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ON LINKING OF CANTOR SETS
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Abstract. We introduce a property L for a subset of a manifold
which enables us to pass the geometric linking property from the manifold

to this subset. We prove that cubes with handles M and N are linked
if and only if subsets X ⊂ Int M and Y ⊂ Int N having property L are
linked. We present a criterion which shows that many known Cantor sets
explicitly given by defining sequences have this property. As an application
of the property L we extend the theorem on rigid Cantor sets thus allowing
slightly more complicated terms in their defining sequences.

1. Introduction

Linking of compact sets is strongly related to various problems regard-
ing Cantor sets. Sher [7] used linking argument to prove that varying the
number of components in the defining sequence of Antoine necklace yields in-
equivalently embedded Cantor sets. The definition of simple linking type was
modelled on neighbouring tori in the defining sequence for Antoine necklace.
Essentially the same linking was used by Daverman and Edwards [4] proving
that there exists some class of submanifolds of codimension 2 in a given man-
ifold which can be approximated by Cantor sets. Shilepsky [8] proved that
there exists a rigid Cantor set in E3 using the result of Sher [7]. Wright [9]
later generalized this result to arbitrary En, n ≥ 3. In that paper the no-
tion of linking was defined by nontriviality of some homomorphism of certain
fundamental groups.

Let En be the n-dimensional Euclidean space and A, B ⊂ En disjoint
closed subsets. We say that A and B are (geometrically) unlinked if there
exists an (n − 1)-dimensional sphere S ⊂ En which separates A and B. We
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say that A and B are (geometrically) linked if such a sphere doesn’t exist.
One usually proves that two sets are geometrically unlinked by explicitly con-
structing a separating sphere.

Suppose now that we have manifolds M and N with subsets X ⊆M and
Y ⊆ N . If X and Y are the cores of respective manifolds it is obvious that
X and Y are geometrically linked if and only if M and N are geometrically
linked. (This is the common setting for consecutive terms of defining sequence
for Antoine necklace.)

We will introduce a property L which enables us to prove that subsets
X ⊆ M and Y ⊆ N having this property are linked if M and N are linked
(Theorem 2.4), thus extending linking lemma in [10, 2.1] or linking theorem
[9, 4.4] to more complicated terms. As a corollary we will extend the theorem
on rigid Cantor sets in E3 allowing slightly more complicated terms in their
defining sequences.

Theorem 2.2 allows us to effectively check whether some finite union of
cubes with handles in a given cube with handles has the property L. Although
the conditions of the theorem seem technical they can be easily checked for
lot of known Cantor sets which are given by defining sequences.

If one replaces the property L by geometric centrality the criterion similar
to Theorem 2.2 can be proved. However it is not known yet (Conjecture 3.2)
whether the same replacement can be done in the linking Theorem 2.4.

2. Property L
Let M be a compact manifold with boundary. We denote the interior of

the manifold M (in the manifold sense) by IntM and its boundary by FrM .
Let M ⊂ En be a compact n-manifold with boundary. We say that

a closed subset A ⊂ IntM has the property L in M , if for every n-disk
B ⊂ En \ A and every open neighbourhood U ⊂ M \ A of FrM there exists
an n-disk B′ ⊂ En such that B \ IntM = B′ \ IntM and B′ ∩M ⊂ U .

Assertion 2.1. Let M ⊂ En be a compact n-manifold with boundary and
S ⊂ IntM (any) core for M . Then S has property L in M .

Proof. Let B ⊂ En \S be an n-disk and U ⊂M \S an open neighbour-
hood of FrM in M . Since S is a core of M there exists a homeomorphism
h = (h1, h2) : M \ S → FrM × [0, 1) satisfying h(x) = (x, 0) for x ∈ FrM .
Hence there exists τ ∈ (0, 1) such that h−1(FrM × [0, τ ]) ⊂ U . The mapping
f : M \ S → h−1(FrM × [0, τ)) defined by

f(x) = h−1(h1(x), τ · h2(x) ),

is a homeomorphism which is the identity on FrM . Finally we define B ′ ∩M
to be f(B ∩M) since f(B ∩M) ⊂ U .
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Figure 1. The set A has a property L in M .

