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ON THE DISTRIBUTION OF SOLUTIONS TO LINEAR

EQUATIONS

Igor E. Shparlinski

Macquarie University, Australia

Abstract. Given two relatively prime positive integers m < n we
consider the smallest positive solution (x0, y0) to the equation mx−ny = 1.
E. I. Dinaburg and Y. G. Sinai have used continued fractions to show
that the ratios x0/n are uniformly distributed in [0, 1], when n and m
run through consequtive integers of intervals of comparable sizes. We
use a bound of exponential sums due to W. Duke, J. B. Friedlander and
H. Iwaniec to show a similar result when m and n run through arbitrary
sets which are not too thin.

1. Introduction

Given two positive integers n and m with gcd(m, n) = 1, we consider the
smallest positive solution (x0, y0) to the equation mx− ny = 1. In particular
1 ≤ x0 < n, thus the ratios

ρ(m, n) =
x0

n

belong to the unit interval [0, 1].
E. I. Dinaburg and Y. G. Sinai [2] have used continued fractions to show

that the ratios ρ(m, n) are uniformly distributed in [0, 1], when m and n run
through intervals of the form µ1X ≤ m ≤ µ2X and ν1X ≤ n ≤ ν2X with
some fixed 0 < µ1 < µ2 < ν1 < ν2 < 1. This result has been improved
and generalised by D. Dolgopyat [3], using the continued fraction technique
as in [2], and by A. Fujii [5] and G. J. Rieger [8], using the Weil bound on
Kloosterman sums, see [6, Corollary 11.12]. We remark that this approach
makes no use of the fact that we have two independent variables m and n and
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essentially splits the original problem into a sequence of subproblems for each
n ∈ [ν1X ≤ n ≤ ν2X ].

Here we show that taking advantage of the bi-variate nature of this prob-
lem, one can obtain a more general result on the uniformity of distribution
of ρ(m, n) when n and m run through arbitrary sets of integers M and N ,
respectively, which are not too thin. As in [5, 8] our proof also uses bounds
of exponential sums, however instead of the Weil bound we use some bounds
due to W. Duke, J. B. Friedlander and H. Iwaniec [4].

Throughout this paper, the implied constants in the symbols ‘O’ and ‘≪’
are absolute (we recall that A ≪ B and B ≫ A are equivalent to A = O(B)).

2. Discrepancy and Exponential Sums

For a sequence of N real numbers Γ = (γn)
N
n=1 of the half-open interval

[0, 1), denote by ∆Γ its discrepancy, that is,

∆Γ = sup
0≤α≤1

|TΓ(α) − αN | ,

where TΓ(α) is the number of points of the sequence Γ in the interval [0, α].
We now recall the Erdős–Turán inequality (see [1, 7]), which links the

discrepancy with exponential sums.

Lemma 2.1. For any integer H ≥ 1, the discrepancy ∆Γ of a sequence

Γ = (γn)
N
n=1 of N real numbers γ1, . . . , γN ∈ [0, 1) satisfies the inequality

∆Γ ≪ N

H
+

H
∑

h=1

1

h

∣

∣

∣

∣

∣

N
∑

n=1

exp(2πihγn)

∣

∣

∣

∣

∣

.

We put

en(z) = exp(2πiz/n).

We always follow the convention that arithmetic operations in the arguments
of en are performed modulo n.

Our second main tool is the special case of the bound on certain bilinear
sums which is due to W. Duke, J. B. Friedlander and H. Iwaniec [4, Theo-
rem 2].

Lemma 2.2. For arbitrary sets of integers M ⊆ [M, 2M ] and N ⊆
[N, 2N ], and any integer h ∈ [1, MN ], the following bound holds

∑

n∈N

∑

m∈M
gcd(m,n)=1

en

(

hm−1
)

≤
√

#M#N (MN)3/8(M + N)11/48+o(1)

as MN → ∞.
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3. Main Result

Theorem 3.1. Let γ > 1 be fixed. Then for arbitrary sets of integers

M,N ⊆ [X, γX ], the discrepancy D(M,N ) of the sequence ρ(m, n)m∈M,n∈N

satisfies the bound

D(M,N ) ≤
√

#M#NX47/48+o(1).

Proof. We cover the interval [X, γX ] by J + 1 halfopen intervals
[2jX, 2j+1X), j = 0, . . . , J , where

J =

⌊

log γ

log 2

⌋

whose union covers [X, γX ].
Considering subsets of M and N from these intervals we see that it is now

sufficient to establish the bound in the case M ⊆ [M, 2M ] and N ⊆ [N, 2N ]
for some M and N with

(3.1) X ≤ M ≪ N ≪ X.

Now, since the function en(z) is periodic with period n, we derive that
for any integer h we have

exp(2πihρ(m, n)) = en(hx0) = en(hm−1).

Therefore, by Lemma 2.2, for any integer h ∈ [1, X2], under the condi-
tion (3.1), we have

∑

n∈N

∑

m∈M
gcd(m,n)=1

exp(2πihρ(m, n)) =
∑

n∈N

∑

m∈M
gcd(m,n)=1

en

(

hm−1
)

≤
√

#M#NX47/48+o(1).

(3.2)

Using the estimate (3.2) in a combination with Lemma 2.1, where we choose
H =

⌊

X2
⌋

, we conclude the proof. ⊓⊔

In particular, we see that for any fixed ε > 0, Theorem 3.1 is nontrivial
if #M#N ≥ X2−1/24+ε.

4. Comments

Certainly, using the full power of the results of [4] one can obtain variants
of Theorem 3.1 for much more general sets (for example belonging to intervals
whose lengths are of different order of magnitude).

We remark that M. S. Risager and Z. Rudnick [9] have recently considered
a modification of the original question for the ratios

ϑ(m, n) =

√

u2
0 + v2

0√
m2 + n2

,
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where (u0, v0) is the smallest solution to the equation

|mu − nv| = 1

and m and n run through the vectors (m, n) of some fixed two-dimensional
lattice. Obtaining similar results for m and n from arbitrary sets would be of
ultimate interest. Since |u0| ≤ n, we derive

ϑ(m, n) =

√

u2
0 + (mu0/n + O(1/n))2

√
m2 + n2

=

√

n2u2
0 + (mu0 + O(1))2

n
√

m2 + n2

=

√

n2u2
0 + m2u2

0 + O(mn)

n
√

m2 + n2
=

u0

n

(

1 + O(1/u2
0)

)

,

the method of this paper can be applied to ϑ(m, n) as well.
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