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INTRODUCTION

In industry, grain refinement is a common way of
achieving a proper, uniform, fine grain structure in
wrought aluminium alloys, since metals and alloys usu-
ally solidify with a coarse, columnar grain structure un-
der normal casting conditions.

Many theories exist to explain the mechanism of grain
refinement �1, 2, 3�. Besides nucleant particles, like TiB2

and TiC, found in commercial grain refiners, solutes also
play an important role in grain refinement �4�. The extent
of the grain-refinement effect of an individual solute can
be expressed by the growth-restricting factor (GRF):

GRF=mCo(k-1) (1)
where m is the slope of the liquidus, Co is the concen-

tration of the solute in the melt, and k is the equilibrium
partitioning coefficient �1�. In the presence of a number
of elements in the alloy the GRF is taken as the summa-
tion of the individual elements, which means the inter-
actions between solutes are neglected.

It is known that the GRF is inversely proportional to
the growth rate of the grains �5, 6�. When the GRF is
large, the rate of growth (and hence the latent-heat evolu-
tion) is slow, allowing large numbers of substrates to be-

come active. The reverse is true when the GRF is small
�1, 2�. Easton and St John �7� in their model confirmed
that the GRF represents the rate of development of the
constitutional zone with respect to the fraction of solid at
a zero fraction of solid. In other words, it is a measure of
how rapidly the constitutionally under-cooled zone is
formed at the earliest stages of growth.

The influence of alloying elements in aluminium on
the grain size has also been experimentally studied �5, 6,
8-14�. The data shows that the grain size decreases sig-
nificantly with an increasing GRF. It is important to
point out that the majority of the previously mentioned
grain-refining tests were made at cooling rates ranging
from 0,5 to 5 °C/s. The results of Backeroud and
Johnsson �12� reveal that increasing the GRF shows a
reduced effect of grain refinement at higher cooling
rates. The aim of this work is to present the results of the
grain refinement of samples with different GRFs made
at faster cooling rates (15 °C/s) and compare them with
the results from slower cooling rates.

EXPERIMENTAL

Commercial purity aluminium (99,8 wt.% Al), an
Al-Fe alloy and an AlTi5B1commercial grain refiner (in
the form of 9,5-mm-diameter wire) were used in this
study. The chemical compositions of the aluminium, the
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Al–Fe alloy and the AlTi5B1 grain refiner are presented
in Tables 1 and 2.

Three kilograms of aluminium and the Al–Fe alloy
were melted in a medium-frequency induction furnace
with a graphite crucible. Grain refiners were added at a
temperature of 705±5 °C. The melts were stirred with a
graphite stick and 2 min after the addition of the grain
refiners they were cast into a bronze mould (cooling rate
�15 °C/s), as presented in Figure 1. The castings were
cut 13 mm above the base for the preparation of samples
for metallographic examination.

Samples for microstructure analysis were ground,
polished and anodized for 2 minutes at 23 V in a 2,5 %
water solution of HBF4 for polarized-light microscopy.
The average grain areas were measured on polar-
ized-light microscopy images using commercial software
for the image analysis. The average grain areas were con-
verted to the mean, linear-intercept lengths in accordance
with ASTM E112-96. The term “grain size” in this paper
corresponds to the mean, linear-intercept length.

RESULTS AND DISCUSSION

The results of the grain refinement of the aluminium
and the Al–Fe alloy with the AlTi5B1 grain refiner are
presented in Table 3 and Figure 2. The titanium and bo-

ron contents in the samples presented in Table 3 are
based on the actual chemical analysis of each sample.
The content of “free” titanium presented in Table 3 was
calculated on the basis of the titanium and boron con-
tents in the sample and the assumption that all the boron
forms TiB2. The GRF was calculated according to equa-
tion (1). Besides the “free” titanium, the silicon, iron and
vanadium contents were considered in the case of the
aluminium, and the silicon, iron, copper, manganese and
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Table 1. Chemical compositions of aluminium and Al-Fe alloy in wt.%

Si Fe Cu Mn Cr V Ti B Zr Al

Aluminium 0,031 0,081 - - - 0,001 0,0015 <0,0005 - rest

Al-Fe alloy 0,065 1,36 0,098 0,263 <0,001 0,003 0,008 <0,0005 <0,002 rest

Figure 1. Shape and dimensions of the bronze mould

Table 2. Chemical composition of the grain refiners
used in the aluminium and the Al-Fe alloy in
wt.%

Grain refiner Ti B

AlTi5B1 in aluminium 5,1 1,04

AlTi5B1 in Al-Fe alloy 5,1 1,01

Table 3. Titanium and boron contents, grain size, “free” titanium content and GRF for the aluminium and the
Al-Fe alloy with different additions of the AlTi5B1 grain refiner

