J ⊂ S0 ∩ S2 and K ⊂ S1 ∩ S2 be arcs from 0 to 1. Consider the components
Jn, n = 1, 2, .., of J\

(
I ∪K

)
which are not in S1. If the family {J1, J2, ..} is

infinite, then lim
i→∞

diamJi = 0 because it is the family of components of an

open set in the arc J . Since 0 and 1 are end-points of J , it follows that no Ji

separates I ∪ J ∪K. Suppose Ji lies in a bounded component of R2\
(
I ∪K

)
.

Since the locally connected continuum I ∪K separates Ji from ∞ in R2, some
simple closed curve in I∪K ⊂ S1 does so as well [8, Chapter X, Section 61, II,
Theorem 5, p. 513]. Since S1 is simply connected, this would imply Ji ⊂ S1,
a contradiction. Thus, no Ji lies in a bounded component of R2\

(
I ∪K

)
.

We are going to construct for every n ≥ 1 an arc Jn ⊂ S0 ∩ S2 ∩
(
I ∪ J ∪

K)\
(
J1 ∪ .. ∪ Jn

)
from 0 to 1. Let L be a half line irreducible from J1 to ∞

in R2\(I ∪K) and ε = min{d(x, y) : x ∈ L, y ∈ I ∪K}. Then ε > 0 because
I ∪ K is compact and disjoint from the closed set L. Hence, L meets only
finitely many, say {J1 = Ji1 , .., Jim}, of the sets {J1, J2, ..}. We may suppose
L meets Jij in exactly one point for each j ∈ {1, ..,m}. We may also suppose

that Jij ∪ I ∪K separates Jij−1 from ∞ in R2 for j = 2, ..,m if m > 1. Give
J its natural linear order with initial point 0. If x, y ∈ J let xy denote the
arc in J irreducible from x to y. Now, let x0 and x1 be the end-points of Jim
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with x0 < x1 and let y0 = max I ∩ 0x0, y1 = min I ∩ x11. Denote by M the
arc in I irreducible from y0 to y1. Then y0y1 ∪M ⊂ I ∪ J is a simple closed
curve containing Jim . By the Jordan curve theorem, y0y1 ∪M bounds a disk
D with boundary y0y1 ∪M . Let L∗ be the unbounded component of L\Jim

and Dm ⊂ D be the bounded component of R2\(I ∪ J ∪K) whose boundary
contains Jim .

Then Dm ⊂ DI ∩DK , where DI (resp., DK) is the component of R2\(I ∪
J) (resp., R2\(J ∪K)) containing Dm. Note that, as in the first paragraph
of the proof, DI ⊂ S0 because I ∪ J ⊂ S0. Similarly, DK ⊂ S2. Thus,
Dm ⊂ S0 ∩ S2 and Dm ⊂ S0 ∩ S2 since S0 ∩ S2 is closed.

Moreover, Fr(Dm) ⊂ I ∪ J ∪K. It is well known [9, Theorem 2, p. 39]
that each continuum contained in the union of finitely many arcs is locally
connected. So Fr(Dm) is locally connected. As above, let C ⊂ Fr(Dm) be
the simple closed curve that separates Dm from ∞ in R2. Note that Jim ⊂ C

because L∗ ⊂ R2\
(
I∪J∪K

)
joins Jim ⊂ Dm to ∞. Let J1,m ⊂

(
J∪C

)
\Jim ⊂

S0 ∩ S2 be an arc from 0 to 1. If m = 1 let J1 = J1,m. If m > 1 repeat the
above arguments with J1,m in place of J and Jim−1 in place of Jim to obtain

an arc J1,m−1 in S0∩S2∩
(
(J1,m\Jim−1)∪ (I ∪K)

)
from 0 to 1. After m such

steps we obtain an arc J1 = J1,1 ⊂ (I ∪ J ∪K)∩S0 ∩S2\
(
Ji1 ∪ Ji2 ∪ ..∪ Jim

)

from 0 to 1.
Suppose we have already constructed an arc Jn ⊂ S0 ∩ S2 in I ∪ J ∪K

from 0 to 1 such that Jn∩
(
J1 ∪ ..∪Jn

)
= ∅. If Jn ∩Jn+1 = ∅, let Jn+1 = Jn.