Theorem 2.2. Let M ⊂ E3 be a cube with handles and N ⊂ IntM
a manifold which is a finite union of cubes with handles. Suppose that there
exists a finite collection D of 2-disks in IntM with pairwise disjoint boundaries
satisfying the following conditions:

(i) disks in D intersect transversally, interiors of disks in D intersect FrN
transversally and for every disk D ∈ D there exists a component N ′ of
N such that FrD = D ∩N ′;

(ii) no three disks from D intersect;
(iii) for every two disks D,E ∈ D the set D ∩ E is connected (it may be

empty);

(iv) for every disk D ∈ D the set D \
(

N ∪⋃E∈D\{D}E
)

is connected and

simply connected;
(v) the set M \

(
N ∪⋃D∈DD

)
is connected; and

(vi) there exists a set A ⊂ N ∪⋃D∈DD with property L in M .

Then N has the property L in M .

Proof. Let us denote |D′| =
⋃

E∈D′ E for any subset D′ ⊂ D and DD =
{E ∈ D \ {D} : E ∩ D 6= ∅} for any D ∈ D. Let Fr D =

⋃

D∈D FrD,
N∗ = N ∪⋃E∈DE and N∗

D = N ∪⋃E∈D\{D}E.

We shall modify the part of the disk B which lies in M so that the modified
disk will not intersect A. Hence using the property L for A one can further
modify the disk B such that B ∩M lies arbitrary close to FrM .

Let B ⊂ E3 be a 3-disk disjoint with N . Using a small move in IntM \N
we can assume that FrB intersects |D| transversally. Fix an arbitrary 2-disk
D ∈ D. The set B ∩D is either empty or its every component is a disk with
(possibly zero) holes.
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From (i) it follows that every component of IntD ∩ N is a planar 2-
manifold: disk or disk with holes. From (iv) it follows that D\N is connected
and therefore every component of IntD ∩N is a disk.

For every E ∈ DD the set D∩E is an arc and one of its boundary points
lies in some disk in IntD ∩ N and the other boundary point lies in FrD.
(Both boundary points of the arc D ∩ E cannot simultaneously lie in FrD
since D \N∗

D is connected and similarly they cannot simultaneously lie in N
since in this case the set E \ N∗

D would not be connected.) By assumption
of the theorem no three disks in D intersect and hence arcs in |DD| ∩D are
pairwise disjoint.

Let J be an arbitrary circle in D ∩ FrB. The circle J bounds a 2-disk
(say DJ) in IntD. If DJ ∩ N 6= ∅ then there exists a 2-disk E ∈ DD such
that the arc D ∩E has one boundary point on N ∩DJ (otherwise D \N∗

D is
not simply connected) and the other boundary point on FrD. The circle J
bounds two 2-disks (say BJ and B′

J) on FrB and both of them are disjoint
with FrE. Hence the intersection number (in E3) of the circle FrE and the
2-sphere BJ ∪ DJ equals to 1 which is certainly impossible. Therefore no
2-disk in N ∩ IntD lies inside of any circle in D ∩ FrB.

Let E ∈ DD be an arbitrary disk. Then E ∩ D is an arc having both
boundary points outside DJ . If E ∩ DJ 6= ∅ then using Lemma 2.3 one can
find a 2-disk EJ ⊂ DJ which boundary consists of two arcs: one of them lies
in J , the other one lies in E ∩ D. Using a small isotopy having its support
in some small neighbourhood of EJ in M one can appropriately move B to
reduce the number of arcs in the intersection of E ∩D and DJ .

Hence after finitely many steps we end up with disjoint 1-spheres in FrB∩
D and 2-disks in E ∈ DD.

M

N

N∗

Figure 2.
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Now choose an outermost (with respect toD) circle in D∩FrB and denote
it by K. (The circle K is not necessarily unique.) The circle K bounds some
2-disk DK in D. Using a small twosided collar of D in M we enlarge DK to
DK × [−1, 1]. Choose arbitrary x ∈ IntDK . Since M \N∗ is connected we
can connect points (x, 1) ∈ IntDK × {1} and (x,−1) ∈ IntDK × {−1} with
some arc w ⊂M \N∗.