Addition of gra-
in refiner / g/kg

Ti / wt.% B / wt.% Grain size / �m "free" Ti / wt.% GRF / K

Aluminium

A1 0,88 0,0058 0,0008 149 0,0040 1,36

A2 1,71 0,0090 0,0012 133 0,0063 1,89

A3 2,55 0,0130 0,0019 123 0,0088 2,44

A4 4,28 0,0230 0,0035 98 0,0152 3,90

Al-Fe alloy

F1 0,33 0,0103 0,0009 142 0,0083 6,65

F2 0,53 0,0110 0,0008 135 0,0092 6,86

F4 0,99 0,0127 0,0011 119 0,0103 7,09

F5 1,32 0,0140 0,0016 114 0,0105 7,14

F6 3,03 0,0230 0,0027 94 0,0170 8,62



vanadium contents in the case of the Al-Fe alloy. The
slopes of the liquidus m and the equilibrium partitioning
coefficients k used in the calculation of the GRF were
obtained from the work of Easton and St John �7�.

With increasing boron content, as a consequence of
the addition of the AlTi5B1 grain refiner, the grain size
decreased in both the aluminium and the Al-Fe alloy
(Figure 2). In the presented range of boron content the
grain size is smaller in the case of the Al-Fe alloy. The
difference in the grain size between the aluminium and
the Al-Fe alloy for the same boron content is approxi-
mately 15 �m (Figure 2). The boron contents in samples
A2 and F4 were 0,0012 wt.% and 0,0011 wt.%, and are
comparable (Table 3). The GRFs for the samples A2 and
F4 were 1,89 and 7,09, and the grain sizes for these two
samples were 133 �m and 119 �m. The increase in the
GRF between the aluminium and the Al-Fe alloy, which

is 5,1 in the case of the samples A2 and F4, corresponds
to a 14-�m-smaller grain size.

A comparison of the effect of the solutes on the grain
sizes at different cooling rates is presented in Table 4. A
comparison of the influence of the same difference in
GRF at similar boron contents and different cooling
rates on the grain size shows that the difference in the
grain size decreases with the increasing cooling rate. A
significant decrease in the difference in grain size with
increasing cooling rate was observed at 15 °C/s in com-
parison to the slower cooling rates.

The effect of the cooling rate on the efficiency of the
grain refinement by the solutes also plays a role in the
comparison of the different grain refiners, like AlTi5B1
and AlTi3C0,15 or AlTi5C0,2. The grain refiners
AlTi3C0,15 and AlTi5C0,2 contain a larger content of
“free” titanium in comparison to AlTi5B1 for the same
overall content of titanium. Assuming that all the carbon
in the AlTi3C0,15 grain refiner forms TiC and all the
boron in the AlTi5B1 grain refiner forms TiB2, then 80
% of the titanium is “free” (unbounded in TiC) in the
AlTi3C0,15 and only 56 % of the titanium is “free” (un-
bounded in TiB2) in the AlTi5B1 grain refiner.

A comparison of the efficiency of the grain refiners
for the same level of titanium addition shows that the
AlTi3C0,15 or AlTi5C0,2 grain refiners are more effi-
cient at slow cooling rates and larger additions �16, 17�,
while at fast cooling rates the AlTi5B1 is much more ef-
ficient �18-20�. These results were also confirmed by the
results of the performance of the AlTi5B0,2 and
AlTi5C0,2 grain refiners in twin-roll strip casting �21,
22�. The results of the performance of the grain refiners
at different cooling rates can be explained by the effect
of the solutes on the grain refinement at different cool-
ing rates. The grain refiners AlTi3C0,15 or AlTi5C0,2
contain larger contents of “free” titanium in comparison
to the AlTi5B1, and consequently this solute titanium
acts as a more efficient grain refiner at slower cooling
rates than at faster cooling rates, as shown in Table 4.

CONCLUSIONS

Aluminium and an Al-Fe alloy were grain refined
with different additions of AlTi5B1 grain refiner at
cooling rate of 15 °C/s. We found that the grain size de-
creased with increasing boron content in both the alu-
minium and the Al-Fe alloy. We also found that the
grain size in the investigated range is, for the same boron
content, smaller in the case of the Al-Fe alloy. A differ-
ence of approximately 15 �m was found between the
grain sizes for the same boron content in the aluminium
and the Al-Fe alloy.
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Figure 2. Dependence of the grain size on the boron con-
centration for the aluminium and the Al-Fe alloy
with the addition of the AlTi5B1 grain refiner
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