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Abstract. In this paper we decompose the residual spectrum sup-

ported in the minimal parabolic subgroup of an inner form of the split group
SO8. The approach is the Langlands spectral theory. However, since the
group is non–quasi–split, it is out of the scope of the Langlands–Shahidi
method and the new technique for the normalization of standard intertwin-
ing operators is developed. The decomposition shows interesting parts of
the residual spectrum not appearing in the case of quasi–split groups.

Introduction

This paper deals with the residual spectrum of the hermitian quaternionic
group which is an inner form of the split group SO8. Here the part of the
residual spectrum coming from the minimal parabolic subgroup is obtained.
After the early attempts of Jacquet in [19] and the appendix of Langlands in
[30], the first time the residual spectrum was classified in a serious way was by
Mœglin and Waldspurger in [37]. The residual spectrum of quasi–split groups
has been considered afterwards by several authors such as Moeglin [33, 34, 35],
Kim [22, 23, 26], Žampera [55], Kon–No [27]. Their approach is based on the
Langlands spectral theory ([30, 38]) and uses the Langlands–Shahidi method
([43, 45]) for the normalization of intertwining operators.

However, our situation is different. This paper is dealing with non–quasi–
split groups and we had to develop a new technique for normalization in
order to overcome the difficulty of not having the Langlands–Shahidi method
at disposal. Moreover, when compared to split group SO8, the results of
this paper (see for example Theorem 2.31 and Theorem 2.37) show some
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interesting parts of the residual spectrum not appearing in the case of split
groups. The reason for that lies in different local normalization factors at
split and non–quasi–split places.

The method was already applied by the author to obtain the residual
spectra of inner forms of SO4 and Sp4 in [11], an inner form of Sp8 in [13],
and some simple parts of the residual spectra of inner forms of SO4n and Sp4n

in general in [12]. Also, the residual spectrum of the general linear group over
a division algebra was obtained in [14], but the calculation relies on the results
in the body of the paper which were obtained using the comparison of trace
formulas.

Besides the Langlands spectral theory, another approach to the discrete
spectrum is through the trace formula. As explained in [2, 3, 4], Arthur
has developed the trace formula in order to describe the discrete spectrum
of connected split classical groups. His description is still conjectural since
it depends on the fundamental lemma. Furthermore, the problem of dis-
tinguishing the residual inside the discrete spectrum still remains. In [36]
Mœglin has done the first step in that direction. However, since our inner
form is non–quasi–split we do not follow Arthur’s approach in this paper.

Before giving a brief description of the method and results we introduce
some notation. Let k be an algebraic number field and A the ring of adeles
of k. For every place v of k we denote by kv the completion of k at v. Let D
be a quaternion algebra central over k and τ the usual involution fixing the
center of D. Then D splits at all but finitely many places v of k i.e. at those
places the completion D⊗k kv is isomorphic to the additive group M(2, kv) of
2× 2–matrices with coefficients in kv. At finitely many places v of k where D
is non–split the completion D ⊗k kv is isomorphic to the quaternion algebra
Dv central over kv. In this paper we assume that D splits at all archimedean
places and the finite set of nonarchimedean places where D is non–split is
denoted by SD. The cardinality of SD, denoted by |SD|, is even for every D.

Let us now introduce groups considered in this paper. Denote by GLn,
SLn and SO2n split algebraic groups defined over k as usual. Fixing the basis
of underlying vector space these are groups of all invertible n×n–matrices, all
unit determinant n× n–matrices and the connected component of the group
of isometries of the bilinear form defined by the 2n × 2n–matrix J2n having
1’s on the secondary diagonal and zeroes elsewhere.

The group of invertible n × n–matrices with coefficients in D regarded
as a reductive algebraic group over k is denoted by GL′n. Then GL′n(kv) ∼=
GL2n(kv) for every place v 6∈ SD. For a non–split place v ∈ SD the group
GL′n(kv) is the group of invertible n × n–matrices with coefficients in Dv.
Let SL′n be the subgroup of matrices in GL′n having the reduced norm of the
determinant equal to 1. It is a reductive algebraic group defined over k and
SL′n(kv) ∼= SL2n(kv) for every place v 6∈ SD.
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Let V be the 2n–dimensional right vector space over D. We fix the basis
{e1, . . . , e2n} of V . Then (ei, ej) = δi,2n−j+1 for 1 6 i 6 j 6 n defines an
antihermitian form on V by

(v, v′) = −τ((v′, v)) and (vx, v′x′) = τ(x)(v, v′)x′

for all v, v′ ∈ V and x, x′ ∈ D. The group of isometries of the form ( , )
regarded as a reductive algebraic group defined over k will be denoted by G′n.
It is an inner form of the group SO4n. Hence G′n(kv) ∼= SO4n(kv) for every
place v 6∈ SD.

It is the group G′2 defined above that we consider in this paper. Let
T ′ be the maximal split torus in G′2. It is isomorphic to GL1 ×GL1. The
minimal parabolic subgroup P ′0 = M ′0N

′
0 of G′2 defined over k has the Levi

factor M ′0
∼= GL′1 ×GL′1. The two proper standard parabolic subgroups of G′2

are P ′1 = M ′1N
′
1 with the Levi factor M ′1

∼= GL′2 and P ′2 = M ′2N
′
2 with the

Levi factor M ′2
∼= GL′1 ×G′1.

The goal of this paper is to determine the residual spectrum of the group
G′2(A) supported in the minimal parabolic subgroup. Residual spectrum is
the orthogonal complement of the space of cuspidal automorphic forms in-
side the discrete spectrum. It is the direct sum of irreducible representations
which can be described in terms of cuspidal automorphic representations of
Levi subgroups using parabolic induction. By the Langlands spectral theory
[30], [38] the automorphic representations forming residual spectrum are re-
alized as residues of the Eisenstein series attached to cuspidal automorphic
representations of Levi subgroups. The poles of Eisenstein series coincide
with the poles of their constant terms which can be expressed as the sum
of standard intertwining operators. The poles of intertwining operators are
calculated using their normalization by a ratio of L–functions. For quasi–split
groups normalization is given by the Langlands–Shahidi method. However,
we use the new technique based on the fact that G′2 is an inner form of SO8 to
transfer the normalization by L–functions from split case of SO8 to the case
of non–quasi–split G′2.

In this paper we describe the part of the residual spectrum of G′2(A) com-
ing from the poles of the Eisenstein series attached to cuspidal automorphic
representations of the Levi factor M ′0(A) of the minimal parabolic subgroup of
G′2. In a separate paper [15], we will calculate the Arthur parameters for the
residual spectrum of G′2(A) along with the Arthur parameters for the residual
spectra of inner forms of the split groups SO4, Sp4 and Sp8.

The paper is divided into two Sections. In Section 1 for every place v
of k the normalization of the local intertwining operators using certain ratios
of L–functions is given. This Section is divided into three Subsections where
normalization is defined for generic representations at the split place, non–
generic representations at the split place and representations at the non–split
place, respectively. It is proved that the normalized intertwining operators are
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holomorphic and non–vanishing in the closure of the positive Weyl chamber
(except at the origin in some cases) and on certain line segments required in
the calculation outside that closure. Thus the calculation of poles is reduced
to the analytic properties of L–functions. In Section 2 the calculation is
performed and the decomposition of the residual spectrum of the group G′2(A)
coming from minimal parabolic subgroup is obtained. It is given in Theorems
2.12, 2.17, 2.18, 2.25, 2.26, 2.27, 2.31, 2.35, 2.37 of that Section.

When studying the poles of the Eisenstein series it is enough to consider
the real poles. There is no loss in generality because that can be achieved
just by twisting a cuspidal automorphic representation of a Levi factor by
the appropriate imaginary power of the absolute value of the reduced norm
of the determinant. Hence, this assumption is just a convenient choice of
coordinates.

We should remark that in this paper the usual parabolic induction from
standard parabolic subgroup P of G with the Levi decomposition P = MN
will be denoted by IndG

M instead of IndG
P . This will not cause any confusion

since all the parabolic subgroups appearing in the paper are standard.
This paper is a part of the author’s Ph.D. Thesis. Other parts are pa-

pers [11, 12, 13]. I would like to thank my advisor G. Muić for many useful
discussions and constant help during the preparation of this paper. I would
like to thank M. Tadić for supporting my research and for his interest in my
work. The conversations with H. Kim and E. Lapid were useful in clarifying
several issues in automorphic forms and with I. Badulescu in representation
theory of GLn over division algebras. Also I would like to thank my friend
M. Hanzer for many useful conversations on the local representation theory
of hermitian quaternionic groups. I am grateful to A. Žgaljić for carefully
drawing the figures for this paper. And finally, I would like to thank my wife
Tiki for being my everlasting inspiration.

1. Normalization of local intertwining operators

In this Section we give the normalization of intertwining operators for
G′2(kv). For the local components of a cuspidal automorphic representation
π′ ∼= ⊗π′v of the Levi factor M ′0(A) ∼= GL′1(A) × GL′1(A) of G′2(A) we prove
the holomorphy and non–vanishing of the normalized intertwining operators
in the closure of the positive Weyl chamber (except at the origin in some cases)
and at certain open intervals outside that closure required in the calculation.
This is done for every place v of k separately.

But first we describe the structure of the group G′2 in more detail. Let
T ′ be the maximal split torus in G′2. It is isomorphic to GL1 ×GL1. Denote
by Φ′ the set of roots of G′2 with respect to T ′. Then

Φ′ = {±e1 ± e2,±2e1,±2e2},
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where ei(t1, t2) = ti for all (t1, t2) ∈ T ′ ∼= GL1 ×GL1. For the set of positive
roots take

Φ′+ = {e1 ± e2, 2e1, 2e2}.
The corresponding set of simple roots is

∆′ = {e1 − e2, 2e2}.
Let W be the Weyl group of (G′2, T

′). If w1 is the simple reflection with
respect to e1 − e2, and w2 with respect to 2e2, then

W = {1, w1, w2, w1w2, w2w1, w1w2w1, w2w1w2, w1w2w1w2}.
The minimal parabolic subgroup P ′0 = M ′0N

′
0 of G′2 defined over k has the Levi

factor M ′0
∼= GL′1 ×GL′1. Then the two proper standard parabolic subgroups

of G′2 are P ′1 = M ′1N
′
1 with the Levi factor M ′1

∼= GL′2 corresponding to the
simple root e1 − e2 and P ′2 = M ′2N

′
2 with the Levi factor M ′2

∼= GL′1 ×G′1
corresponding to the simple root 2e2. Let W (M ′i) denote the quotient group
of the normalizer of M ′i modulo M ′i viewed as a subgroup of W . Observe that
W (M ′0) = W .

Let Pi = MiNi be the split form of the parabolic subgroup P ′i = M ′iN
′
i

for i = 0, 1, 2. Then Pi is the standard parabolic subgroup of the split SO8

and M0
∼= GL2 ×GL2, M1

∼= GL4 and M2
∼= GL2 × SO4. Let W (Mi) denote

again the quotient group of the normalizer of M ′i modulo M ′i viewed as a
subgroup of W . Then W (Mi) ∼= W (M ′i). Throughout this paper we fix
matrix representatives of Weyl group elements as in Section 2 of [21].

Since M ′0
∼= GL′1 ×GL′1, before proceeding we define certain local and

global lift of representations from GL′1 to GL2. They are given by the
Jacquet–Langlands correspondence as in Section 8 of [10]. More precisely,
let π′ ∼= ⊗vπ

′
v be a cuspidal automorphic representation of GL′1(A) which

is not one–dimensional. Then, at non–split places the lift πv of π′v is the
square–integrable representation of GL2(kv) defined by a character relation
as in Theorem (8.1) of [10]. At split places GL′1(kv) ∼= GL2(kv) and the lift is
just πv

∼= π′v. The global lift of π′ is defined using local lifts as π ∼= ⊗vπv. By
Theorem (8.3) of [10] the global lift π is isomorphic to a cuspidal automorphic
representation of GL2(A). Hence, its local components πv are generic.

Let χ ◦ det′ = ⊗vχv ◦ det′v be an one–dimensional cuspidal automorphic
representation of GL′1(A). Here χv are unitary characters of k×v and χ is a uni-
tary character of A

×/k×. By abuse of notation det′v denotes the determinant
in GL2(kv) at split places and the reduced norm in GL′1(kv) ∼= D×v at non–
split places, while det′ is the reduced norm of the simple algebra A⊗kD. Then
the global lift of χ ◦ det′ is just the one–dimensional representation χ ◦ det =
⊗vχv ◦ detv of GL2(A). It belongs to the residual spectrum of GL2. At the
non–split place the local lift of χv ◦ det′v is defined by the Jacquet–Langlands
correspondence as in Theorem (8.1) of [10] to be the Steinberg representa-
tion of GL2(kv) twisted by χv, i.e. the unique irreducible subrepresentation
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of the induced representation Ind
GL2(kv)
GL1(kv)×GL1(kv)

(
χv| · |1/2 ⊗ χv| · |−1/2

)
. We

denote this representation by Stχv
. Observe that by our definition in this case

the global and local lift are not consistent. The reason is that the global lift
is supposed to be in the discrete spectrum, while the local lift should preserve
the Plancherel measure.

This Section is divided into three Subsections. First, in Subsection 1.1
we deal with the case of generic representation πv

∼= π′v of M0(kv) ∼= M ′0(kv)
at a split place v. If the global lift of π′ is a cuspidal automorphic repre-
sentation then this local component is indeed generic. For tempered generic
representations the proof of the holomorphy and non–vanishing of normal-
ized intertwining operators in the closure of the positive Weyl chamber is
done in general for parabolic subgroups of any split classical group, but for
non–tempered generic local components we specialize to parabolic subgroup
P0(kv) of SO8(kv) with the Levi factor M0(kv). In Subsection 1.2 we settle
the remaining split cases just for the Levi subgroup M0(kv) of SO8(kv), i.e.
local components at split places of those π′ that lift to a residual spectrum
representation of M0(A). This is done case by case. Finally, in Subsection 1.3
non–split places are considered. We show that the normalization in this case
can be defined using the split case normalization factor of the local lift of π′v.

1.1. Generic split case. In what follows in the generic split case we use
Shahidi’s notation (see Section 1 of [45]) and work in the generality of split
classical group G defined over local field kv of characteristic zero. Let T be a
maximal split torus of G and Φ the set of roots. Fix the Borel subgroup B
defining the set of positive roots Φ+ and the set of simple roots ∆. Let W
denote the Weyl group of (G, T ). For every proper subset θ of ∆ let Pθ be
the corresponding standard parabolic subgroup with the Levi decomposition
MθNθ, where Mθ is the Levi factor and Nθ the unipotent radical. Let Kv be
a fixed maximal compact subgroup of G(kv).

Let X∗(Mθ) be the Z–module of kv–rational characters of Mθ and

aθ = HomZ(X∗(Mθ),R) and a
∗
θ = X∗(Mθ) ⊗Z R.

The complexification of aθ and a
∗
θ denote by aθ,C and a

∗
θ,C. Using the natural

duality 〈·, ·〉 of a
∗
θ,C and aθ,C the homomorphism HPθ

: Mθ → aθ is defined by

exp〈χ,HPθ
(m)〉 = |χ(m)|v

for all rational characters χ ∈ X∗(Mθ) where exp in the non–archimedean
case denotes exponential function with the basis qv the number of elements
of residual field of kv.

For an irreducible admissible representation πv of Mθ(kv) and s ∈ a
∗
θ,C

we form the induced representation

I(s, πv) = Ind
G(kv)
Mθ(kv)(πv ⊗ exp〈s,HPθ

(·)〉),



ON THE RESIDUAL SPECTRUM 17

where, as remarked in the Introduction, Ind
G(kv)
Mθ(kv) denotes induction from

the standard parabolic subgroup Pθ(kv). The representation of Mθ(kv) is
extended to the representation of Pθ(kv) trivially on Nθ(kv). Induction is
normalized in such a way that the unitary representations of Mθ(kv) give the
unitary ones of G(kv).

The intertwining operators are defined for every w ∈ W such that w(θ) ⊂
∆ by the integral

(1.1) A(s, πv, w)fs,v(g) =

∫

U(kv)∩wNθ(kv)w−1

fs,v(w
−1ng)dn,

where fs,v is in the space of induced representation I(s, πv), Nθ the unipotent
radical of the opposite parabolic subgroup of Pθ and U the unipotent radical
of the Borel subgroup. The fixed Haar measure dn on Nθ(kv) is chosen as
in Section 2 of [41]. Dependency of fs,v on s is obtained using the compact
picture with respect to Kv as in Section II.1 of [38]. It is well known that
this integral converges absolutely for real part of s far enough in the positive
Weyl chamber and analytically continues to the meromorphic function of s.
If Pwθ is the standard parabolic subgroup corresponding to w(θ) ⊂ ∆ then
the intertwining operator A(s, πv, w) intertwines the representations I(s, πv)
and I(w(s), w(πv)) whenever s is not a pole. Here w(s) and w(πv) are the
usual actions of the Weyl group obtained from the conjugation on the Levi
factor.

Let rθ be the adjoint representation of the Langlands dual L–group of Mθ

on the Lie algebra of the L–group of Nθ. It is completely reducible and let

rθ = r1 ⊕ . . .⊕ rℓ,

be its decomposition into irreducibles.
For the normalization of the intertwining operator it is crucial to consider

the maximal proper parabolic subgroup case due to the Proposition of Lang-
lands in the archimedean and Shahidi in the non–archimedean case giving the
decomposition of A(s, πv, w) into the product of such intertwining operators
(Sections I.1.8 and IV.4.1 of [38]). The precise statement will be given later
in Proposition 1.4 of this Section.

