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LARGE TIME BEHAVIOR OF DIRICHLET HEAT KERNELS
ON UNBOUNDED DOMAINS ABOVE THE GRAPH OF A

BOUNDED LIPSCHITZ FUNCTION

Kittipat Wong

Chulalongkorn University, Thailand

Abstract. Let D ⊆ Rd, d ≥ 2 be the unbounded domain above the
graph of a bounded Lipschitz function. We study the asymptotic behavior
of the transition density pD(t, x, y) of killed Brownian motions in D and

show that limt→∞ t
d+2
2 pD(t, x, y) = C1u(x)u(y), where u is a minimal

harmonic function corresponding to the Martin point at infinity and C1 is
a positive constant.

1. Introduction

This article is concerned with the large time asymptotic behavior of the
Dirichlet heat kernel pD(t, x, y) on the unbounded domain D above the graph
of a bounded Lipschitz function f . Here and in the sequel, by a domain in
Rd, d ≥ 2, we mean an open connected subset of Rd. The Dirichlet heat
kernel is the transition density of the Brownian motion killed upon leaving
the domain D. This work was inspired by the results of Pierre Collet, Servet
Mart́ınez and Jaime San Mart́ın [2]. Those authors obtained the asymptotic
behavior of the Dirichlet heat kernel on an exterior domain, i.e., an unbounded
domain which is the complement of a compact nonpolar subset of Rd. More
specifically, they proved that for x, y in the plannar exterior domain D,

(1.1) lim
t↑∞

t(log t)2pD(t, x, y) =
2

π
u1(x)u1(y),

where u1(x) = π lim|y|→∞GD(x, y) and GD(x, y) =
∫∞

0 pD(t, x, y) dt. Those
authors also obtained the result in higher dimensions, namely, for d ≥ 3, and
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x, y ∈ D,

(1.2) lim
t↑∞

t
d
2 pD(t, x, y) = (2π)−

d
2 u2(x)u2(y),

where u2(x) = limt↑∞ Px (τD > t) and τD is the first exit time of the exterior
domain D. We adapt the techniques used by Collet, Mart́ınez and San Mart́ın
to obtain the asymptotic behavior of the Dirichlet heat kernel in the case of the
unbounded domain D above the graph of a bounded Lipschitz function. Our
main result on the asymptotic behavior of the Dirichlet heat kernel pD(t, x, y)
on the unbounded domain above the graph of a bounded Lipschitz function is
the following (see Theorem 2.5 for more details). Let D ⊆ Rd be the domain
above the graph of a bounded Lipschitz function f . Then, for any x, y ∈ D,
we have

lim
t↑∞

t
d+2
2 pD(t, x, y) = Hu(x)u(y),

for some positive constant H and positive harmonic function u vanishing on
the boundary ∂D of D.

2. Main results

In this section, we are going to establish our main results. We fix a
bounded real-valued Lipschitz function f : Rd−1 → R. Recall that a Lipschitz
function f on Rd−1 means that there exists a positive constant C such that

(2.1) |f(x̃1) − f(x̃2)| ≤ C|x̃1 − x̃2|,

for all x̃1, x̃2 ∈ Rd−1. We also fix a domain D ⊆ Rd as follows:

(2.2) D = {x = (x̃, xd) ∈ Rd−1 × R = Rd : xd > f (x̃)}.

The unbounded domain D above is called the domain above the graph of a
bounded Lipschitz function. Since f is bounded, there exist constants a and b
such that

a ≤ f (x̃) ≤ b,

for each x̃ ∈ Rd−1. Define

H =
{
h : h is nonnegative and harmonic in D and

lim
D3x→y

h(x) = 0, for all y ∈ ∂D
}
.

Notice that ∂D =
{
x = (x̃, xd) ∈ Rd : xd = f(x̃)

}
.

Theorem 2.1. There is only one point corresponding to infinity on the
Martin boundary of D and this Martin point is minimal. In particular, this
means that H defined above is one dimensional.
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Proof. Fix a point z0 = (z̃0, a− 2) ∈ Rd and consider the inversion with
respect to the sphere S1(z0) := {x ∈ Rd : |x − z0| = 1}. The image D∗ of D
under this inversion is a bounded Lipschitz domain with z0 being the image
of infinity. Notice that z0 is on the boundary of D∗. By Theorem 1.5 on
page 337 in [5], the Martin boundary, the minimal Martin boundary and the
Euclidean boundary of D∗ coincide. This means that each boundary point
z of D∗ corresponds to a minimal harmonic function vz. Define a function
uz(x) = |x∗−z0|d−2vz(x∗), for x ∈ D and x∗ = z0 + 1

|x−z0|2 (x−z0). Then, the

Laplacian of uz vanishes on D (see [1]) and therefore, H is one dimensional.
Moreover, there is only one point corresponding to infinity on the Martin
boundary of D and this Martin point is minimal.

