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A REMARK ON THE DIOPHANTINE EQUATION
(2 =1)/(z—1)=(y" - 1)/(y—1)

Bo HE

Sichuan Normal University, China

ABSTRACT. In this remark, we use some properties of simple continued
fractions of quadratic irrational numbers to prove that the equation
3 n
z@ —1 —1
=Y T ayneNz>1y>1,n>32¢n
r—1 y—1

has only the solutions (z,y,n) = (5,2,5) and (90, 2, 13).

For any positive integer N with N > 2, let s(IN) denote the number of
solutions (z, m) of the equation
™ =1
(1) Nzil,x,meN,xZZ,m>2.
z—
Ratat [17] in 1916 and Goormaghtigh [10] in 1917 found that s(31) = 2 and
5(8191) = 2, respectively. We consider the equation
m _ 1 n_ 1
(2) x . _ 7 1,9U>1,y>1,m>2,n>2,9c;«éy7 for z,y € N.
x — y—

It has been conjectured that the equation (2) has only a finite number of solu-

tions, even that has only two solutions (z,y,m,n) = (5,2, 3,5), (90,2, 3,13).

This is rather a difficult question. Many authors have proved that if two

of the variables x,y, m,n are fixed then the equation (2) has a finite number

of solutions. See for examples [1, 3, 4, 5, 12, 13, 19, 20, 21, 16, 22, 23, 24].

Remark that two known solutions of (2) are both satisfying m = 3. If m = 3,
the equation (2) has the form
2—-1 yr—-1

(3) x_lfﬁ,z,y,nGN,x>y>l,n>3.
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We know that the equation (3) has two solutions (z,y,n) = (5,2,5) and
(90,2,13), and any other possible solution is called an exceptional solution
[13]. If we prove that (3) has no exceptional solutions, then the conjecture is
true under the condition m = 3. Le [12] proved that (3) has no exceptional
solution with w(y) > 1, where w(a) denote the number of distinct prime
divisors of a (the reference [12] contains an error, one can refer to [2] for
a correct version). Nesterenko and Shorey [16] proved that any exceptional
solution of (3) with 2 {n must be n > 25. Le [14] has given the relative upper
bound, namely, z < 2("*=4n+6)/2 anq y < 2(1=3)/2,

In [13], Le proved that, for any exceptional solution of (3), we must have
ged(z,y) > 1 and y 1 . In 2005, Yuan [26] used this result and properties of
Pellian equations and proved the following result.

THEOREM 1. The equation (3) has only the solutions (z,y,n) = (5,2,5)
and (90,2, 13) with n is odd.

In this paper, we prove Theorem 1 using another method. We will use
the simple continued fraction expansion to express the solutions of the Pellian
equation obtained from (3), and we get a contradiction to the result in [13]
by congruence relations.

Now, let us recall some properties of continued fractions. The simple
continued fraction expansion of a quadratic irrational o = “er‘/g is periodic.
This expansion can be obtained using the following algorithm [11]. Let sg =
a, to = b and

o ]

If (s¢,te) = (84,tq) for ¢ < d, then

d— 5i+1
Skl = aplp — Sk, thyl = — k>0.

Sk-i-\/a

tx k

a=1[ag,...,0c—1,0c, -, 0g—1)-

Let p,,/qn denote the n'* convergent of a. The following result of Worley
[25] and Dujella [6] extends classical results of Legendre and Fatou [9] concern-
ing Diophantine approximations of the form ‘oz — %‘ < ﬁ and |a — %| < b%.

LEMMA 2 (Worley [25], Dujella [6]). Let « be a real number and a and b
coprime monzero integers, satisfying the inequality
‘ a o
where o is a positive real number. Then (a,b) = (rpr+1 £ upk, rqr+1 + uqr) ,
for some k > —1 and nonnegative integers r and u such that ru < 20.