Suppose that P = P∆\{α} = MN is the Levi decomposition of the maxi-
mal proper standard parabolic subgroup of G where α is a simple root. Then,
unless G = GLn, the corresponding space a

∗
C

is one–dimensional. In any case
we let

α̃ = 〈ρP , α
∨〉−1ρP ,

where ρP equals half of the sum of positive roots of G not being roots of M
and we write sα̃ = α̃ ⊗ s for s ∈ C. In fact α̃ is the fundamental weight
corresponding to P . For maximal proper standard parabolic subgroup of
GLn with the Levi factor isomorphic to GLn1 ×GLn2 the space a

∗
C

is two–
dimensional. Nevertheless, tensoring by the appropriate power of the absolute
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value of the determinant reduces the consideration of intertwining operators
to the one–dimensional subspace sα̃ = 〈s, α∨〉α̃. Observe that in the maximal
parabolic subgroup case there is at most one nontrivial element w ∈ W such
that w(∆ \ {α}) ⊂ ∆. Then w(sα̃) = −sα̃.

Let ψv be a nontrivial continuous additive character of kv. We define
the normalizing factor for the intertwining operator attached to a ψv–generic
representation πv of the Levi factor of a maximal parabolic subgroup in terms
of L–functions and ε–factors as

(1.2) r(sα̃, πv, w) =

ℓ∏

i=1

L(is, πv, ri)L(1 + is, πv, ri)
−1ε(is, πv, ri, ψv)

−1

for s ∈ C. Here, the L–functions and ε–factors are the ones defined by Shahidi
in Section 7 of [45] using the Satake parametrization as in [46] to define
the L–functions for unramified representations. This choice of the Satake
parametrization is the reason of not having contragredients in (1.2). The
normalized intertwining operator N(sα̃, πv, w) is given by

A(sα̃, πv, w) = r(sα̃, πv, w)N(sα̃, πv, w).

For an irreducible ψv–generic tempered representation πv, the following
Proposition gives the holomorphy and non–vanishing of these normalized op-
erators in an open set slightly bigger than the closure of the positive Weyl
chamber. The proof can be found in Lemma 1 and Lemma 2 of [54] hav-
ing in mind that Conjecture A has been proved in Section 3 of [1] for the
archimedean and in Section 4 of [7] for the non–archimedean case, while As-
sumption A follows from the standard module conjecture proved in [50] and
[28] for the archimedean and in Section 2 of [7] and Section 1 of [40] for the
non–archimedean case.

Proposition 1.3. Let P = MN be a maximal proper standard parabolic
subgroup of G corresponding to ∆ \ {α} and w the nontrivial element of the
Weyl group W such that w(∆\{α}) ⊂ ∆. Let πv be an irreducible ψv–generic
tempered representation of M(kv). Then the normalized intertwining operator
N(sα̃, πv, w) is holomorphic and non–vanishing for Re(s) > −1/ℓ where ℓ is
the length of the representation r∆\{α}.

We consider now the case of general standard proper parabolic subgroup
Pθ = MθNθ ⊂ G for an irreducible ψv–generic representation πv of Mθ(kv).
First, we recall a decomposition of the intertwining operator A(s, πv, w) (see
Section 2.1 of [43]).

Proposition 1.4. For a subset θ ⊂ ∆ and w ∈ W such that w(θ) ⊂ ∆
there exist simple roots α1, α2, . . . , αn having the following property: if the
sequence θ1, . . . , θn of subsets of ∆ and the sequence w1, . . . , wn of elements
of W are defined inductively by θ1 = θ, wi is the unique nontrivial element of
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the Weyl group of Mθi∪{αi} such that wi(θi) ⊂ θi ∪ {αi}, and θi+1 = wi(θi).
Then we have the following:

1. w = wnwn−1 . . . w1 and n is the length of w,
2. A(s, πv, w) = A(sn, πv,n, wn) . . . A(s2, πv,2, w2)A(s, πv, w1)

where si = wi−1(si−1), πv,i = wi−1(πv,i−1) for i > 2 and s1 = s,
πv,1 = πv.

Observe that every A(si, πv,i, wi) is the intertwining operator in the max-
imal parabolic subgroup case for the Levi factor Mθi

⊂Mθi∪{αi}. The corre-

sponding s ∈ C equals 〈si, α
∨
i 〉. Furthermore, if we define the subset Φ+

θ,w of
the set of positive roots modulo Zθ, the connected component of the center
of Mθ, by

Φ+
θ,w = {α ∈ Φ+ : wα < 0},

then it consists of n elements

Φ+
θ,w = {β1 = α1, β2 = w−1

1 α2, . . . , βn = (wn−1 . . . w1)
−1αn}

and

〈si, α
∨
i 〉 = 〈s, β∨i 〉.

Hence, the normalization of the intertwining operator A(s, πv, w) is given
according to the decomposition of Proposition 1.4 as

(1.5) r(s, πv, w) =

n∏

i=1

r(〈si, α
∨
i 〉α̃i, πv,i, wi)

and the normalized operator by

N(s, πv, w) = r(s, πv, w)−1A(s, πv, w).

The decomposition of the normalized intertwining operator

N(s, πv, w) = N(w1(s), w1(πv), w2)N(s, πv, w1)

according to a not necessarily reduced decomposition of the Weyl group ele-
ment w = w2w1 holds by Section 3 of [1] in the archimedean and Theorem 7.9
of [45] in the non–archimedean case. Next we prove the analogue of Proposi-
tion 1.3 for a ψv–generic tempered representation of Mθ(kv).

Proposition 1.6. Let Pθ = MθNθ be the proper standard parabolic sub-
group of G corresponding to θ and w an element of the Weyl group W such
that w(θ) ⊂ ∆. Let πv be an irreducible ψv–generic tempered representation of
Mθ(kv). Then the normalized intertwining operator N(s, πv, w) is holomor-
phic and non–vanishing for s ∈ a

∗
θ,C such that 〈Re(s), α∨〉 > −1/ℓα for all

α ∈ Φ+
w,θ, where ℓα is the length of the corresponding adjoint representation

rα in the decomposition of Proposition 1.4.
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Proof. The normalized intertwining operator N(s, πv, w) decomposes
according to the decomposition w = wn . . . w1 of Proposition 1.4 as

N(s, πv, w) = N(sn, πv,n, wn) . . . N(s2, πv,2, w2)N(s, πv, w1).

In order to prove holomorphy it is enough to prove the holomorphy of each
factor. Factors are the maximal parabolic subgroup case intertwining opera-
tors for 〈si, α

∨
i 〉α̃i = 〈s, β∨i 〉α̃i, where α̃i is the corresponding element of a

∗
θ,C.

Since Φ+
θ,w = {β1, . . . , βn}, the holomorphy at 〈Re(s), α∨〉 > −1/ℓα for all

α ∈ Φ+
w,θ follows from Proposition 1.3. Non–vanishing is a consequence of

holomorphy by Lemma 1.7 of [25].

Finally, we have to consider the non–tempered unitary ψv–generic repre-
sentations. This will be done just for the representations πv

∼= π1,v ⊗ π2,v of
M0(kv) ∼= GL2(kv) × GL2(kv) in the split SO8(kv) which are the local com-
ponents at v of the global cuspidal automorphic representation π ∼= π1 ⊗ π2

of M0(A).

Proposition 1.7. Let P0 = M0N0 be the standard parabolic subgroup
of split group SO8 with the Levi factor M0 isomorphic to GL2 ×GL2. Let
πv

∼= π1,v ⊗ π2,v be be the local component of a cuspidal automorphic repre-
sentation π ∼= π1 ⊗ π2 of M0(A). Then, for every w ∈ W (M0), the normal-
ized intertwining operator N(s, πv, w) is holomorphic and non–vanishing for
s = (s1, s2) such that

• Re(s1) > Re(s2) > 0, i.e. the closure of the positive Weyl chamber,
• 0 < s1 < 1/2 and s2 = 1/2,
• 1/2 < s1 < 1 and s1 − s2 = 1.

Proof. If a unitary generic representation πi,v of GL2(kv) is not tem-
pered, then it is a complementary series, i.e. the fully induced representation
of the form

πi,v
∼= Ind

GL2(kv)
GL1(kv)×GL1(kv)(µi,v| · |ri ⊗ µi,v| · |−ri),

where µi,v is a unitary character of GL1(kv) and 0 < ri < 1/2. However,
since πi,v is the local component of a cuspidal automorphic representation
of GL2(A), the automorphy of the Gelbart–Jacquet lift of [9] implies that
ri < 1/4.

Since intertwining operators are compatible with induction in stages
the problem of holomorphy and non–vanishing is reduced to the tempered
case. More precisely, there is a tempered representation τv of one of the
Levi factors GL1(kv) × GL1(kv) × GL2(kv), GL2(kv) × GL1(kv) × GL1(kv),
GL1(kv) × GL1(kv) × GL1(kv) × GL1(kv), and an element s′ of the corre-
sponding space a

∗
θ,C such that I(s, πv) ∼= I(s′, τv) and hence, the holomorphy
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and non–vanishing of N(s, πv, w) is equivalent to the holomorphy and non–
vanishing of N(s′, τv, w). If s = (s1, s2), then in the three cases

s′ =





(s1 + r1, s1 − r1, s2),
(s1, s2 + r2, s2 − r2),
(s1 + r1, s1 − r1, s2 + r2, s2 − r2).

Since all the representations rα in the three cases are irreducible, by Propo-
sition 1.6, it is enough to check that if s = (s1, s2) is as in the statement
of the Proposition, then 〈Re(s′), β∨〉 > −1 for every β ∈ Φ+

θ,w. That is a

straightforward check using the bound 0 < ri < 1/4.

Remark 1.8. The normalizing factors are defined here using the Lang-
lands–Shahidi method as in [45] for the non–archimedean and in [44] for the
archimedean case. However, besides the holomorphy and non–vanishing prop-
erties of the local normalized intertwining operators which are important in
our application, these factors satisfy Theorem 2.1 of [1] by Section 7 of [45]
for the non–archimedean and Section 3 of [1] for the archimedean case.

1.2. Remaining split cases. The previous Subsection solves the problem of
the holomorphy and non–vanishing of the local normalized intertwining op-
erators in the closure of the positive Weyl chamber for the generic unitary
representations of the Levi factor M0(kv) ∼= GL2(kv) × GL2(kv) of the group
G′2(kv) ∼= SO8(kv) at split places v. In this Subsection we prove the same
result in the non–generic split cases needed in the sequel. These cases occur
at split places when the global lift of a cuspidal automorphic representa-
tion of the Levi factor M ′0(A) is not cuspidal. This happens in the case of
M ′0

∼= GL′1 ×GL′1 if at least one of the cuspidal automorphic representations
of GL′1(A) is one–dimensional. However, first we give the general idea how
to define the normalizing factors for certain non–generic representations and
prove the holomorphy and non–vanishing of the normalized intertwining op-
erators. This will be done as in Lemma I.8 of [37]. In the sequel we refer to
this general idea as the general overview of the proof.

For the moment let G be any classical split group defined over kv as in the
previous Subsection. We use all the notation introduced there. Let P = MN
be the standard proper parabolic subgroup of G defined over kv corresponding
to θ ⊂ ∆ and let πv be an irreducible unitary non–generic representation of
M(kv). Assume that there exists a standard parabolic subgroup of M with
the Levi factor L corresponding to the subset θ′ ⊂ θ ⊂ ∆, an irreducible
tempered generic representation τv of L(kv) and s′ ∈ a

∗
θ′,C such that πv is

isomorphic to the unique irreducible subrepresentation of

IM
L (s′, τv) = Ind

M(kv)
L(kv) (τv ⊗ exp〈s′, HM

L (·)〉),

where HM
L : L → aL is the homomorphism defined in the generic split case.

Then, for every element w of the Weyl group such that w(θ) ⊂ ∆, the following
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diagram is commutative:

I(s, πv) →֒ I(s+ s′, τv)

A(s, πv, w)
y

yA(s+ s′, τv)

I(w(s), w(πv)) →֒ I(w(s + s′), w(τv)),

where s is embedded into a
∗
θ′,C. In other words, A(s, πv, w) is the restriction

of A(s + s′, τv) to I(s, πv). Hence, the normalizing factor for A(s, πv, w) is
defined to be

(1.9) r(s, πv, w) = r(s+ s′, τv, w)

and the normalized operator N(s, πv, w) is actually the restriction of N(s +
s′, τv, w) to I(s, πv).

In order to prove the holomorphy and non–vanishing of N(s, πv, w) we
follow the proof of Lemma I.8 of [37]. Since πv is the unique irreducible
subrepresentation of IM

L (s′, τv), there is an element w′ of the Weyl group
such that πv is the image of the M(kv) normalized intertwining operator
N(w′−1(s′), w′−1(τv), w′). Observe that w′(s) = s. Then, N(s, πv, w) fits into
the following commutative diagram:

I(s, πv)
N(s+w′−1(s′),w′−1(τv),w′)

←−−−−−−−−−−−−−−−−−−−−−−−−−− I(s+ w′−1(s′), w′−1(τv))

N(s,πv,w)
y

yN(s+w′−1(s′),w′−1(τv),ww′)

I(w(s), w(πv)) →֒ I(w(s+ s′), w(τv)).

Now, if s+w′−1(s′) ∈ a
∗
θ′,C satisfies the inequalities of Proposition 1.6 for

ww′, then the right vertical arrow is holomorphic and non–vanishing. Since
the upper horizontal arrow is surjective, the commutativity of the diagram
implies that N(s, πv, w) is holomorphic and non–vanishing for such s.

If s + w′−1(s′) ∈ a
∗
θ′,C does not satisfy the inequalities of Proposition

1.6 for ww′, then there is an element w′′ of the Weyl group depending on s
such that w′′−1(s + w′−1(s′)) satisfies those inequalities for ww′w′′. Then,
N(s, πv, w) fits into the following commutative diagram:

I(s, πv)
N

←−−−−−−−−−−−−−−−−−−−−−−−I
(
w′′−1(s+ w′−1(s′)), w′′−1w′−1(τv)

)

N(s,πv,w)
y N(w′′−1(s+w′−1(s′)),w′′−1w′−1(τv),ww′w′′)

y

I(w(s), w(πv)) →֒ I(w(s + s′), w(τv)),

where N = N
(
w′′−1(s+ w′−1(s′)), w′′

−1
w′−1(τv), w′w′′

)
.
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The right vertical arrow is holomorphic and non–vanishing by the choice
of w′′. Hence, the commutativity of the diagram would imply the holomorphy
and non–vanishing of N(s, πv, w) for such s if we were able to prove that the
upper horizontal arrow is surjective. That is what we do in the required cases.

In this paper the non–generic representation πv
∼= π′v considered in the

general overview above will be the local component at a split place v of a
cuspidal automorphic representation π′ ∼= π′1 ⊗π′2 of the Levi factor M ′0(A) ∼=
GL′1(A)×GL′1(A) of G′2(A). If the global lift π of π′ is a cuspidal automorphic
representation of M0(A) then all the local components are generic. Therefore,
we assume that π is not cuspidal, i.e. at least one of the representations π′1
and π′2 is one–dimensional. In the rest of this Subsection we treat separately
the case when both representations are one–dimensional and the case when
one of them is one–dimensional. In accordance we the following Section 2, the
two cases are called case C and case B, respectively.

Let π′i
∼= χi ◦ det′ for i = 1, 2, where χi are unitary characters of A×/k×.

Then the local components at a split place v are π′i,v
∼= πi,v

∼= χi,v ◦detv where

χi,v are unitary characters of k×v . Hence, in this case πv
∼= (χ1,v ◦ detv) ⊗

(χ2,v ◦ detv) is a non–generic representation of the Levi factor M0(kv) ∼=
GL2(kv) × GL2(kv) of SO8(kv). Let T ∼= GL1 ×GL1 ×GL1 ×GL1 be the
maximal split torus of SO8 defined over kv. Then πv is the unique irreducible
subrepresentation of

Ind
M0(kv)
T (kv)

(
χ1,v| · |−1/2 ⊗ χ1,v| · |1/2 ⊗ χ2,v| · |−1/2 ⊗ χ2,v| · |1/2

)
.

In the notation of the general overview above L = T , M = M0,

τv = χ1,v ⊗ χ1,v ⊗ χ2,v ⊗ χ2,v and s′ = (−1/2, 1/2,−1/2, 1/2).

Therefore, for s = (s1, s2) ∈ a
∗
M ′

0,C and an element w ∈ W (M ′0), the normal-

izing factor is defined to be

r(s, πv, w) = r((s1 − 1/2, s1 + 1/2, s2 − 1/2, s2 + 1/2), τv, w)

and the normalized intertwining operator N(s, πv, w) is the restriction of

N((s1 − 1/2, s1 + 1/2, s2 − 1/2, s2 + 1/2), τv, w)

to I(s, πv). More precisely, for the maximal parabolic subgroup case
GL2(kv) × GL2(kv) ⊂ GL4(kv) the normalizing factor equals

(1.10) r((s1, s2), (χ1,v ◦ detv) ⊗ (χ2,v ◦ detv), w1) = r(s1 − s2, χ1,vχ
−1
2,v),

where w1 is the unique nontrivial Weyl group element of this case and

r(s, χv)=
L(s, χv)L(s− 1, χv)

L(s+ 2, χv)L(s+ 1, χv)ε(s+ 1, χv, ψv)ε(s, χv, ψv)2ε(s− 1, χv, ψv)
.
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For the maximal parabolic subgroup case GL2(kv) ⊂ SO4(kv) the normalizing
factor equals

r((s1, s2), (χ1,v ◦ detv) ⊗ (χ2,v ◦ detv), w2)

= r(2s2α̃, χ2,v ◦ detv, w2) =
L(2s2, χ

2
2,v)

L(2s2 + 1, χ2
2,v)ε(2s2, χ

2
2,v, ψv)

,(1.11)

where w2 is the unique nontrivial Weyl group element of this case.

Proposition 1.12. The normalized intertwining operator

N((s1, s2), (χ1,v ◦ detv) ⊗ (χ2,v ◦ detv), w)

defined above is holomorphic and non–vanishing for all w ∈ W (M ′0) at s =
(s1, s2) such that

• Re(s1) > Re(s2) > 0 except Re(s1) = Re(s2) = 0, i.e. in the closure of
the positive Weyl chamber except at the origin,

• 0 < s1 < 1/2 and s2 = 1/2,
• 1 < s1 < 2 and s1 − s2 = 2 except at (s1, s2) = (3/2,−1/2).