Remark 2.2. From now on we will use u to denote a positive harmonic
function in D corresponding to the Martin point at infinity.

We will obtain some property of the function u after the following obser-
vation.

Let us recall the Green function GH for the half spaceH := {x = (x̃, xd) ∈
Rd : xd > 0}. For x, y ∈ H with x 6= y,

GH(x, y) = k(x, y) − k(x, y′),

where

k(x, y) =

{
1
π ln

(
1

|x−y|

)

if d = 2;

|x− y|2−d if d ≥ 3,

and y′ = (y1, y2, . . . , yd−1,−yd) (see page 113 in [6]). Then, for d = 2,

GH(x, y) =
1

π
ln

( |x− y′|
|x− y|

)

.

Notice that

|x− y′|2 = |x− y|2 + 4xdyd

= |x− y|2(1 + β),

where β = 4xdyd

|x−y|2 > 0. Therefore,

GH(x, y) =
1

π
ln

( |x− y|√1 + β

|x− y|

)

=
1

2π
ln

(

1 +
4xdyd

|x− y|2
)

.

(2.3)

The above equation will be used in the proof of the next theorem. The
notation f1 ≈ f2 means that there exists a positive constant C such that
1
C f2 ≤ f1 ≤ Cf2.
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Theorem 2.3. For sufficiently large xd, we have

u (x̃, xd) ≈ xd.

Proof. Let x0 =
(
0̃, b+ 100

)
∈ D and yn =

(
0̃, b+ n

)
∈ D. Then,

Theorem 1.5 on page 337 in [5] implies that for any x ∈ D,

lim
n→∞

GD(x, yn)

GD(x0, yn)
= u(x).

Define

Da = {x = (x̃, xd) : xd > a}, Db = {x = (x̃, xd) : xd > b}.
Then, for any x ∈ Db, we have

GDb
(x, yn) ≤ GD(x, yn) ≤ GDa(x, yn).

Thus, for any x ∈ Db,

(2.4) lim inf
n→∞

GDb
(x, yn)

GDa(x0, yn)
≤ u(x) ≤ lim sup

n→∞

GDa(x, yn)

GDb
(x0, yn)

.

From the explicit formulae for GDa and GDb
, it can be shown that for

d ≥ 3,

GDa(x, y) ≈ |x− y|2−d min

{

1,
(xd − a)(yd − a)

|x− y|2
}

,

GDb
(x, y) ≈ |x− y|2−d min

{

1,
(xd − b)(yd − b)

|x− y|2
}

.

Thus, for any x ∈ Db,

u(x) ≤ C lim sup
n→∞

(xd−a)(y
(n)
d

−a)

|x−yn|2 ∧ 1

(x
(0)
d −b)(y

(n)
d −b)

|x0−yn|2 ∧ 1
= C

xd − a

100
,

where x
(0)
d and y

(n)
d are the d−th component of x0 and yn, respectively. Also,

u(x) ≥ C lim inf
n→∞

(xd−b)(y
(n)
d −b)

|x−yn|2 ∧ 1

(x
(0)
d

−a)(y
(n)
d

−a)

|x0−yn|2 ∧ 1

= C
xd − b

x
(0)
d − a

= C
xd − b

b+ 100 − a
.

For d = 2, it follows from (2.3) that the Green functions GDa and GDb
for

Da and Db respectively are given by

GDa(x, y) =
1

2π
ln

(

1 +
4(xd − a)(yd − a)

|x− y|2
)

and

GDb
(x, y) =

1

2π
ln

(

1 +
4(xd − b)(yd − b)

|x− y|2
)

.



LARGE TIME BEHAVIOR OF DIRICHLET HEAT KERNELS 181

Recall the fact that ln(1 + x) ≈ x as x→ 0. By (2.4),

u(x) ≤ lim sup
n→∞

ln

(

1 +
4(xd−a)(y

(n)
d −a)

|x−yn|2

)

ln

(

1 +
4(x

(0)
d −b)(y

(n)
d −b)

|x0−yn|2

)

= lim sup
n→∞

ln
(

1 + 4(xd−a)(b+n−a)
|x−yn|2

)

ln
(

1 + 4(100)(b+n−b)
|x0−yn|2

) ≤ Cxd,

for some positive constant C, since both 4(xd−a)(b+n−a)
|x−yn|2 and 4(100)(b+n−b)

|x0−yn|2
converge to 0 as n→ ∞.