In fact, by Fatou [9] we have
+
5) a_ pk Pk EDk
b @ @1 Ean
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for 0 = 1. And explicit versions of above result for ¢ = 2, were given by

Worley [25, Corollary, p. 206]: |a — %| < b%, implies

(6) &= Pr Phil £ Pk 2pkr £ pr 3Peia P Prpr £ 2Pk Prir = 3Pk
bk ey1 £k 20k Tq 3qk+1 a8 ey 205 Gry1 — 3k

For the explicit results of the bigger o, please refer [7].

The next useful result is due to Dujella and Jadrijevi¢ [8]. It helps us to
simplify our proof.

LEMMA 3. Let ab be a positive integer which is not a perfect square, and
let Z—: denotes the k" convergent of continued fraction expansion of \/%. Let

the sequences (si) and (t) be defined by (4) for the quadratic irrational @.
Then

a(rqre1 + uge)® — b(rprgr + upr)? = (=1)" (WP tigr + 2ruspro — rtpe).
The following lemma is due to Le [13].

LEMMA 4. If (z,y,n) is a exceptional solution of equation (3), then
ged(z,y) > 1 and y 1 .

PROOF OF THEOREM 1. Let (z,y,n) be a solution of (3) with n odd.
Let us rewrite (3) into

(7) (y—1)2z+1)? —4y(y" /%2 = 3y —1, n>3.

Let ged(2x + 1,y) = d. Then d is a divisor of —3y — 1. This implies d = 1,
since ged(—3y — 1,y) = 1. Now, assume that y > 2. Let us put X =2z + 1
and Y = y(»~1/2 with ged(X,Y) = 1. Then we have

‘\/ZX‘ 4y 4y

3y + 1 3y +1 x-2
dyx? 4y Vily—1) '
It follows that

® \F

Wherea—lify>4anda—21fy—2or3

On the other hand, let o = /41— 4y Y= o 4y , one can see that

a=1[02y—1 4]
(SOatO) = (074y) ) (Slatl) = (0 Yy— 1)
(s2,t2) = (2y — 2,4), (s3,t3) = (2y — 2,y — 1), (sa,ta) = (2y — 2,4).

Since the period of continued fraction expansion of « is equal to 2, according
to Lemma 2, we only need to consider (X,Y) = (rqx+1 £ uqr, rpe+1 = upk)

X2’
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for k =0,1,2. We use Lemma 3 to check all possibilities (k,r, £u) such that
the equation

9) (y = DX? —dyy? =~

satisfies the inequality (8). Thus we have v € {—4,y — 1,—3y — 1,5y — 9}
fory>4andye{—4,y—1,-3y—1,—4y,5y—9,—7y — 9,9y — 25, —11y —
25,12y — 16, 13y — 49} for 2 < y < 3. Moreover, the result v = —3y — 1 comes
from

(2t,1, 1), (2t — 1,1,1), if y > 4,
(k,r,+u) = .
(2t,1, 1), (2t — 1,1,1), (2t,1,-3), (2t — 1,3,1), if2<y < 3.
e The cases (r,tu) = (1,1) or (1, —1) imply
(10) (22 + 1,y V/%) = (2041 — Got, P2t+1 — D2t),
or
(11) (22 +1, y(nfl)/Q) = (q2¢ + q2¢—1, P2t + P2t—1)-

By simple computations, we get
=1 q@=2y—1, qarsa=(4y —2)q212 — Got,
@1 =2, ¢3=8y—2, gar+3 = (4y — 2)q2t4+1 — G2t—1.
Then by induction one can easily prove the following property:
(12) g2t = (—1)'  (mod 2y) and o111 = 2(—1)"  (mod 2y).
From (10), (11) and (12), we get
z=0o0r —1 (mod y).

But this and Lemma 4 give a contradiction.
e The additional cases (r,tu) = (3,1) or (1, —3) (for y = 2, 3) gives

(13) (22 + 1,y V/2) = (g2e11 — 3qat, Pars1 — 3pat),
or
(14) 2z + 1,y Y/2) = (3q2s + got—1, 3par + P2r—1)-

We use a similar argument to get
x=0or —1 (mod y).

We get the contradiction as in the above case.
This completes the proof. O
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