At the exceptional point (s1, s2) = (3/2,−1/2) it is always holomorphic
and non–vanishing for w ∈ {1, w1, w2w1, w1w2w1}. Moreover, for w ∈
{w2, w1w2, w2w1w2, w1w2w1w2} it is holomorphic and non–vanishing at
(s1, s2) = (3/2,−1/2) if χ2

2,v is nontrivial.

Proof. By the discussion preceding this Proposition, in the notation of
the general overview

τv = χ1,v ⊗ χ1,v ⊗ χ2,v ⊗ χ2,v and s′ = (−1/2, 1/2,−1/2, 1/2).

Then w′ is the element of the Weyl group corresponding to the permutation
w′ = (1, 2)(3, 4), where (i1, . . . , il) denotes the cycle mapping i1 → i2 →
. . . → il → i1. The Weyl group element corresponding to the permutation
p acts on a

∗
L,C as (s1, . . . , sk) → (sp−1(1), . . . , sp−1(k)) and analogously on the

representations. Hence,

s+ w′−1(s′) = (s1 + 1/2, s1 − 1/2, s2 + 1/2, s2 − 1/2).

If Re(s1) > Re(s2) > 0 the inequalities of Proposition 1.6 are satisfied for
every element w ∈ W (M ′0) and the general overview above implies the holo-
morphy and non–vanishing.

For the closure of the positive Weyl chamber the case s = Re(s1) =
Re(s2) > 0 remains. We can assume s1 and s2 are real because otherwise the
unitary twist can be incorporated into the representations. The inequalities
of Proposition 1.6 fail to be satisfied because the difference

(s1 − 1/2)− (s2 + 1/2) = −1,



ON THE RESIDUAL SPECTRUM 25

and it should be strictly greater than −1. Hence, take w′′ = (1)(2, 3)(4).
Then

w′′−1
(
s+ w′−1(s′)

)
= (s+ 1/2, s+ 1/2, s− 1/2, s− 1/2),

which satisfies the inequalities of Proposition 1.6 for every w ∈W (M ′0), and

w′′−1w′−1(τv) ∼= χ1,v ⊗ χ2,v ⊗ χ1,v ⊗ χ2,v.

Therefore, by the general overview, it is enough to check that the image of

N((s+ 1/2, s+ 1/2, s− 1/2, s− 1/2), χ1,v ⊗ χ2,v ⊗ χ1,v ⊗ χ2,v, w
′w′′)

is exactly I(s, πv). This is a consequence of the following decomposition

Ind
SO8(kv)
T (kv)

(
χ1,v| · |s+1/2 ⊗ χ2,v| · |s+1/2 ⊗ χ1,v| · |s−1/2 ⊗ χ2,v| · |s−1/2

)

↓
Ind

SO8(kv)
T (kv)

(
χ2,v| · |s+1/2 ⊗ χ1,v| · |s+1/2 ⊗ χ1,v| · |s−1/2 ⊗ χ2,v| · |s−1/2

)

↓
Ind

SO8(kv)
GL1(kv)×GL2(kv)×GL1(kv)

(
χ2,v| · |s+1/2 ⊗ (χ1,v ◦ detv)| · |s ⊗ χ2,v| · |s−1/2

)

↓
Ind

SO8(kv)
GL2(kv)×GL1(kv)×GL1(kv)

(
(χ1,v ◦ detv)| · |s ⊗ χ2,v| · |s+1/2 ⊗ χ2,v| · |s−1/2

)

↓
Ind

SO8(kv)
GL2(kv)×GL2(kv) ((χ1,v ◦ detv)| · |s ⊗ (χ2,v ◦ detv)| · |s) ,

where the first and the third operators are isomorphisms and the second and
the fourth are surjective.

The case 0 < s1 < 1/2 and s2 = 1/2 is settled in the same way since
again only the difference

(s1 − 1/2) − (s2 + 1/2) = s1 − 3/2 < −1

fails to satisfy the inequalities of Proposition 1.6.
In the case 1 < s1 < 2 and s1 − s2 = 2 let z be the new variable given by

s1 = z + 1. Then s2 = z − 1 and 0 < z < 1. In the new variable

s+ w′−1(s′) = (z + 3/2, z + 1/2, z − 1/2, z − 3/2).

For w ∈ {1, w1, w2w1, w1w2w1} the inequalities of Proposition 1.6 are satisfied
for all 0 < z < 1. For the remaining w they are satisfied if z > 1/2. But if
0 < z 6 1/2 the sum

(z − 1/2) + (z − 3/2) = 2z − 2 6 −1.

Nevertheless, taking w′′ = w2 we obtain

w′′−1
(
s+ w′−1(s′)

)
= (z + 3/2, z + 1/2,−z + 3/2,−z + 1/2)
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which satisfies the inequalities of Proposition 1.6 for 0 < z 6 1/2, and

w′′−1w′−1(τv) ∼= χ1,v ⊗ χ1,v ⊗ χ−1
2,v ⊗ χ−1

2,v.

Therefore, by the general overview, it is enough to check that the image of

N((z + 3/2, z + 1/2,−z + 3/2,−z + 1/2), χ1,v ⊗ χ1,v ⊗ χ−1
2,v ⊗ χ−1

2,v, w
′w′′)

is exactly I(s, πv). This is certainly true if either z 6= 1/2 or z = 1/2 and χ2
2,v

is nontrivial because then the normalized intertwining operator corresponding
to w′′ acts on the irreducible induced representation and thus it is an isomor-
phism. Since z = 1/2 corresponds to (s1, s2) = (3/2,−1/2) the last case of
the Proposition is settled.

Let π′1
∼= χ1 ◦ det′ be one–dimensional and π′2 not one–dimensional cus-

pidal automorphic representation of GL′1(A), where χ1 is a unitary character
of A×/k×. The other case, π′1 not one–dimensional and π′2 one–dimensional,
is settled in the completely same way. The local components of π′1 at split
places are π′1,v

∼= π1,v
∼= χ1,v ◦ detv, where χ1,v is a unitary character of k×v ,

while the local components of π′2 at split places are the generic unitary rep-
resentations π′2,v

∼= π2,v of GL2(kv) because they are the local components of
the global lift of π′2 which is cuspidal automorphic. Hence, if not tempered,
π2,v is a complementary series representation

π2,v
∼= Ind

GL2(kv)
GL1(kv)×GL1(kv)

(
µv| · |r ⊗ µv| · |−r

)
,

where 0 < r < 1/2 and µv is a unitary character of GL1(kv). In this case
πv

∼= (χ1,v ◦ detv) ⊗ π2,v is the unique irreducible subrepresentation of

Ind
M0(kv)
GL1(kv)×GL1(kv)×GL2(kv)

(
χ1,v| · |−1/2 ⊗ χ1,v| · |1/2 ⊗ π2,v

)
,

which is isomorphic to

Ind
M0(kv)
T (kv)

(
χ1,v| · |−1/2 ⊗ χ1,v| · |1/2 ⊗ µv| · |r ⊗ µv| · |−r

)

if π2,v is a complementary series. More precisely, in terms of the general
overview above, if π2,v is tempered L = GL1 ×GL1 ×GL2, M = M0,

τv ∼= χ1,v ⊗ χ1,v ⊗ π2,v and s′ = (−1/2, 1/2, 0),

while if π2,v is a complementary series L = T , M = M0,

τv ∼= χ1,v ⊗ χ1,v ⊗ µv ⊗ µv and s′ = (−1/2, 1/2, r,−r).
Therefore, for s = (s1, s2) ∈ a

∗
M ′

0,C and w ∈ W (M ′0) the normalizing

factor is defined to be

r(s, πv, w) = r((s1 − 1/2, s1 + 1/2, s2), χ1,v ⊗ χ1,v ⊗ π2,v, w)

if π2,v is tempered and

r(s, πv, w) = r((s1 − 1/2, s1 + 1/2, s2 + r, s2 − r), χ1,v ⊗ χ1,v ⊗ µv ⊗ µv, w)
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if π2,v is a complementary series. Since a complementary series is a fully
induced representation, the latter normalizing factor is also equal to

r((s1 − 1/2, s1 + 1/2, s2), χ1,v ⊗ χ1,v ⊗ π2,v, w),

thus giving the uniform formula at all split places which is more suitable for
the calculations in the next Section. Nevertheless, here we prefer to write
the normalizing factor using tempered representations only. For the maximal
parabolic subgroup case GL2(kv)×GL2(kv) ⊂ GL4(kv) the normalizing factor
equals

r((s1, s2), (χ1,v ◦ det′v) ⊗ π2,v, w1)

=
L(s− 1/2, χ1,vπ̃2,v)

L(s+ 3/2, χ1,vπ̃2,v)ε(s+ 1/2, χ1,vπ̃2,v)ε(s− 1/2, χ1,vπ̃2,v)
,(1.13)

where s = s1 − s2 and w1 is the unique nontrivial element of the Weyl group
of this case. For the maximal parabolic subgroup case GL2(kv) ⊂ SO4(kv)
and representation χv ◦detv of GL2(kv) the normalizing factor corresponding
to the unique nontrivial Weyl group element w2 of this case is given again by
(1.11).

The normalized intertwining operator N(s, πv, w) is the restriction of

N((s1 − 1/2, s1 + 1/2, s2), χ1,v ⊗ χ1,v ⊗ π2,v, w)

to I(s, πv). Again, this normalized intertwining operator is equal to

N((s1 − 1/2, s1 + 1/2, s2 + r, s2 − r), χ1,v ⊗ χ1,v ⊗ µv ⊗ µv, w)

if π2,v is a complementary series.

Proposition 1.14. For every w ∈ W (M ′0), the normalized intertwining
operator

N((s1, s2), (χ1,v ◦ detv) ⊗ π2,v, w)

defined above is holomorphic and non–vanishing for s = (s1, s2) such that

• Re(s1) > Re(s2) > 0, i.e. in the closure of the positive Weyl chamber,
• 0 < s1 < 1/2 and s2 = 1/2.

Proof. By the discussion preceding this Proposition, in the notation of
the general overview,

τv =

{
χ1,v ⊗ χ1,v ⊗ π2,v, if π2,v is tempered,
χ1,v ⊗ χ1,v ⊗ µv ⊗ µv, otherwise,

s′ =

{
(−1/2, 1/2, 0), if π2,v is tempered,
(−1/2, 1/2, r,−r), otherwise.

Then, w′ = (1, 2)(3)(4) in the notation of the proof of the previous Proposi-
tion. Hence,

s+ w′−1(s′) =

{
(s1 + 1/2, s1 − 1/2, s2), if π2,v is tempered,
(s1 + 1/2, s1 − 1/2, s2 + r, s2 − r), otherwise.
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For s in the closure of the positive Weyl chamber the inequalities of Proposi-
tion 1.6 are satisfied for every w ∈W (M ′0) since 0 < r < 1/2. In the tempered
case they are also satisfied for 0 < s1 < 1/2 and s2 = 1/2. Hence, the general
overview implies the holomorphy and non–vanishing of N(s, πv, w). For π2,v

non–tempered and 0 < s1 < 1/2 and s2 = 1/2 the problem occurs if

(s1 − 1/2) − (s2 + r) =6 −1.

However, repeating the same argument as in the proof of Proposition 1.12 for
Re(s1) = Re(s2) > 0 shows thatN(s, πv, w) is holomorphic and non–vanishing
as claimed.

1.3. Non–split case. In this Subsection the normalizing factors are given and
the holomorphy and non–vanishing of the normalized intertwining operators in
the closure of the positive Weyl chamber is proved for the irreducible unitary
representations π′v of the Levi factor M ′0(kv) of G′2(kv) at the places v of k
whereD is non–split. We assume thatD splits at every archimedean place, i.e.
here v is non–archimedean. Since M ′0(kv) has no proper parabolic subgroups,
the representation π′v is supercuspidal.

In order to prove required result for the minimal parabolic subgroup with
the Levi factor M ′0 ⊂ G′2, we must consider maximal proper parabolic sub-
group cases with the Levi factors GL′1 ⊂ G′1 and GL′1 ×GL′1 ⊂ GL′2. To
make the notation uniform in all three cases let G′ denote one of the groups
G′2, G

′
1, GL′2 and P ′ = M ′N ′ the standard parabolic subgroup with the Levi

factor M ′, one of the Levi factors M ′0, GL′1, GL′1 ×GL′1, respectively. The
corresponding split groups are denoted by G and P = MN .

For the Levi factor M ′ let X∗(M ′) be the Z–module of kv–rational char-
acters of M ′. As in the split case introduce the vector spaces aM ′,C, a

∗
M ′,C

and the homomorphism HP ′ : M ′ → aM ′ . At a non–split place v let ν de-
note the absolute value of the reduced norm on GL′1(kv) ∼= D×v . For the split
group GL2 let ν denote the absolute value of the determinant on GL2(kv).
The vector space a

∗
M ′,C is isomorphic to the split case a

∗
M,C and we fix the

isomorphism identifying ν for the split and non–split group. Moreover, we
fix the isomorphism with Cm by identifying s ∈ C with νs. Observe that
this isomorphism for a split group might not coincide with the isomorphism
used in the generic split maximal parabolic case where we identified s ∈ C

with sα̃. In order to distinguish between the isomorphisms we will write s
to denote the new one and sα̃ to denote the old one. Moreover, in the case
GL′1 ×GL′1 ⊂ GL′2, although a

∗
M ′,C is two–dimensional, as in the split case,

it is enough to consider its one–dimensional subspace of the form (s/2,−s/2)
where s ∈ C.

For s ∈ a
∗
M ′,C and an irreducible admissible representation π′v of M ′(kv)

we define the induced representation

I(s, π′v) = Ind
G′(kv)
M ′(kv)(π

′
v ⊗ exp〈s,HP ′(·)〉),
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and for w ∈ W (M ′) the intertwining operator

(1.15) A(s, π′v, w)fs,v(g) =

∫

U ′(kv)∩wN
′
(kv)w−1

fs,v(w
−1n′g)dn′,

where fs,v is in the space of the induced representation I(s, π′v), N
′
the unipo-

tent radical of the opposite parabolic subgroup of P ′ and U ′ the unipotent
radical of the Borel subgroup of G′. The Haar measure dn′ is chosen com-
patibly with the measure on the split form as explained in Section 2 of [42].
The dependency of fs,v on s is obtained using the compact picture with re-
spect to the fixed maximal compact subgroup as in Section II.1 of [38]. The
decomposition of Proposition 1.4 holds in this case because it holds for any
reductive group.

Observe that for M ′ ∼= GL′1 ×GL′1 if we write π′v
∼= π′1,v ⊗ π′2,v and

s = (s1, s2) ∈ a
∗
M ′,C, then

I(s, π′v) = Ind
G′(kv)
GL′

1(kv)×GL′

1(kv)(π
′
1,vν

s1 ⊗ π′2,vν
s2),

where G′ is G′2 or GL′2. In the latter case, tensoring by the appropriate power
of the absolute value of the reduced norm, shows

I((s1, s2), π
′
v) ∼= I (((s1 − s2)/2,−(s1 − s2)/2) , π′v) .

Observe that for the local lift πv of π′v the GL4(kv) induced representation

I((s1, s2), πv) ∼= I (((s1 − s2)/2,−(s1 − s2)/2) , πv) = I((s1 − s2)α̃, πv).

For M ′ ∼= GL′1 if s ∈ a
∗
M ′,C then

I(s, π′v) = Ind
G′

1(kv)

GL′

1(kv)(π
′
vν

s).

Observe that for the local lift πv of π′v the induced representation

I(s, πv) ∼= Ind
SO4(kv)
GL2(kv)(πvν

s) ∼= I(2sα̃, πv).

The normalization of the intertwining operators in the non–split case is
defined using the local lift of representations from GL′1(kv) ∼= D×v to the
split GL2(kv). Every irreducible representation π′v of M ′(kv) is supercuspidal
because M ′(kv) has no proper parabolic subgroups. Let πv denote its local
lift to M(kv). It is always square–integrable. Then, the normalizing factor
for the intertwining operator A(s, π′v, w) is defined to be

(1.16) r(s, π′v, w) = r(s, πv, w)

normalized intertwining operator

N(s, π′v, w) = r(s, π′v, w)−1A(s, π′v, w).
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More precisely, for the maximal parabolic case GL′1 ⊂ G′1, the adjoint repre-
sentation r is the exterior square of the standard representation of GL2(C)
and the normalizing factor is

(1.17) r(s, π′v , w2) = r(2sα̃, πv, w2) =
L(2s, ωπv

)

L(1 + 2s, ωπv
)ε(2s, ωπv

, ψv)
,

where w2 is the unique nontrivial element of the Weyl group of this case. For
the maximal parabolic case GL′1(kv)×GL′1(kv) ⊂ GL′2(kv), the adjoint repre-
sentation r is the tensor product of two standard representations of GL2(C)
and

r((s1, s2), π
′
v, w1) = r((s1 − s2)α̃, πv, w1)

=
L(s1 − s2, π1,v × π̃2,v)

L(1 + s1 − s2, π1,v × π̃2,v)ε(s1 − s2, π1,v × π̃2,v, ψv)
,(1.18)

where w1 is the unique nontrivial element of the Weyl group of this case.
As in the generic split case, the proof of holomorphy and non–vanishing

starts with the maximal parabolic subgroup cases and then uses the decom-
position of Proposition 1.4. But first we need the equality of the Plancherel
measures proved in the Siegel cases GL′n ⊂ G′n in Proposition 2.1 of [42]. The
case of GL′1 ×GL′1 ⊂ GL′2 is settled in the same way.

Lemma 1.19. Let M ′ ⊂ G′ be one of the maximal parabolic subgroup cases
considered, i.e. GL′1 ⊂ G′1 or GL′1 ×GL′1 ⊂ GL′2. Let π′v be an irreducible
unitary representation of M ′(kv) and πv its local lift to M(kv). Then, the
Plancherel measures of π′v and πv are equal, i.e. µ(s, π′v) = µ(s, πv) for ev-
ery s ∈ a

∗
M ′,C, where s denotes (s/2,−s/2) in the case GL′1 ×GL′1 ⊂ GL′2.