N

D

DK × [−1, 1]

W ≈ DK × [−1, 1]

DK

Figure 3. Modification of B near DJ .

Let W = w × B2 be a small tubular neighbourhood of w in M \ N∗.
Obviously W ≈ DK×[−1, 1] and using an appropriate modification of W near
Frw×B2 one can obtain W ∩B ⊂ DK×[−1, 1] and Frw×B2 = DK×{−1, 1}.

Hence we can divert that part of B which lies in DK × [−1, 1] to W . (The
choice of outermost component of D ∩ FrB was necessary here. It is possible
though that B ∩ (DK × [−1, 1]) has more than one component.) We repeat
the procedure for other circles in D∩FrB starting again with outermost ones.

We repeat the procedure for other 2-disks in D. We end up with 3-disk
B satisfying FrB ∩N∗ = ∅. Since A ⊂ N∗ has a property L we can modify
B accordingly.

We have used the following observation:

Lemma 2.3. Let D be a 2-disk and T a nonempty finite collection of
pairwise disjoint arcs in D properly embedded in D. The boundaries of arcs
in T divide FrD into collection L of circular arcs. Then there exists a disk
E ⊂ D bounded by an arc from T and an arc from L.
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Proof. We use induction on the number n of arcs in T . The case n = 1
is obvious. Now let there be n+ 1 arcs in T and let t be one of them. Using
the inductive hypothesis, there exists a 2-disk E ′ bounded by t′ ∈ T and l ∈ L
for some t′ and l. If t∩E′ = ∅ then let E = E′; otherwise Fr t splits l in three
arcs. In this case the disk E is bounded by one of them and t.

Theorem 2.4. Let M and N be cubes with handles in E3 and X ⊂
IntM and Y ⊂ IntN closed subsets having property L. Then X and Y are
geometrically linked if and only if M and N are geometrically linked.

Proof. It is obvious that a separating sphere for M and N also separates
X and Y . Now assume to the contrary that there exists a separating sphere
S ⊂ E3 for X and Y while M and N are geometrically linked. Let B ⊂ E3

be the 3-disk bounded by S. Due to the symmetry we may assume that
X ⊂ IntB and Y ∩ B = ∅. We may also assume that S intersects FrM and
FrN transversally.

If B ∩ N 6= ∅ we can use property L for Y in N to replace B with B ′

which intersects N near FrN . Then using a small move near FrN we push
B′ off N to obtain B′′. For simplicity we denote the 3-disk B′′ with B again.
Then X ⊂ IntB and B ∩N = ∅.

If S ∩ FrM 6= ∅ we embed E3 in S3 ≡ E3 ∪ {∞} naturally (one-point
compactification). Choose an arbitrary point b ∈ FrB. Then there exists an
arc J in S3 \N connecting b and ∞ which (except b) lies in S3 \B.

For some small regular neighbourhood N(J) of the arc J in S3 the man-
ifold N(J) ∪B is a 3-disk disjoint with N . We note that X ⊂ N(J) ∪ B.

The complement of N(J) ∪B in S3 is a 3-disk B′ disjoint with X . Since
∞ ∈ N(J) ∪ B we use the property L of X to push the 3-disk B′ off M . So
we have obtained a 3-disk B′′ whose boundary is a sphere S ′ separating X
and Y and disjoint with FrM ∪ FrN . Note that Y ⊂ IntB′ and X ∩B′ = ∅.
Let us simplify the notation again and denote B′′ simply by B.

Since M and N are geometrically linked we have B ⊂ IntM (i.e. M ⊂ B
is not possible). The manifold M is a cube with at least one handle because
M and N are linked. Therefore there exists a properly embedded 2-disk D in
M (i.e. FrD = D ∩ FrM) such that FrD 6' 0 in E3 \ IntM . We may assume
that D ∩B = ∅. A small regular neighbourhood N(D) of D in E3 is a 3-disk
which can be pushed off M using property L. This contradicts the fact that
FrD 6' 0 in E3 \ IntM .