Similarly,

u(x) ≥ lim inf
n→∞

ln

(

1 +
4(xd−b)(y

(n)
d −b)

|x−yn|2

)

ln

(

1 +
4(x

(0)
d −a)(y

(0)
d −a)

|x0−yn|2

)

= lim inf
n→∞

ln
(

1 + 4(xd−b)(n)
|x−yn|2

)

ln
(

1 + 4(b+100−a)(b+n−a)
|x0−yn|2

) = Cxd,

for some positive constant C.

Theorem 2.4. The function u defined above is invariant, i.e.,

u(x) =

∫

D

pD(t, x, y)u(y) dy

for all t > 0 and x ∈ D.

Proof. To show that u is invariant, it suffices to show (see pages 728
and 669 in [3]) that for some x ∈ D,

lim
t↑∞

∫

D

pD(t, x, y)u(y) dy > 0.

In other words, the condition above means that the function u is not purely
excessive. By Theorem 2.3, take M > b so large that

u(y) ≈ yd for yd > M
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and put x =
(
0̃, 1 +M

)
∈ D. Then, we obtain

∫

D

pD(t, x, y)u(y) dy ≥
∫

Db

pD(t, x, y)u(y) dy

≥
∫

Db

pDb(t, x, y)u(y) dy

≥ C

∫

{y : yd>M}
pDM (t, x, y)yd dy.

By the explicit formula of

pDM (t, x, y) = C

(
xd −M√

t
∧ 1

)(
yd −M√

t
∧ 1

)

t−
d
2 exp

(

−|x− y|2
2t

)

and for t so large that 1 − 1√
t
> 1

2 and 1√
t
∧ 1 = 1√

t
, we have

∫

{y : yd>M}
pDM (t, x, y)yd dy

≥ C

∫

{y : yd>M}

(
1√
t
∧ 1

)(
yd −M√

t
∧ 1

)

t−
d
2 exp

(

−|x− y|2
2t

)

(yd −M) dy

= C
1√
t

∫

{y : yd>M}

(
yd −M√

t
∧ 1

)

(yd −M)t−
d
2 exp

(

−|x− y|2
2t

)

dy

= C
1√
t

∫ ∞

M

(
yd −M√

t
∧ 1

)

(yd −M)t−
1
2 exp

(

−|yd −M − 1|2
2t

)

dyd

≥ C
1

t

∫ M+
√

t

M

(yd −M)2t−
1
2 exp

(

−|yd −M − 1|2
2t

)

dyd

≥ C
1

t

∫ M+
√

t

M

(yd −M − 1)
2
t−

1
2 exp

(

−|yd −M − 1|2
2t

)

dyd

= C
1

t

∫ √
t−1

−1

v2t−
1
2 exp

(

−v
2

2t

)

dv

= C

∫ 1− 1√
t

− 1√
t

u2 exp

(

−u
2

2

)

du

> C

∫ 1
2

0

u2 exp

(

−u
2

2

)

du > 0.

Let d(x) be the Euclidean distance from x to the boundary ∂D of D and
recall that the function u is the Martin kernel corresponding to the point at
infinity and x0 =

(
0̃, b+ 100

)
∈ D. Now, we are ready to establish the main

result.
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Theorem 2.5. Let D ⊆ Rd, d ≥ 2, be the domain above the graph of f .
For any x, y ∈ D, we have

lim
t↑∞

t
d+2
2 pD(t, x, y) = Cu(x)u(y),

where u is the function introduced in Remark 2.2 and C is a positive constant.
The convergence is uniform on compact subsets of D ×D.

Proof. Let x, y ∈ D and fix x0 =
(
0̃, b+ 100

)
∈ D∩Db = Db. It is easy

to see from the explicit formula of the Dirichlet heat kernel on the half space
Da that pDa(t, x0, x0) ≥ pDa(t, x, y). Therefore,

(2.5)
pD(t, x, y)

pDa(t, x0, x0)
≤ pD(t, x, y)

pDa(t, x, y)
≤ 1.

Let K be a compact subset of D. Then, there exists k ∈ N such that K ⊆ Dk,
where

Dk =

{

x ∈ D : d(x) >
1

k
, |x̃| ≤ k and xd ≤ b+ 100 + k

}

.