The measures on the unipotent radicals N ′(kv) and N(kv) used to define the
intertwining operators are chosen to be compatible as in Section 2 of [42].

Remark 1.20. Since πv is square–integrable, it is a generic representation
ofM(kv). The adjoint representation r is irreducible. Thus, by equations (3.6)
and (7.4) of [45] the Plancherel measure of πv equals

µ(sα̃, πv) =
ε(s, πv, r, ψv)L(1 − s, w(πv), r)

L(s, πv, r)

ε(−s, w(πv), r, ψv)L(1 + s, πv, r)

L(−s, w(πv), r)

= r(sα̃, πv, w)−1r(−sα̃, w(πv), w−1)−1.

By the previous Lemma

µ(s, π′v) = µ(s, πv) = r(s, πv , w)−1r(−s, w(πv), w−1)−1,

which verifies equation (4.1) of [1] for the normalizing factors. Therefore, by
the remark in Section 4 of [1], the normalization factors defined here satisfy
Theorem 2.1 of [1] and we will use it in the sequel. See also Section 2.2 of [5].

Proposition 1.21. Let M ′ ⊂ G′ be one of the maximal parabolic sub-
group cases considered, i.e. GL′1 ⊂ G′1 or GL′1 ×GL′1 ⊂ GL′2. Let π′v be an
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irreducible unitary representation of M ′(kv). Then, for Re(s) > 0 the nor-
malized intertwining operator N(s, π′v, w) is holomorphic and non–vanishing,
while for Re(s) < 0 it is holomorphic and non–vanishing if the induced repre-
sentation I(−s, π′v) is irreducible.

Proof. For Re(s) > 0, by the Langlands classification, the intertwining
operator A(s, π′v , w) is holomorphic and non–vanishing since π′v is supercusp-
idal. The L–functions appearing in r(s, πv , w) are also holomorphic and non–
vanishing for Re(s) > 0 by Section 3 of [1] for the archimedean and Section
4 of [7] for the non–archimedean case since the lift πv is square–integrable.
Hence, the normalized intertwining operator N(s, π′v, w) is holomorphic and
non–vanishing for Re(s) > 0.

For Re(s) = 0, by the definition of the Plancherel measure, Lemma 1.19
and Remark 1.20

µ(s, π′v)−1 = A(−s, w(π′v), w−1)A(s, π′v, w) = r(s, πv, w)r(−s, w(πv), w−1).

Hence,

N(−s, w(π′v), w−1)N(s, π′v, w) = Id.

By Remark 1.20, Theorem 2.1 of [1] holds and specially

N(s, π′v, w)∗ = N(−s, w(π′v), w−1).

Since the representations are admissible, the space of K ′–invariants for every
open compact subgroup K ′ of G′(kv) is finite–dimensional and N(s, π′v, w)
restricted to any such finite–dimensional space is a unitary operator. There-
fore, it is bounded and its operator norm is at most one. Taking K ′ smaller
and smaller, the holomorphy follows. The non–vanishing is a consequence of
holomorphy by Zhang’s Lemma (Lemma 1.7 of [25]).

For Re(s) < 0, note that Re(−s) > 0 and hence N(−s, w(π′v), w−1) is
holomorphic and non–vanishing. If the induced representation I(−s, w(π′v))
is irreducible, then N(−s, w(π′v), w−1) is an isomorphism. Now

N(−s, w(π′v), w−1)N(s, π′v, w) = Id

implies that N(s, π′v, w) is also an isomorphism and hence holomorphic and
non–vanishing.

Proposition 1.22. Let π′v
∼= π′1,v ⊗ π′2,v be an irreducible unitary rep-

resentation of the Levi factor M ′0(kv) ∼= GL′1(kv) × GL′1(kv) of G′2(kv) and
s = (s1, s2) ∈ a

∗
M ′

0,C. Then, for every w ∈ W , the normalized intertwining

operator N(s, π′v, w) is holomorphic and non–vanishing for s = (s1, s2) such
that

• Re(s1) > Re(s2) > 0, i.e. in the closure of the positive Weyl chamber,
• 0 < s1 < 1/2 and s2 = 1/2,
• 1/2 < s1 < 1 and s1 − s2 = 1,
• 1 < s1 < 2 and s1 − s2 = 2 except (s1, s2) = (3/2,−1/2).
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At the exceptional point (s1, s2) = (3/2,−1/2) it is always holomorphic
and non–vanishing for w ∈ {1, w1, w2w1, w1w2w1}. Moreover, for w ∈
{w2, w1w2, w2w1w2, w1w2w1w2}, it is holomorphic and non–vanishing at
(s1, s2) = (3/2,−1/2) if the central character ωπ′

2,v
is nontrivial.

Proof. For holomorphy write the intertwining operator N(s, π′v, w) as
the composition of the intertwining operators for the maximal parabolic cases
as in Proposition 1.4. Since π′v is supercuspidal, by Proposition 1.22, the
maximal parabolic case normalized intertwining operators are holomorphic for
s = (s1, s2) satisfying the conditions of the Proposition. By [42] the condition
on the central character assures that the induced representation I(−1/2, π′2,v)
is irreducible as required in Proposition 1.22. The point (s1, s2) = (3/2,−1/2)
is excluded in the last open interval if the induced representation I(−1/2, π′2,v)
is reducible because in that case the G′1(kv) normalized intertwining opera-
tor N(−1/2, π′2,v, w2) is not covered by the previous Proposition. For the
particular Weyl group elements in the last claim, the intertwining operator
N(−1/2, π′2,v, w2) does not occur in the decomposition. The non–vanishing
follows from the holomorphy by Zhang’s Lemma (Lemma 1.7 of [25]).

2. Calculation of the residual spectrum

The calculation of the residual spectrum in this paper relies on the Lang-
lands spectral theory as explained in [30] and [38]. See also [33] and [34].
However, dealing with the low rank group G′2 allows us to follow the exposi-
tion of [22] rather closely.

2.1. Brief Overview of the Method. Let L2(G′2) be the space of automorphic
forms on G′2(A) as defined in Section I.2.17 of [38]. Then, the first step in the
decomposition of L2(G′2) is the decomposition according to the cuspidal data
given in Section II.2.4 of [38]. Since in G′2 there are three standard proper
parabolic subgroups, all being self–associate, the decomposition according to
the cuspidal data for the groupG′2(A) gives the decomposition into the Hilbert
space direct sum

L2(G′2)
∼= L2

M ′

0
⊕ L2

M ′

1
⊕ L2

M ′

2
,

where L2
M ′

i
decomposes further into

L2
M ′

i

∼= ⊕π′L2
(M ′

i ,π′),

where the sum is over all the cuspidal automorphic representations π′ of
M ′i(A). For a cuspidal automorphic representation π′ of M ′i(A), the space
L2

(M ′

i
,π′) is described using the Eisenstein series attached to π′ as in Section

II.1.12 of [38]. We recall the description below. In this paper we consider the
residual part of the space L2

M ′

0
, where M ′0

∼= GL′1 ×GL′1 is the Levi factor of

the minimal standard parabolic subgroup P ′0 of G′2.
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The space a
∗
M ′

0,C is two–dimensional and we take ν, the absolute value

of the reduced norm, on every factor of M ′0 isomorphic to GL′1 as the basis
elements. Then s = (s1, s2) ∈ C2 corresponds to the character (νs1 , νs2) of
M ′0. The positive Weyl chamber is given by Re(s1) > Re(s2) > 0.

Denote by w1 and w2 the reflections with respect to simple roots e1 −
e2 and 2e2 of G′2. These elements of W (M ′0) correspond to the maximal
parabolic case intertwining operators for GL′1 ×GL′1 ⊂ GL′2 and GL′1 ⊂ G′1,
respectively. Then

W (M ′0) = {1, w1, w2, w1w2, w2w1, w1w2w1, w2w1w2, w1w2w1w2}.
In the following Table 1 the action of the elements of W (M ′0) on s = (s1, s2) ∈
aM ′

0,C and a cuspidal automorphic representation π′ = ⊗vπ
′
v
∼= π′1 ⊗ π′2 =(

⊗vπ
′
1,v

)
⊗
(
⊗vπ

′
2,v

)
of the Levi factor M ′0(A) ∼= GL′1(A) × GL′1(A) is given.

Here ·̃ denotes the contragredient representation.

w w(s) = w(s1, s2) w(π′) ∼= w(π′1 ⊗ π′2)

1 (s1, s2) π′1 ⊗ π′2
w1 (s2, s1) π′2 ⊗ π′1
w2 (s1,−s2) π′1 ⊗ π̃′2
w1w2 (−s2, s1) π̃′2 ⊗ π′1
w2w1 (s2,−s1) π′2 ⊗ π̃′1
w1w2w1 (−s1, s2) π̃′1 ⊗ π′2
w2w1w2 (−s2,−s1) π̃′2 ⊗ π̃′1
w1w2w1w2 (−s1,−s2) π̃′1 ⊗ π̃′2

Table 1. Action of W (M ′0)

Let π′ ∼= ⊗vπ
′
v be a cuspidal automorphic representation of M ′0(A). For

s = (s1, s2) ∈ a
∗
M ′

0,C we form the induced representation

I(s, π′) = Ind
G′

2(A)

M ′

0(A)

(
π′ ⊗ exp〈s,HP ′

0
(·)〉
)
,

where HP ′

0
: M ′0 → aM ′

0
is the homomorphism defined in Section 1. It is

the restricted tensor product of the local induced representations I(s, π′) ∼=
⊗vI(s, π

′
v), where the local induced representations I(s, π′v) are defined in the

previous Section. At almost all places, I(s, π′v) is unramified and the ten-
sor product is restricted with respect to the suitably normalized unramified
functions f◦s,v at those places, i.e. the functions invariant for the fixed max-

imal compact subgroup normalized by f◦s,v(Iv) = 1, where Iv is the identity

matrix. The induced representation I(s, π′) is always identified with its re-
alization in the space of automorphic forms. The sections fs ∈ I(s, π′) of
automorphic forms are always chosen in such a way that the function s 7→ fs
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is analytic on a
∗
M ′

0,C and Paley–Wiener with values in the space of the induced

representations as explained in Sections II.1.1 and II.1.2 of [38].
As in Section II.1.6 of [38] we define, for w ∈ W (M ′0) and fs ∈ I(s, π′), the

standard intertwining operator as the analytic continuation from the domain
of convergence of the integral

A(s, π′, w)fs(g) =

∫

U ′(A)∩wN
′

0(A)w−1

fs(w
−1n′g)dn′,

where U ′ is the unipotent radical of the Borel subgroup in G′2 and N
′

0 is the
unipotent radical of the opposite parabolic subgroup of P ′0. The fixed Haar
measure dn′ is chosen as in Section 2 of [41]. Away from the poles it is an
intertwining operator from I(s, π′) to I(w(s), w(π′)). Here w(s) and w(π′)
denotes the action of the Weyl group induced by the conjugation on the Levi
factor M ′0. The intertwining operator decomposes into the restricted tensor
product of the local intertwining operators defined in the previous Section,
i.e. if fs = ⊗vfs,v, then

A(s, π′, w)fs = ⊗vA(s, π′v, w)fs,v.

Here fs,v = f◦s,v at almost all places. At those places

A(s, π′v, w)f◦s,v = r(s, π′v, w)f̃◦w(s),v,

where f̃◦w(s),v is unramified in I(w(s), w(π′v)) normalized by f̃◦w(s),v(Iv) = 1

and r(s, π′v, w) is the normalizing factor.
As in Section II.1.5 of [38] we define, for s ∈ a

∗
M ′

0,C and fs ∈ I(s, π′), the

Eisenstein series attached to π′ as the analytic continuation from the domain
of convergence of the following series

E(s, g; fs, π
′) =

∑

γ∈P ′

0(k)\G′

2(k)

fs(γg),

where g ∈ G′2(A). It is meromorphic as a function of s. By Section II.1.12 of
[38], the space L2

(M ′

0,π′) is the closure of the space generated by the functions

of the form

(2.1) g 7→ 1

(2πi)2

∫

Re(s)=s0

E(s, g; fs, π
′)ds,

where s0 is in the domain of the absolute convergence of the integral defining
the standard intertwining operators and the series defining the Eisenstein
series.

In order to distinguish the residual part of the space L2
(M ′

0,π′) we apply the

residue theorem of Section V.1.5 of [38] to move the line of integration into the
origin of a

∗
M ′

0,C, i.e. to the line Re(s) = (0, 0). Before giving more details on

the application of the residue theorem in our case, let us consider the singular
hyperplanes of the Eisenstein series inside the positive Weyl chamber. Since
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it suffices to consider the real poles of the Eisenstein series as explained in
the Introduction, it is enough to view the singularities of the Eisenstein series
inside the real part of a

∗
M ′

0,C.

The analytic properties of the Eisenstein series, such as the position and
order of the poles and the square integrability, coincide with the analytic
properties of their constant term along P ′0, i.e.

E0(s, g; fs, π
′) =

∫

N ′

0(k)\N ′

0(A)

E(s, n′g; fs, π
′)dn′.

On the other hand by Proposition II.1.7. of [38] the constant term equals

(2.2) E0(s, g; fs, π
′) =

∑

w∈W (M ′

0)

A(s, π′, w)fs(g).

Hence, the singularities of the Eisenstein series are the same as the singu-
larities of the sum of the intertwining operators in (2.2). This is where the
normalization of the intertwining operators of the preceding Section comes
into play, enabling us to find the singularities inside the closure of the pos-
itive Weyl chamber as the singularities of the normalizing factors which are
given using the L–functions. But the normalizing factors depend on the form
of the cuspidal automorphic representation π′ ∼= π′1 ⊗ π′2. More precisely, we
distinguish three cases:

Case A Both π1 and π2 are cuspidal automorphic representations,
Case B One of π1 and π2 is a cuspidal and the other is a residual auto-

morphic representation,
Case C Both π1 and π2 are residual automorphic representations.

In the following Theorem we restate the results of the preceding Section in
the global context. The standard proof is omitted.

Theorem 2.3. Let π′ = ⊗vπ
′
v be a cuspidal automorphic representation

of the group M ′0(A). Then, for every w ∈ W (M ′0), the global normalizing
factor

r(s, π′, w) =
∏

v

r(s, π′v, w)

is a meromorphic function of s, and for every w ∈ W (M ′0) the global normal-
ized operator

N(s, π′, w) = r(s, π′, w)−1A(s, π′, w)

is holomorphic and non–vanishing for s = (s1, s2) such that

• Re(s1) > Re(s2) > 0, except at s = (0, 0) in case C, i.e. in the closure
of the positive Weyl chamber, except the origin in case C,

• 0 < s1 < 1/2 and s2 = 1/2,
• In case A, 1/2 < s1 < 1 and s1 − s2 = 1,
• In case C, 1 < s1 < 2 and s1 − s2 = 2 except (s1, s2) = (3/2,−1/2).
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In case C, at the exceptional point (s1, s2) = (3/2,−1/2) it is always holo-
morphic and non–vanishing for w ∈ {1, w1, w2w1, w1w2w1}.

Remark 2.4. The behavior of the global intertwining operator at
(3/2,−1/2) in case C for w = w1w2w1w2 is also required in the calculation.
However, we will study that behavior during the calculation of the residual
spectrum at that point in case C.

Now, inside the closure of the positive Weyl chamber, the singular hy-
perplanes of the normalizing factors r(s, π′, w) for w ∈ W (M ′0) are in fact
the possible singular hyperplanes of the Eisenstein series E(s, g; fs, π

′). The
possible singular hyperplanes in each of the three cases are given in Figures 1,
2 and 3 below, where only the real part of a

∗
M ′

0,C is presented. The Eisenstein

series is a meromorphic function with the (possible) polynomial singularities
along these hyperplanes in a sense of Section V.1.3 of [38].

Finally, we explain how to apply the residue theorem of Section V.1.5
of [38] to decompose the residual part of the space L2

(M ′

0,π′) for a cuspidal

automorphic representation π′ of M ′0(A). We choose a path connecting s0
and the origin of a

∗
M ′

0,C satisfying the conditions of Section V.1.5 of [38] as

indicated by the dashed line in Figures 1, 2 and 3. It intersects every singular
hyperplane inside the positive Weyl chamber in only one real point and avoids
the intersections of singular hyperplanes.

The residue theorem of Section V.1.5 of [38] and the decomposition of
Section V.3.13 of [38] (see also Section 5 of [22]), show that the integral (2.1)
generating the space L2

(M ′

0,π′), after deforming the line of integration to the

origin, gives

g 7→ 1

(2πi)2

∫

Re(s)=(0,0)

E(s, g; fs, π
′)ds

which generate a part of the continuous spectrum attached to π′, and the
sum

(2.5)
∑

S

1

2πi

∫

Re(s)=s0,S

ResS E(s, g; fs, π
′)ds

of the residues of the Eisenstein series along the singular hyperplanes S, where
s0,S is the real point of the intersection of S with the path of deformation.

Next, for every singular hyperplane S, we fix the new coordinate z on
S such that z = 0 corresponds to the orthogonal projection of the origin of
a
∗
M ′

0,C on S. Let z0 be the new coordinate of the intersection point s0,S . Then,

the integrals in (2.5) become
∫

Re(z)=z0

ResS E(z, g; fs, π
′)dz,

where ResS E(z, g; fs, π
′) is the residue along S written in the new variable

z. By the residue theorem in one variable applied to the singular hyperplane
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S, we deform the line of integration from Re(z) = z0 to the origin Re(z) = 0
as indicated by the dotted lines in Figures 1, 2 and 3. Again, at the origin of
S we obtain a part of the continuous spectrum, while the residues which we
pick up along the way, if square–integrable (and non–zero), generate the part
of the residual spectrum L2

res,(M ′

0,π′) inside L2
(M ′

0,π′). Hence, the contribution

at a singular point z = ζ on S is the iterated residue

(2.6) Resz=ζ ResS E(s, g; fs, π
′).