A defining sequence for a Cantor setX ⊂ E3 is a sequence (Mi) of compact
3-manifolds Mi with boundary such that (a) each Mi consists of disjoint cubes
with handles, (b) Mi+1 ⊂ IntMi for each i, and (c) X =

⋂

i Mi. The set of all
defining sequences for the Cantor set X is denoted by D(X). It is known (see
[1]) that every Cantor set has a defining sequence, but obviously the defining
sequence is not unique.
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Definition 2.5. A defining sequence (Mi) ∈ D(X) for a Cantor set
X ⊂ E3 consisting of cubes with handles has the property L if for every i and
every component M of Mi the manifold M ∩Mi+1 has the property L in M .

Theorem 2.6. Let a defining sequence (Mi) ∈ D(X) for a Cantor set
X ⊂ E3 have property L. Then for every i and for every component M of
manifold Mi the Cantor set X ∩M has property L in M .

Proof. Let X ′ = X ∩ M . Let B be a 3-disk disjoint with X ′. First
we prove that there exists a 3-disk D such that D \ IntM = B \ IntM and
D ∩M ∩Mi+1 = ∅. Among all 3-disks D satisfying D \ IntM = B \ IntM
and D ∩X ′ = ∅ we choose such a 3-disk that the number j, j ≥ i, such that
D ∩M ∩Mj 6= ∅ and D ∩M ∩Mj+1 = ∅ is minimal. If j > i we use property
L to push D out of every component of M ∩ Mj+1 which contradicts the
minimality of j. Hence j = i and we use property L to move D∩M arbitrary
close to FrM .

3. Geometric centrality

Let H be a disk with (possibly zero) holes and M a manifold with
nonempty boundary. According to the definition in [4] the mapping f : H →
M , f(FrH) ⊂ FrM , is interior inessential, if there exists some mapping
g : H → FrM , where f |Fr H = g|Fr H . The mapping f : H → M , f(FrH) ⊂
M , is interior essential if it is not interior inessential.

Recall that A ⊆ M is geometrically central in a manifold M if for any
2-disk with holes H and any interior essential mapping f : H → M we have
f(H) ∩ A 6= ∅. In other words: if f(H) ∩ A = ∅ then f : H → M is interior
inessential and hence there exists a map g : H → FrM which coincides with
f on FrH .

It is interesting to note, that one can prove a theorem similar to Theorem
2.2 replacing property L with geometric centrality. Despite strong similarity
between these two theorems, the proofs are completely different.

Theorem 3.1. Let M ⊂ E3 be a cube with handles and N ⊂ IntM be
manifold which is finite union of cubes with handles. Let there exists a finite
collection D of 2-disks in IntM with pairwise disjoint boundaries satisfying
the following conditions:

(i) disks in D intersect transversally, interiors of disks in D intersect FrN
transversally and for every disk D ∈ D there exists a component N ′ of
N such that FrD = D ∩N ′;

(ii) no three disks from D intersect;
(iii) for every two disks D,E ∈ D the set D ∩ E is connected (it may be

empty);

(iv) for every disk D ∈ D the set D \
(

N ∪⋃E∈D\{D}E
)

is simply con-

nected;
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Figure 4. Arcs and loops in H .

(v) the set M \
(
N ∪⋃D∈DD

)
is connected; and

(vi) there exists a set A ⊂ N ∪⋃D∈DD being geometrically central in M .

Then N is geometrically central in M .

Proof. Introduce |D′|, DD and N∗ as in the proof of Theorem 2.2.
We will make a proof by contradiction. Assume to the contrary that

there exists some interior essential mapping f : H → M \ IntN such that
f(FrH) ⊂ FrM . As it is proven below this mapping can be modified on the
set IntH to obtain f(H) ∩N∗ = ∅. But this is impossible since there exists
some A ⊂ N∗ which is geometrically central in M .

Choose arbitrary 2-disk D ∈ D and put f transversal to D. Then the
set f−1(D) consists of finitely many simply connected curves in H . The
innermost of them (denote it by J0) bounds some disk with holes H0 such
that f−1(D) ∩H0 = J0. We will modify f near H0 such that the modified f
will not intersect D (on some neighbourhood of H0).