Therefore, the parabolic Harnack inequality (see Theorem 1 in [4]) implies
the existence of a positive constant C such that for x, y ∈ K and t > t0, for
some positive t0,

pD(t, x, y) ≥ CpD(t− ε, x0, y)

≥ CpD(t− ε, x0, x0)

≥ CpDb(t− ε, x0, x0),

for some ε > 0. Notice that we can assume that t0 > ε.
So, we have as t ↑ ∞,

pD(t, x, y)

pDa(t, x0, x0)
≥ C

pDb(t− ε, x0, x0)

pDa(t, x0, x0)

−→ C
(x

(0)
d − b)2

(x
(0)
d − a)2

> 0,

where x
(0)
d is the d-th component of x0. Thus, the family of functions

{
pD(t,x,y)

pDa (t,x0,x0) : t > t0

}

is bounded on compact subsets of D × D. Next, we

claim that

sup
t≥t0,|s|≤2

pDa(t, x0, x0)

pDa(t+ s, x0, x0)
<∞.
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To see this, for sufficiently large t > t0 and |s| ≤ 2,

pDa(t, x0, x0)

pDa(t+ s, x0, x0)
=

2
(2π)d/2 (b+ 100 − a)2t−

d+2
2

2
(2π)d/2 (b+ 100 − a)2(t+ s)−

d+2
2

=

(
t+ s

t

) d+2
2

=
(

1 +
s

t

) d+2
2

<∞.

Therefore, the family of functions
{

pD(t,x,y)
pDa (t,x0,x0) : t > t0

}

is equicontinuous on

compact subsets of D×D by Lemma 2.1 in [2]. Therefore, Arzela-Ascoli the-
orem implies that any sequence converging to infinity contains a subsequence
tn ↑ ∞ such that

lim
tn↑∞

pD(tn, x, y)

pDa(tn, x0, x0)
= V (x, y)

for some continuous function V (·, y), where the convergence is uniform on

compact subsets of D. Note that V (x, y) ≥ C 104

(b+100−a)2 > 0 and therefore

V (x, y) is nontrivial.
From the semigroup property, we get that for any s > 0,

pD(tn + s, x, y)

pDa(tn, x0, x0)
=

∫

D

pD(tn, x, ξ)

pDa(tn, x0, x0)
· pD(s, ξ, y) dξ.

Recall from (2.5) that pD(t,x,y)
pDa (t,x0,x0)

≤ 1 for all t > 0; x, y ∈ D and x0 ∈ Db. Us-

ing this inequality, the Gaussian bound for pD and the dominated convergence
theorem, we obtain

V (x, y) =

∫

D

V (x, ξ)pD(s, ξ, y) dξ.

Therefore, V (·, y) is a nontrivial positive harmonic function vanishing at the
boundary ∂D of D. Since H is one dimensional by Theorem 2.1, V (·, y) =
a(y)u(·) for some function a = a(y). By the symmetry of the problem, we
have

V (x, y) = C1u(x)u(y)

for some positive constant C1, which may depend on the subsequence. So,

lim
tn↑∞

pD(tn, x, y)

pDa(tn, x0, x0)
= C1u(x)u(y).

On the other hand, by the explicit formula of pDa , we obtain

lim
tn↑∞

pD(tn, x, y)

pDa(tn, x0, x0)
= lim

tn↑∞

t
d+2
2

n pD(tn, x, y)
2

(2π)d/2 (b+ 100 − a)2
.
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So,

lim
tn↑∞

t
d+2
2

n pD(tn, x, y)
2

(2π)d/2 (b+ 100− a)2
= C1u(x)u(y).

Hence,

lim
tn↑∞

t
d+2
2

n pD(tn, x, y) = Cu(x)u(y),

where C = 2C1

(2π)d/2 (b+ 100 − a)2. Notice that

t
d+2
2

n pDb(tn, y, y) ≤ t
d+2
2

n pD(tn, y, y) ≤ t
d+2
2

n pDa(tn, y, y).

Taking tn ↑ ∞ and yd being sufficiently large give us

2

(2π)d/2
(yd − b)2 ≤ C (u(y))

2 ≤ 2

(2π)d/2
(yd − a)2.

Since u(y) behaves asymptotically as yd by Theorem 2.3, we see that the limit

of t
d+2
2

n pD(tn, y, y) as t ↑ ∞ does not depend on the subsequence tn, and we
conclude that

lim
t↑∞

t
d+2
2 pD(t, x, y) = Cu(x)u(y).

The convergence is uniform on compact subsets of D ×D.
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