The Langlands square–integrability criterion for the automorphic forms ob-
tained as the iterated residues (2.6) is given in the following Lemma. For the
proof see Section I.4.11 of [38] or page 104 of [30]. Recall that the analytic
properties of the Eisenstein series coincide with the analytic properties of its
constant term.

Lemma 2.7. Let π′ be a cuspidal automorphic representation of M ′0(A).
Let the iterated residue

Resz=ζ ResS E0(s, g; fs, π
′)

of the constant term of the Eisenstein series attached to π′ at a point s =
(s1, s2) be equal to

∑

w∈W ′

0⊂W (M ′

0)

Cw ·N(s, π′, w)fs(g),

where Cw are nonzero constants. Then, the automorphic forms in the space
L2

res,(M ′

0,π′) obtained as the iterated residue (2.6) are square–integrable if and

only if w(s) = (s′1, s
′
2) satisfies

s′1 < 0,

s′1 + s′2 < 0,

for all w ∈ W ′0 such that fs is not in the kernel of the normalized intertwining
operator N(s, π′, w).

By Section V.3.16 of [38] (see also Section 3 of [22]), the constant term of
an automorphic form obtained as the iterated residue (2.6) of the Eisenstein
series equals the same iterated residue of the constant term of the Eisenstein
series. Therefore, by Section I.3.4 of [38], the constant term map induces
an isomorphism of the space of the automorphic forms obtained as the iter-
ated residue (2.6) and the corresponding residue of the constant term. More
precisely, the following diagram is commutative:

I(s, π′)
Resz=ζ ResS E(s,g;fs,π′)

−−−−−−−−−−−−−−−−−−−−−−−−−−→ L2
res,M ′

0

Resz=ζ ResS E0(s, g; fs, π′) ց ւ the constant term map along P ′

0

(2.8) the space of constant terms along P ′

0.
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Finally, when decomposing the part of the residual spectrum L2
res,M ′

0

attached to the cuspidal automorphic representations π′ ofM ′0(A), we consider
separately the three cases A, B and C for π′. Hence,

L2
res,M ′

0

∼= L2
A ⊕ L2

B ⊕ L2
C ,

where L2
X , for X = A,B,C, is the Hilbert space direct sum of the resid-

ual parts L2
res,(M ′

0,π′) of the spaces L2
(M ′

0,π′) where π′ is a case X cuspidal

automorphic representation of M ′0(A).
Before proceeding to the calculation we collect a few facts repeatedly used

in the sequel. The first is just an elementary fact and we omit the proof here.

Lemma 2.8. Let L(s) be a meromorphic function on C having only simple
poles, L(0) 6= 0, and satisfying the functional equation L(s) = ε(s)L(1 − s),
where ε(s) is an entire non–vanishing function such that ε(0)ε(1) = 1. Then

L(s)

L(1 + s)ε(s)

∣∣∣
s=0

=

{
−1, if s = 0 is a simple pole of L(s),

1, otherwise.

The following Lemma concerning the images of the normalized intertwin-
ing operators is just a simple consequence of the Langlands classification. It is
a slight generalization of the observation on page 135 of [22] and will be useful
in proving the irreducibility of the spaces of automorphic forms appearing in
the decomposition of the residual spectrum.

Lemma 2.9. Let G be a reductive group defined over k, πv an irreducible
representation of M(kv), where M is the Levi factor of a standard parabolic
subgroup P , s ∈ a

∗
M,C and w ∈ W (M). Let πv be the unique irreducible

subrepresentation of the induced representation IM
L (s′, τv), where L ⊆ M is

the Levi factor of a standard parabolic subgroup, τv a tempered representation
of L(kv) and s′ ∈ a

∗
L,C. If there are Weyl group elements w′, w′′ ∈W (L) such

that

1. Re(w′−1(s + s′)) is in the positive Weyl chamber of a
∗
w′−1(L),C, where

s is identified with an element of a
∗
L,C,

2. w′′ww′ is the longest element of the Weyl group of (G,w′−1(L)),
3. N(w(s+ s′), w(τv), w′′) is injective,
4. the image of N(w′−1(s+ s′), w′−1(τv), w′) is I(s, πv),

then the image of the normalized intertwining operator N(s, πv, w) is irre-
ducible.

In the special case of G = G′2 and the Levi factor w′−1(L) = M ′0 at a non–
split place the requirement that Re(w′−1(s + s′)) = (s1, s2) is in the positive
Weyl chamber can be replaced by a weaker condition s1 > s2 > 0. In the split
case of G = SO8, w

′−1(L) = GLn1 × . . .×GLnk
, where n1 + . . .+nk = 4, if τv

is square–integrable then the requirement that Re(w′−1(s+ s′)) = (s1, . . . , sk)
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is in the positive Weyl chamber can be replaced by a weaker condition

s1 > . . . > sk > 0, if nk > 1,

s1 > . . . > sk−1 > |sk| > 0, if nk = 1 and sk 6= 0,(2.10)

s1 > . . . > sk−1 > |sk| = 0, if nk = 1 and sk = 0.

Proof. The normalized intertwining operator

N(w′−1(s+ s′), w′−1(τv), w′′ww′)

decomposes into

N(w(s + s′), w(τv), w′′)N(s+ s′, τv, w)N(w′−1(s+ s′), w′−1(τv), w′).

Since the image of N(w′−1(s + s′), w′−1(τv), w′) is precisely I(s, πv) and
N(w(s+ s′), w(τv), w′′) is injective, the image of

N(s, πv, w) = N(s+ s′, τv, w)
∣∣∣
I(s,πv)

is isomorphic to the image of N(w′−1(s+s′), w′−1(τv), w′′ww′). However, the
image of that operator is irreducible because it is the long intertwining oper-
ator of the Langlands classification. In the special cases the weaker condition
on w′−1(s + s′) is exactly the condition of the Langlands classification using
the fact that for GL′n(kv) and GLn(kv) a tempered representation is fully in-
duced from a square–integrable representation of a smaller Levi subgroup.

Remark 2.11. In the following calculation we use the analytic properties
of the various global L–functions attached to cuspidal automorphic represen-
tations. The global Rankin–Selberg L–function L(s, π1 × π2) of the cuspidal
automorphic representations π1 and π2 of GL2(A) has simple poles at s = 0
and s = 1 if π1

∼= π̃2 and it is entire otherwise. The global principal L–function
L(s, π) of a cuspidal automorphic representation π of GL2(A) is entire. The
global Hecke L–function L(s, µ) of a unitary character µ of A

×/k× has simple
poles at s = 0 and s = 1 if µ is trivial and it is entire otherwise. All these
global L–functions are non–vanishing for Re(s) > 1. The local L–function
L(s, µv) of a unitary character µv of a p–adic field k×v has simple poles at
s = 2kπ

√
−1/ log q, k ∈ Z, if µv is trivial and it is entire otherwise. It has

no zeroes. Observe that the global Hecke L–function L(s,1) of the trivial
character 1 of A

×/k× is nothing else than the Dedekind ζ–function of the
number field k.

2.2. Case A. In this case, both π1 and π2 are cuspidal automorphic repre-
sentations of GL2(A). In Table 2 the normalizing factors for the intertwining
operators A(s, π′, w) appearing in the constant term of the Eisenstein series
attached to π′ are given. In this case the local lift at non–split places is
consistent with the global lift and hence by (1.2) and (1.16) in the global nor-
malizing factors only the global L–functions and ε–factors appear. Therefore,
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using Remark 2.11, the possible singular hyperplanes of the Eisenstein series
are as shown in Figure 1.

w r(s, π′, w)

1 1

w1
L(s1−s2,π1×π̃2)

L(1+s1−s2,π1×π̃2)ε(s1−s2,π1×π̃2)

w2
L(2s2,ωπ2)

L(1+2s2,ωπ2)ε(2s2,ωπ2)

w1w2
L(2s2,ωπ2)

L(1+2s2,ωπ2)ε(2s2,ωπ2)
L(s1+s2,π1×π2)

L(1+s1+s2,π1×π2)ε(s1+s2,π1×π2)

w2w1
L(s1−s2,π1×π̃2)

L(1+s1−s2,π1×π̃2)ε(s1−s2,π1×π̃2)

L(2s1,ωπ1)

L(1+2s1,ωπ1)ε(2s1,ωπ1)

w1w2w1
L(s1−s2,π1×π̃2)

L(1+s1−s2,π1×π̃2)ε(s1−s2,π1×π̃2)
L(2s1,ωπ1)

L(1+2s1,ωπ1)ε(2s1,ωπ1)
L(s1+s2,π1×π2)

L(1+s1+s2,π1×π2)ε(s1+s2,π1×π2)

w2w1w2
L(2s2,ωπ2)

L(1+2s2,ωπ2)ε(2s2,ωπ2)
L(s1+s2,π1×π2)

L(1+s1+s2,π1×π2)ε(s1+s2,π1×π2)

L(2s1,ωπ1)

L(1+2s1,ωπ1)ε(2s1,ωπ1)

w1w2w1w2
L(2s2,ωπ2)

L(1+2s2,ωπ2)ε(2s2,ωπ2)
L(s1+s2,π1×π2)

L(1+s1+s2,π1×π2)ε(s1+s2,π1×π2)
L(2s1,ωπ1)

L(1+2s1,ωπ1)ε(2s1,ωπ1)
L(s1−s2,π1×π̃2)

L(1+s1−s2,π1×π̃2)ε(s1−s2,π1×π̃2)

Table 2. Case A normalizing factors of A(s, π′, w) for w ∈ W (M ′0)

While deforming the line of integration in (2.1) from s0 to the origin of
a
∗
M ′

0,C inside the positive Weyl chamber as in Figure 1, we cross the singu-

lar hyperplanes. Taking the coordinate systems on those hyperplanes such
that the origin is the orthogonal projection of the origin in a

∗
M ′

0,C gives the

points where the possible poles of (2.2) occur. There are three such points
A1(3/2, 1/2), A2(1, 0) and A3(1/2, 1/2) in Figure 1. Points A1 and A2 lie on
the singular hyperplane s1 − s2 = 1 and A3 lies on 2s2 = 1.

The coordinate system on s1 − s2 = 1 is given by s1 = z + 1/2 and
s2 = z−1/2, where z denotes the new coordinate. Then, point A1 corresponds
to z = 1 and A2 to z = 1/2. For the singular hyperplane 2s2 = 1 the
coordinate system is given by s1 = z and s2 = 1/2, where z denotes the new
coordinate. Point A3 corresponds to z = 1/2.

According to the three possible iterated poles of the Eisenstein series the
part L2

A of the residual spectrum decomposes into

L2
A
∼= L2

A1
⊕ L2

A2
⊕ L2

A3
,

where, using the coordinate systems fixed above, L2
A1

, L2
A2

and L2
A3

are ob-
tained, respectively, as the iterated residues

Resz=1 Ress1−s2=1E(s, g; fs, π
′),
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Figure 1. Case A singular hyperplanes

Resz=1/2 Ress1−s2=1E(s, g; fs, π
′),

Resz=1/2 Res2s2=1E(s, g; fs, π
′),

of the Eisenstein series attached to the case A cuspidal automorphic repre-
sentations π′ of M ′0(A). In the following three Theorems the decomposition
of those spaces is given.

Theorem 2.12. The subspace L2
A1

of the residual spectrum of G′2(A)
decomposes into

L2
A1

= ⊕π′A1(π
′),

where the sum is over all the cuspidal automorphic representations π′ ∼= π′1⊗π′2
of M ′0(A) such that π′1

∼= π′2 and the central character ωπ′

1
= ωπ′

2
is trivial.

A1(π
′) is the irreducible space of automorphic forms spanned by the iter-

ated residue
Resz=1 Ress1−s2=1E(s, g; fs, π

′)

at s = (3/2, 1/2) of the Eisenstein series attached to π′. By (2.8), the constant
term map induces an isomorphism of A1(π

′) and the image of the normalized
intertwining operator

N((3/2, 1/2), π′, w1w2w1w2).

Proof. The contribution of the pole at point A1 of the sum of the in-
tertwining operators (2.2) is obtained by taking the residue along s1 − s2 = 1
first. Since, the normalized intertwining operators are holomorphic and non–
vanishing in the closure of the positive Weyl chamber, the pole is obtained
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from the normalizing factors of Table 2. The pole along the singular hyper-
plane s1 − s2 = 1 occurs if and only if π1

∼= π2 for the intertwining operators
corresponding to the Weyl group elements w1, w2w1, w1w2w1 and w1w2w1w2.
It is a simple pole. Up to the nonzero constant

Ress=1 L(s, π1 × π̃2)L(2, π1 × π̃2)
−1ε(1, π1 × π̃2)

−1,

the residues along s1 − s2 = 1 written in the new variable z defined above are
given in Table 3.

w Ress1−s2=1 r(s, π
′, w)

w1 1

w2w1
L(1+2z,ωπ1)

L(2+2z,ωπ1)ε(1+2z,ωπ1)

w1w2w1
L(1+2z,ωπ1)

L(2+2z,ωπ1)ε(1+2z,ωπ1)
L(2z,π1×π2)

L(1+2z,π1×π2)ε(2z,π1×π2)

w1w2w1w2
L(−1+2z,ωπ2)

L(2z,ωπ2)ε(−1+2z,ωπ2)
L(2z,π1×π2)

L(1+2z,π1×π2)ε(2z,π1×π2)

L(1+2z,ωπ1)

L(2+2z,ωπ1)ε(1+2z,ωπ1)

Table 3. Residues along s1 − s2 = 1 of case A normalizing factors

For the pole at point A1 we must look at the pole of the terms in Table
3 at z = 1. The pole at z = 1 occurs if and only if ωπ2 = 1 for the term
corresponding to w1w2w1w2 and it is simple. Hence, the pole of the Eisenstein
series at point A1 occurs if and only if π1

∼= π2 and ωπ1 = ωπ2 is trivial, i.e.
if and only if π′1

∼= π′2 and ωπ′

1
= ωπ′

2
is trivial. In that case the residue of the

constant term is up to a nonzero constant equal to the normalized intertwining
operator N((3/2, 1/2), π′, w1w2w1w2). The square integrability follows from
Lemma 2.7 because w1w2w1w2(3/2, 1/2) = (−3/2,−1/2).

It remains to prove that the image of that operator is irreducible. Using
Lemma 2.9 we prove the irreducibility of the image of the local operators
N((3/2, 1/2), π′v, w1w2w1w2) at every place v. Let w = w1w2w1w2 and s =
(3/2, 1/2). At all the places where the representation π′v is tempered the
image is irreducible by the Langlands classification since s is in the positive
Weyl chamber and w is the longest Weyl group element for (G′2,M

′
0). Observe

that this is the case for all non–split places.
For a split place where the representation πv

∼= π1,v⊗π2,v is non–tempered
at least one of representations πi,v is a complementary series, i.e.

πi,v
∼= Ind

GL2(kv)
GL1(kv)×GL1(kv)(µi,v| · |ri ⊗ µi,v| · |−ri),

where 0 < ri < 1/2 and µi,v is a unitary character of k×v . Then πv is a fully
induced representation from a tempered representation of a smaller parabolic
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subgroup. In the notation of Lemma 2.9 the Levi factor L is one of the Levi
factors GL1 ×GL1 ×GL2, GL2 ×GL1 ×GL1, GL1 ×GL1 ×GL1 ×GL1 and

s+ s′ =






(3/2 + r1, 3/2 − r1, 1/2),
(3/2, 1/2 + r2, 1/2 − r2),
(3/2 + r1, 3/2 − r1, 1/2 + r2, 1/2 − r2),

where 0 < ri < 1/2. Let w′ = 1 and in notation of the proof of Proposition
1.12

w′′ =






(1, 2)(3),
(1)(2, 3),
(1, 2)(3, 4).

Then w′′ww′ is the longest Weyl group element for (SO8, L), s+ s′ is in the
positive Weyl chamber andN(w(s), w(πv), w′′) = N(w(s+s′), w(τv), w′′) is an
isomorphism. Hence, by Lemma 2.9, the image of the normalized intertwining
operator N((3/2, 1/2), πv, w) is irreducible.

Before giving the decomposition of L2
A2

we consider the induced represen-

tation Ind
G′

1(kv)

GL′

1(kv) σ
′
v of G′1(kv) and the corresponding normalized intertwining

operatorN(0, σ′v, w2), where σ′v is a selfcontragredient irreducible unitary rep-
resentation of GL′1(kv). We exploit the structure of the group G′1 (see also
[17]).

The group G′1 as an algebraic group over k can be realized as
(2.13)

G′1 =

{[
ag bg
cg dg

]
∈ GL′2 : g ∈ GL′1,

[
a b
c d

]
∈ GL2, (ad− bc)det′v(g) = 1

}
,

where det′v is the determinant over split places and the reduced norm over
non–split places. Hence, G′1 has the following two subgroups

SL
′(1)
1 =

{[
g 0
0 g

]
∈ GL′2 : g ∈ SL′1

}

and

SL
(2)
2 =

{[
aI ′1 bI ′1
cI ′1 dI ′1

]
∈ GL′2 :

[
a b
c d

]
∈ SL2

}
,

where I ′n equals the 2n × 2n identity matrix at split places and I ′n equals
the n × n identity matrix at non–split places. The intersection of these

subgroups is {±I ′2} and the product SL
′(1)
1 SL

(2)
2 is a normal subgroup of

G′1. Over a local field kv the quotient is finite and isomorphic to k×v /(k
×
v )2.

The following Lemma considers the restriction of representations of G′1(kv) to

SL
′(1)
1 (kv) SL

(2)
2 (kv).

Let {γv} be the fixed set of representatives of k×v /(k
×
v )2. Abusing the

notation, let γ′v at split places denote in the same time diagonal matrices

diag(γv, 1) ∈ GL2(kv) and diag(γv, 1, 1, γ
−1
v ) ∈ SO4(kv),
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while at non–split places it denotes in the same time the element of GL′1(kv) ∼=
D×v corresponding to diag(γv, 1) ∈ GL2(kv) in a matrix representation of Dv

as in Section 2 of [16] and the matrix

diag(γ′v, γ
−1
v γ′v) ∈ G′1(kv).