Since 2-disks in D can intersect each other, the set f−1(|D|) consists of
transversally intersecting simple closed curves in H . Hence f−1(|DD |) ∩ H0

consists of arcs and loops in H0. Both ends of all arcs lie in J0. Because of
(ii) the arcs in H0 are pairwise disjoint.

Let us orient J0 and all 2-disks in DD. For every x ∈ J0 ∩ f−1(|DD |)
there exists a unique 2-disk E ∈ DD such that x ∈ J0 ∩ f−1(E). The point x
will be endowed by E+ or E− sign whether f(J0) intersects E positively or
negatively. If there exist two consecutive points (say x1, x2 ∈ J0 ∩ f−1(E))
being endowed with different signs (say E+ in E−) one can modify f near J0

and decrease the number of arcs in f−1(|DD |) ∩H0.
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Figure 5. A modification of f .

More precisely: let U be some small neighbourhood in H for that 2-disk
in H0 which is bounded by an arc x̂1x2 of J0 from x1 to x2 and the respective
arc in f−1(E) ∩ H0. Choose points x′1, x

′
2 ∈ J0 \ x̂1x2 near x1 resp. x2 such

that f(x′1), f(x′2) ∈ U . Since the set D \ (N ∪ |DD|) is simply connected the
set f(x̂1x2) can first be moved by a homotopy to some arc1 between f(x1)
and f(x2) which lies in D ∩ E. Then one can push the (new) arc between
f(x′1) and f(x′2) off D ∩ E. Let us denote the join of these two homotopies
by F : J0 × I → D \ IntN . Using [4, Lemma 2] for X = U , a manifold
M \ IntN , the sets P = D \ IntN and Z = J0 ∩ U and appropriate small
neighbourhoods for J0 in U and for F (J0 × I) in M \ IntN one can find a

neighbourhood W ⊂ U for J0 and some mapping f̃ : H0 ∪ U → M \ IntN

which coincides with f on the complement of W ∩U such that f̃(x̂′1x
′
2)∩E = ∅

and f̃(W \ J0) ∩D = ∅. Finally replace f on the set W ∩ U by f̃ .
After finitely many steps one can get such f that no two consecutive points

in J0∩f−1(|DD |) have cancelling signs. If there are some arcs in f−1(|DD|)∩
H0 there exits an innermost one in H0 (say J ′ = f−1(E′)) which ends have
equal signs. The two points in FrJ ′ bound an arc J ′′ in J0 whose interior
does not intersect E′. But since there exists some small neighbourhood W ′

of J ′ ∪J ′′ in H0 such that f maps that component of W ′ \J ′ which intersects
J ′′ on one side of E′ the points Fr J ′ should have different signs.

Hence we can modify f such that f−1(|DD|)∩H0 consists of simple closed
curves in H0 only. The loop f(J0) does not intersect DD and so is the mapping
f |J0 homotopic to a constant mapping into D \ |DD|. Let the boundary of
2-disk D lie in ND. By assumption of the theorem, the set M \N ∗ is empty
hence f can be modified on some neighbourhood of J0 such that f(H) does

1Such arc exists since D ∩ E is connected.
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not intersect D. (Indeed: let [−1, 1] × J0
c≈ V ⊂ H be some small double

collar of J0 in H . Using [4, Lemma 2] again one can modify f on some set
V to get a mapping g such that g(J0) is a singleton and g(V \ J0) ∩ D = ∅.
Then for some small ε the mapping g can be modified on V ′ = c([−ε, ε]× J0)
such that g|V ′ is an arc which intersects IntD transversally and in one point.
Since the set M \N∗ is connected one can replace the arc g(V ′) by such an
arc which lies in M \N∗.)

Now we can repeat the procedure above for the remaining 2-disks in D to
obtain the mapping f such that f(H)∩N∗ = ∅. But since N∗ contains some
geometrically central set in M we have reached the contradiction. Therefore
there exists no interior essential mapping f : H →M \ IntN .

Although geometric centrality is very similar to the property L, it is not
known yet whether the following linking theorem similar to Theorem 2.4 is
valid.

Conjecture 3.2. Let M and N be cubes with handles in E3 and X ⊂
IntM and Y ⊂ IntN closed subsets being geometrically central in M resp.
N . Then X and Y are geometrically linked if and only if M and N are
geometrically linked.