If Jn ∩ Jn+1 6= ∅, we repeat the above arguments with Jn in place of J and
Jn+1 in place of J1 to obtain an arc Jn+1 ⊂ S0 ∩ S2 ∩

(
(Jn ∪ I ∪K)\Jn+1

)

from 0 to 1. By induction, we construct a sequence of arcs {Jn}∞n=1 from 0
to 1 with

Jn+1 ⊂ S0 ∩ S2 ∩
(
(I ∪ J ∪K)\

n+1⋃

i=1

Ji

)
.

Let J∗ = lim sup Jn. Then

J∗ ⊂
(
S0 ∩ S2) ∩

(
(I ∪ J ∪K)\

∞⋃

i=1

Ji

)
⊂ S1

is a continuum from 0 to 1. As above, J∗ is locally connected. So, there is an
arc in J∗ ⊂ S0 ∩ S1 ∩ S2 from 0 to 1.

3. Proof of Proposition 1.3

Let C be a component of X ∩ Y . If K is the topological hull of C, then
K ⊂ X and K ⊂ Y since neither X nor Y separates R2. So, K = C.
By unicoherence of R2 it follows that Fr(C), the boundary of C in R2, is
connected.
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By the well-known result of Borsuk [3] (that every locally connected plane
continuum not separating the plane is an AR), it remains to prove that C is
locally connected. Since C is a continuum in the plane, it suffices to prove
that Fr(C) is locally connected. To prove this it suffices to show that every
pair of points of Fr(C) is separated by a finite set (see [10, p. 99]).

SinceX is simply connected, locally connected subcontinuum in the plane,
by [10, Chapter IV], all true cyclic elements of X are topological disks Di such
that the cardinality of Di ∩ Dj is at most 1 for i 6= j and, if the sequence
{Di} is infinite, then lim diamDi = 0 . Hence, each Fr(Di) is a simple closed
curve and Fr(X) = X\⋃ int(Di) is a locally connected continuum with a
particularly simple structure. Let x and y be distinct points in Fr(C) ⊂
Fr(X) ∪ Fr(Y ). If x and y do not both lie in any one cyclic element of X ,
then an one point set separates x and y in X and, hence, in C. Thus, we may
suppose that there are cyclic elements D in X and E in Y with x, y ∈ D∩E.
Now x in int(D) implies there is a neighborhood W of x in Fr(X) ∪ Fr(Y )
with W ⊂ int(D). Then a finite set P separates Fr(Y )\W from x in Fr(Y )
since Fr(Y ) is rim-finite. Hence, P separates x from Fr(X) ∪ Fr(Y )\W . So
we may suppose x, y ∈ Fr(D) ∩ Fr(E) (see [8, 49.V, Theorem 3, p. 244]).

Let F be a two-point set in Fr(E) which separates x and y in Fr(E).
Then F separates x and y in Fr(Y ) [10, IV.3.1, p. 67]. So F ∪ (D\Fr(Y ))
separates x and y in D. Since D is hereditarily normal, a closed subset A of
F ∪ (D\Fr(Y )) separates x and y in D. Since D is unicoherent, a component
A′ of A separates x and y in D. We can construct an arc A′′ ⊂ D such
that A′′ separates x and y in D and A′′ ∩ Y ⊂ F . Indeed, let N be an open
neighbourhood of A′\F . So N is the union of a null collection, locally finite
except at points of F , of open balls Bi each centered at a point of A′\F
and having closure in R2\Fr(Y ). Then the closure of N and, hence, Fr(N)
separates x and y in D. Hence, a component G of Fr(N) separates x and y in
D. As above, G ⊂ Fr(N) ⊂ ∪Fr(Bi) ∪ F is locally connected at each point
of G\F . Since F is finite and a continuum cannot fail to be locally connected
only at points of a zero dimensional set, G is locally connected. Since x and
y are on the boundary of D, there is an arc A′′ in G which separates x and y
in D.

If we also take A′′ to be irreducible with respect to separating x and y
in D (see [8, V.49, Theorem 3, p. 244]), then A′′ ∩ Fr(D) will contain just
two points c and d. As above, A′′ separates x and y in X because D is a
cyclic element of X . So A′′ ∩

(
Fr(X) ∪ Fr(Y )

)
⊂ F ∪ {c, d} separates x and

y in Fr(C) ⊂
(
Fr(X) ∪ Fr(Y )

)
⊂ X . So, Fr(C) is rim-finite, hence, locally

connected.
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