This notation is justified by the fact that the conjugation in the group

SL
′(1)
1 (kv) SL

(2)
2 (kv) by γ′v as an element of G′1(kv) is actually the conjuga-

tion by γ′v as an element of GL′1(kv) in SL
′(1)
1 (kv) and SL

(2)
2 (kv). Observe

that {γ′v} forms in the same time the set of representatives for

G′1(kv)/SL
′(1)
1 (kv) SL

(2)
2 (kv) and GL′1(kv)/SL′1(kv)Z(kv),

where Z is the center of GL′1. These facts concerning the conjugation reduce
the proof of the following Lemma to Lemmas 2.4, 2.5 and 2.8 of [29]. See also
[49].

Lemma 2.14. Let π′v be an irreducible representation of G′1(kv). The

restriction of π′v to the subgroup SL
′(1)
1 (kv) SL

(2)
2 (kv) decomposes into

π′v

∣∣∣
SL

′(1)
1 (kv) SL

(2)
2 (kv)

∼=
⊕

γ′
v∈Γ′

v

(
σ
′γ′

v

1,v ⊗ σ
γ′

v

2,v

)
,

where σ′1,v ⊗ σ2,v is any irreducible subrepresentation of the above restriction,

σ
γ′

v

i,v denotes representation σ
γ′

v

i,v(g) = σi,v(γ′−1
v gγ′v) and the sum is over the

subset Γ′v of the set of all representatives γ′v such that different σ
′γ′

v

1,v ⊗σγ′

v

2,v are
not isomorphic.

Conversely, for an irreducible representation σ′1,v ⊗ σ2,v of the subgroup

SL
′(1)
1 (kv) SL

(2)
2 (kv) there is an irreducible representation π′v of G′1(kv) such

that

σ′1,v ⊗ σ2,v ⊂ π′v

∣∣∣
SL

′(1)
1 (kv) SL

(2)
2 (kv)

.

It is unique up to a quadratic character of G′1(kv) which is trivial on

SL
′(1)
1 (kv) SL

(2)
2 (kv).

Lemma 2.15. Let π′v = Ind
G′

1(kv)

GL′

1(kv) σ
′
v, where σ′v is a selfcontragredient

irreducible unitary representation of GL′1(kv). Then in the notation of Lemma

2.14 the restriction of π′v to the subgroup SL
′(1)
1 (kv) SL

(2)
2 (kv) decomposes into

π′v

∣∣∣
SL

′(1)
1 (kv) SL

(2)
2 (kv)

∼=
(
⊕γ′

v∈Γ′
v
τ
′γ′

v
v

)
⊗ Ind

SL
(2)
2 (kv)

GL1(kv) ωσ′
v
,

where τ ′v is a subrepresentation of the restriction of σ′v from GL′1(kv) to

SL
′(1)
1 (kv) and ωσ′

v
is the central character of σ′v. Here Γ′v is the set of the

representatives γ′v such that different τ
γ′

v
v are not isomorphic. Therefore, π′v
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is irreducible if ωσ′
v

is trivial and it is the direct sum of two non–isomorphic
irreducible components otherwise.

Proof. The application of the Mackey theory (similar to Corollary
5.3.4.2 of [52]) to our finite index subgroup case shows that

(
Ind

G′

1(kv)

GL′

1(kv) σ
′
v

)∣∣∣
SL

′(1)
1 (kv) SL

(2)
2 (kv)

∼= Ind
SL

′(1)
1 (kv) SL

(2)
2 (kv)

SL
′(1)
1 (kv)T (2)(kv)

(
σ′v

∣∣∣
SL

′(1)
1 (kv)T (2)(kv)

)
,

where T (2) is the maximal split torus in SL
(2)
2 and SL

′(1)
1 T (2) is isomorphic

to GL′1 ∩SL
′(1)
1 SL

(2)
2 . Since in our matrix realization SL

′(1)
1 is just the SL′1

inside the Levi factor GL′1 and T (2) is the center of GL′1, the restriction on
the right hand side decomposes into the finite direct sum

(
⊕γ′

v∈Γ′
v
τ
′γ′

v
v

)
⊗ ωσ′

v
,

where τ ′v is an irreducible subrepresentation of the restriction of σ′v to SL
′(1)
1

(see Lemma 2.14) and ωσ′
v

is the central character of σ′v. Hence, we obtain

π′v

∣∣∣
SL

′(1)
1 (kv) SL

(2)
2 (kv)

∼=
(
⊕γ′

v∈Γ′
v
τ
′γ′

v
v

)
⊗ Ind

SL
(2)
2 (kv)

T (2)(kv)
ωσ′

v
,

as claimed. Now, if ωσ′
v

is trivial the induced representation Ind
SL

(2)
2 (kv)

T (2)(kv)
ωσ′

v

is irreducible and the restriction of π′v becomes

⊕γ′
v∈Γ′

v

(
τ
′γ′

v
v ⊗ Ind

SL
(2)
2 (kv)

T (2)(kv)
ωσ′

v

)

which is the restriction of an irreducible representation of G′1(kv). If ωσ′
v

is

not trivial the induced representation Ind
SL

(2)
2 (kv)

T (2)(kv)
ωσ′

v
is the direct sum of two

irreducible representations of SL
(2)
2 which are conjugate by a representative

γ′v. Denote those representations by τ+ and τ−. The restriction of π′v can be
written as

[
⊕γ′

v∈Γ′
v

(
τ
′γ′

v
v ⊗ (τ+)γ′

v

)]
⊕
[
⊕γ′

v∈Γ′
v

(
τ
′γ′

v
v ⊗ (τ−)γ′

v

)]
.

where every square bracket is the restriction of an irreducible representation
of G′1(kv). Hence, in this case π′v is the direct sum of two non–isomorphic
irreducible representations.

Corollary 2.16. In the notation as above, the eigenspaces of the normal-
ized intertwining operator N(0, σ′v, w2) acting on the induced representation

π′v
∼= Ind

G′

1(kv)

GL′

1(kv) σ
′
v are irreducible. More precisely,

π′v
∼= π′+v ⊕ π′−v ,
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where, π′±v denotes the irreducible eigenspace corresponding to the eigenvalue
±1, and one of π′±v is trivial if and only if ωσ′

v
is trivial. If v is a split place

and σ′v is unramified, then the unramified component of π′v is always π′+v .

Consider the induced representation

Ind
G′

2(kv)

GL′

1(kv)×GL′

1(kv)(π
′
1,vν⊗π′2,v)

∼=Ind
G′

2(kv)

GL′

1(kv)×G′

1(kv)

(
π′1,vν ⊗ Ind

G′

1(kv)

GL′

1(kv) π
′
2,v

)
.

According to Lemma 2.15 and its Corollary, it decomposes into the direct sum
of irreducible representations

⊕

ηv∈{+,−}

Ind
G′

2(kv)

GL′

1(kv)×G′

1(kv)

(
π′1,vν ⊗

(
Ind

G′

1(kv)

GL′

1(kv) π
′
2,v

)ηv
)
,

where one of the components is trivial if and only if the central charac-
ter ωπ′

2,v
is trivial. The image of the normalized intertwining operator

N((1, 0), π′v, w1w2w1) acting on each of the irreducible components is denoted
by Π′ηv

v , where ηv ∈ {+,−}. Observe that one of Π′ηv
v is trivial if and only if

the central character ωπ′

2,v
is trivial.

Theorem 2.17. The subspace L2
A2

of the residual spectrum of G′2(A)
decomposes into

L2
A2

=
(
⊕π′A(1)

2 (π′)
)
⊕
(
⊕π′A(2)

2 (π′)
)
.

The former sum is over all the cuspidal automorphic representations π′ ∼=
π′1⊗π′2 of M ′0(A) such that π′1

∼= π′2 is selfcontragredient, the central character
ωπ′

1
= ωπ′

2
is trivial and the parity condition

∏
v ηv = −1 holds. The latter sum

is over all the cuspidal automorphic representations π′ ∼= π′1 ⊗ π′2 of M ′0(A)
such that π′1

∼= π′2 is selfcontragredient and the central character ωπ′

1
= ωπ′

2
is

nontrivial.
Both A(1)

2 (π′) and A(2)
2 (π′) are the spaces of automorphic forms spanned

by the iterated residues

Resz=1/2 Ress1−s2=1 E(s, g; fs, π
′)

at s = (1, 0) of the Eisenstein series attached to π′. A(1)
2 (π′) is irreducible

and, by (2.8), the constant term map induces an isomorphism of A(1)
2 (π′) and

the image of the normalized intertwining operator

N((1, 0), π′, w1w2w1).

By (2.8), the constant term map induces an isomorphism of A(2)
2 (π′) and the

sum of the irreducible representations of the form ⊗vΠ
′ηv
v , where ηv is one of

the two possible signs at places where ωπ1,v
= ωπ2,v

is nontrivial, at almost all
places ηv = + and the product of all the signs

∏
v ηv = 1.
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Proof. The iterated residue at A2, as shown in Figure 1, is calculated
first along s1 − s2 = 1. The residues written in the new variable z were
calculated in the proof of the previous Theorem and given in Table 3 up
to a nonzero constant. They appear if and only if π1

∼= π2. The pole at
point A2 is actually the pole at z = 1/2. From the analytic properties of
the L–functions involved it follows that the simple pole at z = 1/2 occurs
if and only if π1

∼= π̃2 for the intertwining operators corresponding to the
Weyl group elements w1w2w1 and w1w2w1w2. Observe that π1

∼= π2 are
selfcontragredient and hence their central characters are quadratic. Up to the
nonzero constant

Ress=1 L(s, π1 × π2)L(2, ωπ1)

L(2, π1 × π2)ε(1, π1 × π2)L(3, ωπ1)ε(2, ωπ1)
,

the former residue equals N((1, 0), π′, w1w2w1). For the latter we distinguish
two cases depending on ωπ2 .

If the quadratic central character ωπ2 is trivial then the Hecke L–function
L(s, ωπ2) has the simple pole at s = 0, s = 1 and by Lemma 2.8 the latter
residue, up to the same constant above, equals −N((1, 0), π′, w1w2w1w2). Af-
ter decomposing according to Proposition 1.4 and acting on ⊗vfv, the residue
at A2 in this case, up to a nonzero constant, equals

⊗vN((1, 0), π′v, w1w2w1) [⊗vfv −⊗vN((1, 0), π′v, w2)fv] ,

where the intertwining operator N((1, 0), π′v, w2) is actually the G′1(kv) in-

tertwining operator for Ind
G′

1(kv)

GL′

1(kv) π
′
2,v. Since ωπ2,v

= ωπ′

2,v
is trivial, the

discussion before the statement of the Theorem implies that this intertwining
operator acts as ηvIdv, where ηv ∈ {±1} is uniquely determined at every
place. Therefore, the residue in this case is non–vanishing if

∏
v ηv = −1 and

it is the image of the normalized intertwining operator N((1, 0), π′, w1w2w1).
The irreducibility of that image is obtained at the end of the proof.

If the quadratic central character ωπ2 is nontrivial then the Hecke L–
function L(s, ωπ2) is entire and by Lemma 2.8 the latter residue equals
N((1, 0), π′, w1w2w1w2) up to the same constant above. Again, after decom-
posing according to Proposition 1.4 and acting on ⊗vfv, the residue at A2,
up to the nonzero constant, equals

⊗vN((1, 0), π′v, w1w2w1) [⊗vfv + ⊗vN((1, 0), π′v, w2)fv] .

The discussion before the statement of the Theorem shows that the G′1(kv)
intertwining operator N((1, 0), π′v, w2) acts on fv as ηvIdv if

fv ∈
(
Ind

G′

1(kv)

GL′

1(kv) π
′
2,v

)ηv

,

where ηv ∈ {+,−}. Since fv is unramified at almost all places, the operator
acts as the identity at those places, i.e. ηv = +. If the product of the
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corresponding signs
∏

v ηv = −1, then the residue vanishes. This gives the
last condition of the Theorem.

Since w1w2w1w2(1, 0) = w1w2w1(1, 0) = (−1, 0), by Lemma 2.7, the au-
tomorphic forms obtained as the residues are square–integrable. It remains

to prove that A(1)
2 (π′) and ⊗vΠ

′ηv
v are irreducible. It is enough to prove the

irreducibility of Π′ηv
v at every place v. But Π′ηv

v is the image of the normalized
intertwining operator N((1, 0), π′v, w1w2w1) acting on

Ind
G′

2(kv)

GL′

1(kv)×G′

1(kv)

(
π′1,vν ⊗

(
Ind

G′

1(kv)

GL′

1(kv) π
′
2,v

)ηv
)
.

If π′1,v and π′2,v are tempered then
(
Ind

G′

1(kv)

GL′

1(kv) π
′
2,v

)ηv

is also tempered and

the image is irreducible by the Langlands classification since w1w2w1 is the
longest Weyl group element for (G′2,GL′1 ×G′1) and 1 is in the positive Weyl
chamber. Observe that this is the case at all non–split places.

Otherwise, at least one of the representations πi,v of GL2(kv) is a com-
plementary series

πi,v
∼= Ind

GL2(kv)
GL1(kv)×GL1(kv)

(
µi,v| · |ri ⊗ µi,v| · |−ri

)
,

where 0 < ri < 1/2 and µi,v are unitary quadratic characters since πi,v

are selfcontragredient. But then, by Lemma 2.15, the induced representa-

tion Ind
SO4(kv)
GL2(kv)(π2,v) is irreducible since ωπ2,v

is trivial. Hence, the unique

nontrivial eigenspace
(
Ind

SO4(kv)
GL2(kv) π2,v

)ηv

is fully induced from the Levi fac-

tor GL1(kv) × GL1(kv). In other words, π1,vν ⊗
(
Ind

SO4(kv)
GL2(kv) π2,v

)ηv

is fully

induced from a tempered representation of a smaller parabolic subgroup.
In the notation of Lemma 2.9 let w = w1w2w1 be the unique nontrivial

Weyl group element for GL2 × SO4 ⊂ SO8 case and s = 1. The Levi factor L
is one of GL1 ×GL1 × SO4, GL2 ×GL1 ×GL1, GL1 ×GL1 ×GL1 ×GL1 and

s+ s′ =






(1 + r1, 1 − r1),
(1, r2,−r2),
(1 + r1, 1 − r1, r2,−r2),

where 0 < ri < 1/2. Let w′ = 1 and in the notation of the proof of Proposition
1.12

w′′ =





(1, 2),
(3, 4)w2,
(1, 2)(3, 4)w2.

Then w′−1(s + s′) in the first case is in the positive Weyl chamber, while
in the remaining two cases it satisfies the inequalities of Lemma 2.9. The
Weyl group element w′′ww′ is the longest element of the Weyl group of
(SO8, L) and the normalized intertwining operator N(w(s+ s′), w(τv), w′′) =
N(w(s), w(π′v), w′′) is an isomorphism. Therefore, by Lemma 2.9, Π′ηv

v is irre-
ducible. Observe that in the second case if π1,v is not square–integrable, it is
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fully induced from a square–integrable representation of GL1(kv) × GL1(kv)
and replacing s + s′ by (1, 1, r2,−r2) and w′′ by (1, 2)(3, 4)w2 the claim still
holds.

Before giving the decomposition of the space L2
A3

we give a few facts

concerning the induced representation Ind
GL′

2(kv)

GL′

1(kv)×GL′

1(kv)

(
π′1,v ⊗ π′2,v

)
, where

π′i,v are the irreducible unitary representations with trivial central characters
and the normalized intertwining operator N(0, π′1,v ⊗ π′2,v, w1), where w1 is
the nontrivial Weyl group element of the maximal parabolic subgroup case
GL′1 ×GL′1 ⊂ GL′2. By Theorem 4.2 of [6] at split non–archimedean, Theo-
rem B.2.d of [8] at non–split and results of [47] at archimedean places, the
induced representation above is irreducible and hence the normalized operator
N(0, π′1,v ⊗ π′2,v, w1) acts as ±Idv. Let ηv denote the sign.

Theorem 2.18. The subspace L2
A3

of the residual spectrum of G′2(A)
decomposes into

L2
A3

=
(
⊕π′A(1)

3 (π′)
)
⊕
(
⊕π′A(2)

3 (π′)
)
.

The former sum is over all the cuspidal automorphic representations π′ ∼=
π′1 ⊗ π′2 of M ′0(A) such that the central characters ωπ′

1
= ωπ′

2
are trivial,

π′1 6∼= π′2 and the parity condition
∏

v ηv = 1 holds. The latter sum is over
all the cuspidal automorphic representations π′ ∼= π′1 ⊗π′2 of M ′0(A) such that
the central characters ωπ′

1
= ωπ′

2
are trivial, π′1

∼= π′2 and the parity condition∏
v ηv = −1 holds.

A(1)
3 (π′) is the irreducible space of automorphic forms spanned by the

iterated residue
Resz=1/2 Res2s2=1E(s, g; fs, π

′)

at s = (1/2, 1/2) of the Eisenstein series attached to π′. A(2)
3 (π′) is the

irreducible space of automorphic forms spanned by the iterated residue

Resz=1/2 Res2s2=1(s1 − 1/2)E(s, g; fs, π
′)

at s = (1/2, 1/2) of the Eisenstein series attached to π′ multiplied by (s1−1/2).
For both spaces, by (2.8), the constant term map induces an isomorphism with
the image of the normalized intertwining operator

N((1/2, 1/2), π′, w2w1w2).