4. Rigid Cantor sets

Definition 4.1. A defining sequence (Mi) ∈ D(X) for the Cantor set
X ⊂ E3 is brittle if for every component M of Mi and for every component
M ′ of Mi+1 ∩M the following holds: if some loop in FrM is contractible in
M then this loop is contractible in (M \Mi+1) ∪M ′ as well.

A Cantor set which has a brittle defining sequence has some nice proper-
ties. The first and the second item of the following theorem can be proved as
in [3, Lemma 5.6], the last item is a slight generalization of [10, Lemma 2.1].

Theorem 4.2. Let (Mi)
∞
i=1 be a brittle defining sequence for a Cantor set

X ⊂ E3, which consists of cubes with handles. Then:

(i) For every nonempty subset A ⊂ X every loop J ⊂ M1 is contractible
in (M1 \X) ∪ A.

(ii) For every dense countable subset A ⊂ X the set (E3 \X)∪A is 1-ULC.
(iii) For every closed proper subset A ⊂ X there exists a 3-disk B ⊂ IntM1

such that A ⊂ IntB.

Definition 4.3. Let A ⊂ En be an arbitrary (closed) set. We say that the
set A is rigid, if for every homeomorphism f : En → En it holds: if f(A) = A
then f |A = idA.

There are many examples of rigid sets. Martin [6] has constructed a rigid
2-sphere in E3, Böthe [2] has constructed a rigid simple closed curve in E3.
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Wright [10] has constructed rigid Cantor set in E3 using Antoine necklaces
and has later [9] generalized construction to En, n ≥ 3.

The key part of the construction in [10] is Lemma 2.1. If we substitute
this lemma by Theorem 2.4 we can take more general building blocks in the
construction thus constructing many more rigid Cantor sets.

Let (Mi) ∈ D(X) be a defining sequence for a Cantor set X . For every
component M of Mi one can define a graph ΓM

i as follows:

• The components of M ∩Mi+1 are the vertices of ΓM
i .

• The components M ′ and M ′′ of M ∩Mi+1 are joined by an edge in
ΓM

i if and only if M ′ and M ′′ are geometrically linked.

We say that ΓM
i is the linking pattern of X in M . Let

Γi =
⊔

M component of Mi

ΓM
i ,

Γ(X ; (Mi)) = (Γ0,Γ1,Γ2, . . .).

We say that Γ(X ; (Mi)) is the linking pattern of X with respect to the defining
sequence (Mi) or simply the linking pattern of X , denoted by Γ(X).

Lemma 4.4. Let Cantor sets X and Y be given by defining sequences
(Mi) ∈ D(X) and (Ni) ∈ D(Y ) such that:

(i) both defining sequences have property L (see Definition 2.5);
(ii) both defining sequences are brittle (see Definition 4.1);
(iii) for every component M of Mi the graph ΓM

i is a cycle and for every
component N of Ni the graph ΓN

i is a cycle.

If h(X) ⊂ Y for some homeomorphism h : E3 → E3 then there exists n ∈
N ∪ {0} and a component V of Nn such that h(X) = V ∩ Y and ΓM0

0 ≈ ΓV
n .

Proof. This is essentially [10, Lemma 3.1].

Theorem 4.5. Let Cantor set X be given by a defining sequence (Mi) ∈
D(X) such that:

(i) defining sequence has property L;
(ii) defining sequence is brittle;
(iii) for every component M of Mi the graph ΓM

i is a cycle and
(iv) for every two different components M and N of Mi the sequences

Γ(M ∩X) and Γ(N ∩X) are different.

Then X is a rigid Cantor set.

Proof. This is essentially [10, Theorem 3.2].

As it was implicitly proven in Lemma 4.4 the Cantor set which was used as
a building block in the construction [10] of a rigid Cantor set was unsplittable
(i.e. no two of its points can by separated by a 2-sphere in its complement).
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Hence by Theorem 4.5 we get a rigid Cantor set whose complement has a
nontrivial fundamental group.

However, using a different approach Garity, Repovš and Željko proved
[5] that there exists a rigid Cantor set in E3 whose complement has a trivial
fundamental group.
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