Proof. The first step is to look at the pole of the constant term (2.2)
of the Eisenstein series along the singular hyperplane 2s2 = 1. From Table
2 the pole along this hyperplane occurs if and only if ωπ2 is trivial for the
intertwining operators corresponding to the Weyl group elements w2, w1w2,
w2w1w2 and w1w2w1w2 and it is simple. The residues written in the new
variable z on 2s2 = 1, up to the nonzero constant

Ress=1 L(s, ωπ2)L(2, ωπ2)
−1ε(1, ωπ2)

−1,
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are given in Table 4.

w Res2s2=1 r(s, π
′, w)

w2 1

w1w2
L(z+1/2,π1×π2)

L(z+3/2,π1×π2)ε(z+1/2,π1×π2)

w2w1w2
L(z+1/2,π1×π2)

L(z+3/2,π1×π2)ε(z+1/2,π1×π2)

L(2z,ωπ1)

L(1+2z,ωπ1)ε(2z,ωπ1)

w1w2w1w2
L(z+1/2,π1×π2)

L(z+3/2,π1×π2)ε(z+1/2,π1×π2)
L(z−1/2,π1×π2)

L(z+1/2,π1×π2)ε(z−1/2,π1×π2)

L(2z,ωπ1)

L(1+2z,ωπ1)ε(2z,ωπ1)

Table 4. Residues along 2s2 = 1 of case A normalizing factors

We are interested in the pole of the four terms in Table 4 at z = 1/2.
Observe that since ωπ2 is trivial, π2 is selfcontragredient. The conditions
π1

∼= π2 and π1
∼= π̃2 are equivalent and imply that ωπ1 is trivial. Hence,

by the analytic properties of the L–functions involved, in order to have the
pole at z = 1/2 the central character ωπ1 has to be trivial. Assuming that
ωπ1 = ωπ2 are trivial we consider the following two cases.

First, let π1 6∼= π2. Then the pole at z = 1/2 occurs for the intertwining
operators corresponding to the Weyl group elements w2w1w2 and w1w2w1w2

and it is simple. Using the selfcontragredience of π1 and π2, by Lemma 2.8
the residues are, up to the nonzero constant

L(1, π1 × π2)Ress=1 L(s, ωπ1)

L(2, π1 × π2)ε(1, π1 × π2)L(2, ωπ1)ε(1, ωπ1)
,

equal to N((1/2, 1/2), π′, w2w1w2) and N((1/2, 1/2), π′, w1w2w1w2). As
w1w2w1w2 = w2w1w2w1, we write the residue acting on ⊗vfv as

⊗vN((1/2, 1/2), π′v, w2w1w2) [⊗vfv + ⊗vN((1/2, 1/2), π′v, w1)fv] ,

where the intertwining operator N((1/2, 1/2), π′v, w1) is actually the operator
for the group GL′2(kv). By the discussion preceding the statement of the The-
orem, it acts as ηvIdv at every place. The residue is nonzero if

∏
v ηv = 1 as

claimed. Since w2w1w2w1(1/2, 1/2) = w2w1w2(1/2, 1/2) = (−1/2,−1/2), the
square integrability follows from Lemma 2.7. Therefore, the iterated residue
of the constant term of the Eisenstein series is, up to a nonzero constant,
equal to the normalized intertwining operator N((1/2, 1/2), π′, w2w1w2).

Next, let π1
∼= π2. Then the term corresponding to w1w2 has the sim-

ple pole, while the terms corresponding to w2w1w2 and w1w2w1w2 have the
double pole at z = 1/2. Hence, in order to find the contribution to the resid-
ual spectrum, we must calculate the coefficient of (z − 1/2)−2 in the Laurent
expansion of Res2s2=1E0(s, g; fs, π

′), i.e.

Resz=1/2 Res2s2=1(z − 1/2)E0(s, g; fs, π
′).
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Using Table 4, Remark 2.11 and Lemma 2.8, up to the nonzero constant

Ress=1 L(s, π1 × π2)Ress=1 L(s,1)

L(2, π1 × π2)ε(1, π1 × π2)L(2,1)ε(1,1)
,

where 1 is the trivial character of A×/k×, it equals

N((1/2, 1/2), π′, w2w1w2) −N((1/2, 1/2), π′, w1w2w1w2).

As in the previous case, decomposing the normalized intertwining operators
and using the discussion preceding the statement of the Theorem gives

(
1 −

∏

v

ηv

)
N((1/2, 1/2), π′, w2w1w2).

Therefore, if
∏

v ηv = −1 we obtain the contribution to the residual spectrum
as claimed. Up to a nonzero constant, the residue equals the intertwining
operator N((1/2, 1/2), π′, w2w1w2). The square–integrability criterion is sat-
isfied as in the previous case.

Otherwise, if
∏

v ηv = 1, the double pole cancels. We are left with the
simple pole at z = 1/2 of the terms corresponding to w1w2, w2w1w2 and
w1w2w1w2. But w1w2(1/2, 1/2) = (−1/2, 1/2) and the Langlands square in-
tegrability criterion of Lemma 2.7 fails. Therefore, the only possibility for the
contribution to the residual spectrum is to have a constituent of the induced

representation Ind
G′

2(A)

GL′

1(A)×GL′

1(A)

(
ν1/2π′1 ⊗ ν1/2π′2

)
such that the residue at

z = 1/2 of the term corresponding to w1w2 vanishes. Let f be the automor-
phic form such that

N((1/2, 1/2), π′, w1w2)f = 0.

Now, for f as above, we must calculate the residue at z = 1/2 of the sum
of the last two terms in the expression for the constant term of the Eisenstein
series. Since π1

∼= π2 are selfcontragredient and by the global functional
equation

L(z − 1/2, π1 × π2) = ε(z − 1/2, π1 × π2)L(3/2 − z, π1 × π2),

the last term becomes

L(3/2 − z, π1 × π2)

L(z + 3/2, π1 × π2)ε(z + 1/2, π1 × π2)

L(2z, ωπ1)

L(1 + 2z, ωπ1)ε(2z, ωπ1)

N((z, 1/2), π′, w2w1w2w1).(2.19)

The third term is

L(z + 1/2, π1 × π2)

L(z + 3/2, π1 × π2)ε(z + 1/2, π1 × π2)

L(2z, ωπ1)

L(1 + 2z, ωπ1)ε(2z, ωπ1)

N((z, 1/2), π′, w2w1w2).(2.20)

Let a−1 be the residue at z = 1/2 of the fraction

L(z + 1/2, π1 × π2)L(z + 3/2, π1 × π2)
−1ε(z + 1/2, π1 × π2)

−1.
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Then the residue of

L(3/2 − z, π1 × π2)L(z + 3/2, π1 × π2)
−1ε(z + 1/2, π1 × π2)

−1

is −a−1. Let b−1 be the residue at z = 1/2 of the fraction

L(2z, ωπ1)L(1 + 2z, ωπ1)
−1ε(2z, ωπ1)

−1.

Let fz be the section of the induced representation I((z, 1/2), π′) such
that f1/2 = f . Then the Taylor expansion around 1/2 of fz equals

(2.21) fz = f1/2 + (z − 1/2)Dfz + . . .

where Dfz is the derivative of fz as a function of z at z = 1/2.
The normalized intertwining operators as functions of z have their Taylor

expansions around z = 1/2 as follows

N((z, 1/2), π′, w2w1w2) = N((1/2, 1/2), π′, w2w1w2)

+(z − 1/2)DN((z, 1/2), π′, w2w1w2) + · · ·(2.22)

N((−1/2,−z), π′, w1) = N((−1/2,−1/2), π′, w1)

+(z − 1/2)DN((−1/2,−z), π′, w1) + · · ·
where DN(·) denotes the derivatives at z = 1/2 of the corresponding normal-
ized intertwining operators. By the discussion preceding the statement of the
Theorem, the normalized intertwining operator N((−1/2,−1/2), π′1⊗ π′2, w1)
acts as (

∏
v ηv)Id. In this case

∏
v ηv = 1 and N((−1/2,−1/2), π′, w1) is the

identity. Hence, by the decomposition of the intertwining operators

N((z, 1/2), π′, w1w2w1w2) = N((1/2, 1/2), π′, w2w1w2)

+(z − 1/2) · [DN((−1/2,−z), π′, w1)N((1/2, 1/2), π′, w2w1w2)(2.23)

+ DN((z, 1/2), π′, w2w1w2)] + · · ·
The constant terms of the Taylor expansions around z = 1/2 of both

intertwining operators applied to f1/2 are zero by the assumption on f = f1/2

because

N((1/2, 1/2), π′v, w2w1w2)f

= N((−1/2, 1/2), w1w2(π
′
v), w2)N((1/2, 1/2), π′v, w1w2)f = 0.

Therefore, by (2.21) and (2.22), the residue at z = 1/2 of term (2.20) is the
sum of {

a−1b−1DN((z, 1/2), π′, w2w1w2)f1/2,
a−1b−1N((1/2, 1/2), π′, w2w1w2)Dfz,

while by (2.21) and (2.23) the residue at z = 1/2 of term (2.19) is the sum of




−a−1b−1DN((−1/2,−z), π′, w1)N((1/2, 1/2), π′, w2w1w2)f1/2,
−a−1b−1DN((z, 1/2), π′, w2w1w2)f1/2,
−a−1b−1N((1/2, 1/2), π′, w2w1w2)Dfz.
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After the addition of the above residues, all the terms cancel except

−a−1b−1DN((−1/2,−z), π′, w1)N((1/2, 1/2), π′, w2w1w2)f1/2

which is zero by the assumption on f1/2 as above. Thus, in the case π1
∼= π2

and
∏

v ηv = 1 there is no contribution to the residual spectrum.
It remains to prove the irreducibility of the image of the normalized oper-

ator N((1/2, 1/2), π′, w2w1w2). Using Lemma 2.9 we prove the irreducibility
of the image of the local operators N((1/2, 1/2), π′v, w2w1w2) at every place
v. Since

N(w2w1w2(1/2, 1/2), w2w1w2(π
′
v), w1) = ηvIdv,

it is isomorphic to the image of N((1/2, 1/2), π′v, w1w2w1w2). Let w =
w1w2w1w2 and s = (1/2, 1/2). If π′i,v are both square–integrable, then by
the Langlands classification the image is irreducible since w is the longest
Weyl group element for (G′2,M

′
0). Observe that this is the case at all non–

split places.
Otherwise, at least one of the representations πi,v of GL2(kv) is of the

form

πi,v
∼= Ind

GL2(kv)
GL1(kv)×GL1(kv)

(
µi,v| · |ri ⊗ µ′i,v| · |−ri

)
,

where 0 6 ri < 1/2 and µi,v = µ′i,v if ri 6= 0. Then, πv is the fully induced
representation from a square–integrable representation τv of the Levi factor of
a smaller parabolic subgroup. In the notation of Lemma 2.9, L is one of the
Levi factors GL1 ×GL1 ×GL2, GL2 ×GL1 ×GL1, GL1 ×GL1 ×GL1 ×GL1

and

s+ s′ =





(1/2 + r1, 1/2 − r1, 1/2),
(1/2, 1/2 + r2, 1/2 − r2),
(1/2 + r1, 1/2 − r1, 1/2 + r2, 1/2 − r2),

where 0 6 ri < 1/2. Assume r1 > r2. The other case is settled in the same
way. In the notation as in the proof of Proposition 1.12, let

w′ =






(1)(2, 3),
(1, 2)(3),
(1)(2, 3, 4).

Then w′−1(s + s′) satisfies inequality (2.10) of Lemma 2.9 and N(w′−1(s +
s′), w′−1(τv), w′) is an isomorphism onto I(s+ s′, τv) ∼= I(s, πv). Let

w′′ =






(1, 3, 2),
(1, 2, 3),
(1, 4, 2)(3).

Then w′′ww′ is the longest element of the Weyl group for (SO8, w
′−1(L)) and

N(w(s), w(πv), w′′) = N(w(s + s′), w(τv), w′′) is an isomorphism. Therefore,
by Lemma 2.9, the image of the normalized operator N((1/2, 1/2), π′v, w) is
irreducible.
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Remark 2.24. This is the only case where the question of the multi-
plicities in the decomposition is left open. Namely, the second part of the
decomposition of L2

A3
may not be multiplicity one because the iterated pole

of the Eisenstein series is not simple. In order to find the multiplicities we
should decompose the scalar product of the pseudo–Eisenstein series.

2.3. Case B. In this case one of the global lifts π1 and π2 is a residual and the
other is a cuspidal automorphic representation of GL2(A). In the calculation
we assume that π1 is residual. The other case is the same. So, π′1 = χ1 ◦ det′

is one–dimensional and its global lift is π1 = χ1 ◦ det. By our definition at
non–split places, the local lift of χ1,v ◦ det′v is the Steinberg representation
Stχ1,v

of GL2(kv) which is not the local component of π1 at v.
The local normalizing factors, obtained in the previous Section, at the

split places are given by (1.9) and the maximal parabolic subgroup cases by
(1.13) and (1.11), while at the non–split places they are given using the local
lifts by (1.16) and the maximal parabolic cases by (1.18) and (1.17). Since
the central characters of χ1,v ◦ detv and Stχ1,v

are both equal to χ2
1,v and

π2 is cuspidal automorphic, the products over all places of the local Hecke
L–functions and ε–factors appearing in the local normalizing factors for the
maximal parabolic case GL′1 ⊂ G′1 give just the global Hecke L–functions and
ε–factors of the central characters χ2

1 and ωπ2 .
The local Rankin–Selberg L–function and ε–factor appearing in the local

normalizing factor at a non–split place v are L(s, Stχ1,v
×π̃2,v) and ε(s, Stχ1,v

×
π̃2,v, ψv). If π2,v is a supercuspidal representation of GL2(kv), by Theorem
(3.1) and Sections 8 and 9 of [20],

L(s, Stχ1,v
× π̃2,v) = L(s+ 1/2, χ1,vπ̃2,v),

ε(s, χ1,v × π̃2,v, ψv)

= ε(s+ 1/2, χ1,vπ̃2,v, ψv)ε(s− 1/2, χ1,vπ̃2,v, ψv)
L(1/2 − s, χ−1

1,vπ2,v)

L(s− 1/2, χ1,vπ̃2,v)
.

By Section (3.1) of [18] the principal L–function of a supercuspidal repre-
sentation of GL2(kv) at a non–archimedean place v is identically equal to 1.
Therefore, we can write these local L–functions and ε–factors as

L(s, Stχ1,v
× π̃2,v) = L(s+ 1/2, χ1,vπ̃2,v)L(s− 1/2, χ1,vπ̃2,v),

ε(s, χ1,v × π̃2,v, ψv) = ε(s+ 1/2, χ1,vπ̃2,v, ψv)ε(s− 1/2, χ1,vπ̃2,v, ψv),

to be consistent with the local normalizing factors at split places (1.13).
If not supercuspidal, π2,v is a square–integrable representation of GL2(kv)

because it is the local lift of the supercuspidal representation π′2,v of GL′1(kv).

Hence, π2,v
∼= Stχ2,v

for a unitary character χ2,v of k×v . Again, by Theorem
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(3.1), Sections 8 and 9 of [20] and Section (3.1) of [18]

L(s, Stχ1,v
× π̃2,v) = L(s+ 1, χ1,vχ

−1
2,v)L(s, χ1,vχ

−1
2,v)

= L(s+ 1/2, χ1,vπ̃2,v)L(s− 1/2, χ1,vπ̃2,v),

ε(s, Stχ1,v
× π̃2,v, ψv)

= ε(s+ 1, χ1,vχ
−1
2,v, ψv)ε(s, χ1,vχ

−1
2,v, ψv)

2ε(s− 1, χ1,vχ
−1
2,v, ψv)

·
L(−s, χ−1

1,vχ2,v)

L(s, χ1,vχ
−1
2,v)

L(1 − s, χ−1
1,vχ2,v)

L(s− 1, χ1,vχ
−1
2,v)

= ε(s+ 1/2, χ1,vπ̃2,v, ψv)ε(s− 1/2, χ1,vπ̃2,v, ψv),

which is consistent with the local normalizing factors at split places (1.13).
Therefore, in the global normalizing factor, obtained as the product over

all places of these local principal L–functions and ε–factors for GL2, the global
principal L–function and ε–factor of the cuspidal automorphic representation
of GL2(A) appear. All the global normalizing factors in this case are given
in Table 5. The analytic properties of the L–functions involved are given in
Remark 1.12 and show that the singular hyperplanes of the constant term of
the Eisenstein series in (2.1) are as given in Figure 2.

w r(s, π′
, w)

1 1

w1
L(s1−s2−1/2,χ1π̃2)

L(s1−s2+3/2,χ1π̃2)ε(s1−s2−1/2,χ1π̃2)ε(s1−s2+1/2,χ1π̃2)

w2
L(2s2,ωπ2 )

L(1+2s2,ωπ2 )ε(2s2,ωπ2 )

w1w2
L(2s2,ωπ2 )

L(1+2s2,ωπ2 )ε(2s2,ωπ2 )
L(s1+s2−1/2,χ1π2)

L(s1+s2+3/2,χ1π2)ε(s1+s2−1/2,χ1π2)ε(s1+s2+1/2,χ1π2)

w2w1
L(s1−s2−1/2,χ1π̃2)

L(s1−s2+3/2,χ1π̃2)ε(s1−s2−1/2,χ1π̃2)ε(s1−s2+1/2,χ1π̃2)

L(2s1,χ2
1)

L(1+2s1,χ2
1)ε(2s1,χ2

1)

w1w2w1
L(s1−s2−1/2,χ1π̃2)

L(s1−s2+3/2,χ1π̃2)ε(s1−s2−1/2,χ1π̃2)ε(s1−s2+1/2,χ1π̃2)
L(2s1,χ2

1)

L(1+2s1,χ2
1)ε(2s1,χ2

1)

L(s1+s2−1/2,χ1π2)
L(s1+s2+3/2,χ1π2)ε(s1+s2−1/2,χ1π2)ε(s1+s2+1/2,χ1π2)

w2w1w2
L(2s2,ωπ2 )

L(1+2s2,ωπ2 )ε(2s2,ωπ2 )

L(s1+s2−1/2,χ1π2)
L(s1+s2+3/2,χ1π2)ε(s1+s2−1/2,χ1π2)ε(s1+s2+1/2,χ1π2)

L(2s1,χ2
1)

L(1+2s1,χ2
1)ε(2s1,χ2

1)

w1w2w1w2
L(2s2,ωπ2 )

L(1+2s2,ωπ2 )ε(2s2,ωπ2 )
L(s1+s2−1/2,χ1π2)

L(s1+s2+3/2,χ1π2)ε(s1+s2−1/2,χ1π2)ε(s1+s2+1/2,χ1π2)

L(2s1,χ2
1)

L(1+2s1,χ2
1)ε(2s1,χ2

1)

L(s1−s2−1/2,χ1π̃2)
L(s1−s2+3/2,χ1π̃2)ε(s1−s2−1/2,χ1π̃2)ε(s1−s2+1/2,χ1π̃2)

Table 5. Case B normalizing factors of A(s, π′, w) for w ∈ W (M ′0)

While deforming the line of integration in (2.1) from s0 to the origin of
a
∗
M ′

0,C inside the positive Weyl chamber as in Figure 2, we cross the singular

hyperplanes. Taking the coordinate systems on those hyperplanes gives the
points where the possible poles of (2.2) occur. In this case there is just one
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Figure 2. Case B singular hyperplanes

such point B(1/2, 1/2) in Figure 2. It lies on the singular hyperplane 2s2 = 1.
For 2s2 = 1 the coordinate system is given by s1 = z and s2 = 1/2, where z
is the new coordinate. Point B corresponds to z = 1/2. Then, the space L2

B

is obtained as the iterated residue

Resz=1/2 Res2s2=1E(s, g; fs, π
′),

of the Eisenstein series attached to the case B cuspidal automorphic repre-
sentations π′ of M ′0(A).

Before giving the decomposition of the case B contribution L2
B to the

residual spectrum, we introduce some notation. Consider the local GL′2–
intertwining operator N(0, (χ1,v ◦ det′v)⊗ π′2,v, w1) acting on the induced rep-

resentation Ind
GL′

2(kv)

GL′

1(kv)×GL′

1(kv)

(
(χ1,v ◦ det′v) ⊗ π′2,v

)
. By Theorem 4.2 of [6]

at split non–archimedean, Theorem B.2.d of [8] at non–split and results of
[47] at archimedean places, the induced representation is irreducible. Hence,
the normalized operator acts as ±Idv. Denote the sign by ηv. Abusing the
notation the sign of N(0, π′1,v ⊗ (χ2,v ◦ det′v), w1) will also be denoted by ηv.

Theorem 2.25. The subspace L2
B of the residual spectrum of G′2(A) de-

composes into

L2
B =

(
⊕π′B(1)(π′)

)
⊕
(
⊕π′B(2)(π′)

)
.

The former sum is over all the cuspidal automorphic representations π′ ∼=
(χ1 ◦det′)⊗π′2 of M ′0(A) such that χ1 is a quadratic character, π′2 is not one–
dimensional, the central character of π′2 is trivial, L(1/2, χ1π2) is nonzero and
the parity condition

∏
v ηv = 1 holds. The latter sum is over all the cuspidal
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automorphic representations π′ ∼= π′1 ⊗ (χ2 ◦ det′) of M ′0(A) such that χ2 is a
quadratic character, π′1 is not one–dimensional, the central character of π′1 is
trivial, L(1/2, χ2π1) is nonzero and the parity condition

∏
v ηv = 1 holds.

Both B(1)(π′) and B(2)(π′) are the irreducible spaces of automorphic forms
spanned by the iterated residues

Resz=1/2 Res2s2=1E(s, g; fs, π
′)

at s = (1/2, 1/2) of the Eisenstein series attached to π′. For both spaces, by
(2.8), the constant term map induces an isomorphism with the image of the
normalized intertwining operator

N((1/2, 1/2), π′, w2w1w2).

Proof. In the proof we obtain the spaces of automorphic forms B(1)(π′).
As mentioned at the beginning of this Subsection, spaces B(2)(π′) are obtained
in completely the same way.

We must first look at the pole of the constant term of the Eisenstein series
along 2s2 = 1. From Table 5, the pole along 2s2 = 1 occurs if and only if
ωπ2 is trivial. Then it is simple and occurs for the terms corresponding to w2,
w1w2, w2w1w2 and w1w2w1w2. The residues of those terms along 2s2 = 1 in
the new variable z are given in Table 6 up to the nonzero constant

Ress=1 L(s,1)L(2,1)−1ε(1,1)−1,

where 1 is the trivial character of A×/k×. Observe that π2 is selfcontragre-
dient since ωπ2 is trivial.

w Res2s2=1 r(s, π
′, w)

w2 1

w1w2
L(z,χ1π2)

L(z+2,χ1π2)ε(z,χ1π2)ε(z+1,χ1π2)

w2w1w2
L(z,χ1π2)

L(z+2,χ1π2)ε(z,χ1π2)ε(z+1,χ1π2)
L(2z,χ2

1)

L(1+2z,χ2
1)ε(2z,χ2

1)

w1w2w1w2
L(z,χ1π2)

L(z+2,χ1π2)ε(z,χ1π2)ε(z+1,χ1π2)
L(2z,χ2

1)

L(1+2z,χ2
1)ε(2z,χ2

1)
L(z−1,χ1π2)

L(z+1,χ1π2)ε(z−1,χ1π2)ε(z,χ1π2)

Table 6. Residues along 2s2 = 1 of case B normalizing factors

Now, we look at the possible pole at z = 1/2 of the terms in Table
6. By the analytic properties of the L–functions involved, only the terms
corresponding to w2w1w2 and w1w2w1w2 have the simple pole at z = 1/2 if
χ1 is a quadratic character. Up to the nonzero constant

Ress=1 L(s,1)L(2,1)−1ε(1,1)−1L(5/2, χ1π2)
−1ε(1/2, χ1π2)

−1ε(3/2, χ1π2)
−1,
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the residues are equal to L(1/2, χ1π2)N((1/2, 1/2), π′, w2w1w2) and

L(1/2, χ1π2)L(−1/2, χ1π2)

L(3/2, χ1π2)ε(−1/2, χ1π2)ε(1/2, χ1π2)
N((1/2, 1/2), π′, w1w2w1w2).

Both residues are zero unless L(1/2, χ1π2) 6= 0. Using the global functional
equation

L(−1/2, χ1π2) = ε(−1/2, χ1π2)L(3/2, χ1π2)

and ε(1/2, χ1π2) = 1 since χ1π2 is selfcontragredient and L(1/2, χ1π2) 6=
0. The latter residue simplifies to L(1/2, χ1π2)N((1/2, 1/2), π′, w1w2w1w2).
Hence, decomposing the normalized intertwining operators as in Proposition
1.4 and using the discussion preceding the Theorem, the residue at B equals

L(1/2, χ1π2)

(
1 +

∏

v

ηv

)
N((1/2, 1/2), π′, w2w1w2).

Therefore, it is nonzero if L(1/2, χ1π2) 6= 0 and the parity condition from
the statement of the Theorem holds. Lemma 2.7 is satisfied and the residue
equals the normalized intertwining operator N((1/2, 1/2), π′, w2w1w2).

It remains to prove the irreducibility of the image of that operator.
Using Lemma 2.9 we prove that the image of the local intertwining op-
erator N((1/2, 1/2), π′v, w2w1w2) is irreducible at every place v. Since
N(w2w1w2(1/2, 1/2), w2w1w2(π

′
v), w1) = ηvIdv, that image is isomorphic

to the image of N((1/2, 1/2), π′v, w1w2w1w2). Let w = w1w2w1w2 and
s = (1/2, 1/2). For a non–split place the image is irreducible since π′v is
a supercuspidal representation of M ′0(kv) and w is the longest element of the
Weyl group.

At a split place χ1,v ◦ detv is the unique irreducible subrepresentation of

Ind
GL2(kv)
GL1(kv)×GL1(kv)

(
χ1,v| · |−1/2 ⊗ χ1,v| · |1/2

)

and π2,v is either tempered or a complementary series

π2,v
∼= Ind

GL2(kv)
GL1(kv)×GL1(kv)

(
µ2,v| · |r ⊗ µ2,v| · |−r

)
,

where 0 < r < 1/2 and µ2,v is a unitary character of k×v . Hence, πv is
the unique irreducible subrepresentation of the induced representation from
a tempered representation τv of a smaller parabolic subgroup L(kv). In
the notation of Lemma 2.9, L is one of the Levi factors GL1 ×GL1 ×GL2,
GL1 ×GL1 ×GL1 ×GL1 and

s+ s′ =

{
(0, 1, 1/2),
(0, 1, 1/2 + r, 1/2 − r).

In the notation of the proof of Proposition 1.12, let

w′ =

{
(1, 2, 3),
(1, 2, 3, 4).
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Then, w′−1(s + s′) is in the positive Weyl chamber and N(w′−1(s +
s′), w′−1(τv), w′) is surjective onto I(s, πv) because it can be decomposed into

Ind(χ1,v| · | ⊗ π2,vν
1/2 ⊗ χ1,v) → Ind(χ1,v| · | ⊗ χ1,v ⊗ π2,vν

1/2)

→ Ind((χ1,v ◦ detv)ν1/2 ⊗ π2,vν
1/2),

where the first arrow is an isomorphism and the second one is surjective
by the Langlands classification. Here Ind denotes the induction from the
corresponding standard parabolic subgroup to SO8(kv). Let

w′′ =

{
(1)(2, 3),
(1)(2, 4)(3).

Then w′′ww′ is the longest element of the Weyl group of (SO8, w
′−1(L)) and

N(w(s + s′), w(τv), w′′) is an isomorphism. Therefore, by Lemma 2.9, the
image of N((1/2, 1/2), πv, w) is irreducible.

2.4. Case C. In this case both, π1 and π2, are residual automorphic repre-
sentations of GL2(A). This means that π′1 = χ1 ◦ det′ and π′2 = χ2 ◦ det′ are
one–dimensional, and their global lifts are π1 = χ1 ◦ det and π2 = χ2 ◦ det.
Observe that by our definition the local lift of χi,v ◦ det′v at a non–split place
v is the Steinberg representation Stχi,v

of GL2(kv) which is not the local
component at v of the global lift.

The local normalizing factors, obtained in the previous Section, at the
split places are given by (1.9) and in the maximal parabolic cases by (1.10)
and (1.11). At the non–split places they are given using the local lifts by
(1.16) and in the maximal parabolic cases by (1.18) and (1.17). As in case B,
since the central characters of χi,v ◦ detv and Stχi,v

are both equal to χ2
i,v,

the local Hecke L–functions and ε–factors appearing in the maximal parabolic
case GL′1 ⊂ G′1 are at all places those of the central character χ2

i,v. Hence, in
the global normalizing factor just the global Hecke L–functions and ε–factors
of χ2

i appear.
The local Rankin–Selberg L–function and ε–factor appearing in the lo-

cal normalizing factor at a non–split place v are L(s, Stχ1,v
× Stχ−1

2,v
) and

ε(s, Stχ1,v
× Stχ−1

2,v
, ψv). By Theorem (3.1) and Sections 8 and 9 of [20], they

are equal to

L(s, Stχ1,v
× Stχ−1

2,v
) = L(s+ 1, χ1,vχ

−1
2,v)L(s, χ1,vχ

−1
2,v),

ε(s, Stχ1,v
× Stχ−1

2,v
, ψv)

= ε(s+ 1, χ1,vχ
−1
2,v, ψv)ε(s, χ1,vχ

−1
2,v, ψv)

2ε(s− 1, χ1,vχ
−1
2,v, ψv)

·
L(1 − s, χ−1

1,vχ2,v)L(−s, χ−1
1,vχ2,v)

L(s− 1, χ1,vχ
−1
2,v)L(s, χ1,vχ

−1
2,v)

.
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Observe that the local L–functions appearing in the local normalizing factors
at non–split places are not the same as in (1.10) at split places. Therefore, the
global normalizing factor r(s, χ) for the maximal parabolic case GL′1 ×GL′1 ⊂
GL′2 is of the form
∏

v 6∈SD

L(s, χv)L(s− 1, χv)

L(s+ 2, χv)L(s+ 1, χv)ε(s+ 1, χv, ψv)ε(s, χv, ψv)2ε(s− 1, χv, ψv)

·
∏

v∈SD

(
L(s+ 1, χv)L(s, χv)

L(s+ 2, χv)L(s+ 1, χv)ε(s+ 1, χv, ψv)ε(s, χv, ψv)2ε(s− 1, χv, ψv)

· L(s, χv)L(s− 1, χv)

L(−s, χ−1
v )L(1 − s, χ−1

v )

)

=
L(s, χ)L(s− 1, χ)

L(s+ 2, χ)L(s+ 1, χ)ε(s+ 1, χ)ε(s, χ)2ε(s− 1, χ)

·
∏

v∈SD

L(s+ 1, χv)L(s, χv)

L(1 − s, χ−1
v )L(−s, χ−1

v )
,

where s = s1 ± s2 and χ = χ1χ
±1
2 . As before, SD denotes the finite set of the

non–archimedean places where D is non–split.

w r(s, π′, w)

1 1

w1 r(s1 − s2, χ1χ
−1
2 )

w2
L(2s2,χ2

2)

L(1+2s2,χ2
2)ε(2s2,χ2

2)

w1w2
L(2s2,χ2

2)

L(1+2s2,χ2
2)ε(2s2,χ2

2)
r(s1 + s2, χ1χ2)

w2w1 r(s1 − s2, χ1χ
−1
2 )

L(2s1,χ2
1)

L(1+2s1,χ2
1)ε(2s1,χ2

1)

w1w2w1 r(s1 − s2, χ1χ
−1
2 )

L(2s1,χ2
1)

L(1+2s1,χ2
1)ε(2s1,χ2

1)
r(s1 + s2, χ1χ2)

w2w1w2
L(2s2,χ2

2)

L(1+2s2,χ2
2)ε(2s2,χ2

2)
r(s1 + s2, χ1χ2)

L(2s1,χ2
1)

L(1+2s1,χ2
1)ε(2s1,χ2

1)

w1w2w1w2
L(2s2,χ2

2)

L(1+2s2,χ2
2)ε(2s2,χ2

2)
r(s1 + s2, χ1χ2)

L(2s1,χ2
1)

L(1+2s1,χ2
1)ε(2s1,χ2

1)
r(s1 − s2, χ1χ

−1
2 )

Table 7. Case C normalizing factors of A(s, π′, w) for w ∈W (M ′0)

Therefore, the global normalizing factors in this case are given in Table
7. All the normalizing factors are expressed using the local and global Hecke
L–functions. Their properties are given in Remark 2.11 and imply that the
singular hyperplanes in this case are as shown in Figure 3.

While deforming the line of integration in (2.1) from s0 to the origin of
a
∗
M ′

0,C inside the positive Weyl chamber as in Figure 3, we cross the singular
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hyperplanes. Taking the coordinate systems on those hyperplanes gives the
points where the possible iterated poles of (2.2) occur. Also we consider
the exceptional point (3/2,−1/2) in Theorem 2.3. There are five such points
C1(5/2, 1/2), C2(2, 0), C3(3/2,−1/2), C4(3/2, 1/2) and C5(1/2, 1/2) in Figure
3. Points C1, C2 and C3 lie on the singular hyperplane s1 − s2 = 2, while
points C4 and C5 lie on 2s2 = 1.

Figure 3. Case C singular hyperplanes

The coordinate system on s1−s2 = 2 is given by s1 = z+1 and s2 = z−1,
where z is the new variable. Points C1, C2 and C3 have z = 3/2, z = 1 and
z = 1/2, respectively. For 2s2 = 1 the coordinate system is given by s1 = z
and s2 = 1/2, where z is the new coordinate. Points C4 and C5 correspond
to z = 3/2 and z = 1/2.

According to the four possible iterated poles, the case C contribution L2
C

to the residual spectrum decomposes into

L2
C
∼= L2

C1
⊕ L2

C2
⊕ L2

C3
⊕ L2

C4
⊕ L2

C5
,

where, using the coordinate systems fixed above, L2
C1

, L2
C2

, L2
C3

, L2
C4

and L2
C5

are obtained as the corresponding iterated residues of the Eisenstein series
E(s, g; fs, π

′) attached to the case C cuspidal automorphic representations π′

of M ′0(A). In the following four Theorems those spaces are decomposed.
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Theorem 2.26. The subspace L2
C1

of the residual spectrum of G′2(A) de-
composes into

L2
C1

= ⊕π′C1(π
′),

where the sum is over all the one–dimensional cuspidal automorphic repre-
sentations π′ ∼= (χ ◦ det′) ⊗ (χ ◦ det′) of M ′0(A) such that χ2 is trivial.

C1(π
′) is the irreducible space of automorphic forms spanned by the iter-

ated residue
Resz=3/2 Ress1−s2=2 E(s, g; fs, π

′)

at s = (5/2, 1/2) of the Eisenstein series attached to π′. By (2.8), the constant
term map induces an isomorphism of C1(π

′) and the image of the normalized
intertwining operator

N((5/2, 1/2), π′, w1w2w1w2).

Proof. As in the previous cases, for the contribution at C1 to the resid-
ual spectrum we first look at the pole along s1 − s2 = 2. ¿From Table 7, the
pole along the singular hyperplane s1 − s2 = 2 occurs if and only if χ1 = χ2,
for the intertwining operators corresponding to the Weyl group elements w1,
w2w1, w1w2w1 and w1w2w1w2 and it is simple. In the rest of the proof let
χ = χ1 = χ2. Then Table 8 contains the residues along s1 − s2 = 2, up to the
nonzero constant

Ress=1 L(s,1)L(2,1)

L(3,1)L(4,1)ε(1,1)ε(2,1)2ε(3,1)

∏

v∈SD

L(2,1v)L(3,1v)

L(−2,1v)L(−1,1v)
,

written in the new variable z.

w Ress1−s2=2 r(s, π
′, w)

w1 1

w2w1
L(2z+2,χ2)

L(2z+3,χ2)ε(2z+2,χ2)

w1w2w1
L(2z+2,χ2)

L(2z+3,χ2)ε(2z+2,χ2)
L(2z−1,χ2)L(2z,χ2)

L(2z+1,χ2)L(2z+2,χ2)ε(2z−1,χ2)ε(2z,χ2)2ε(2z+1,χ2)∏
v∈SD

L(2z,χ2
v)L(2z+1,χ2

v)

L(−2z,χ−2
v )L(1−2z,χ−2

v )

w1w2w1w2
L(2z−2,χ2)

L(2z−1,χ2)ε(2z−2,χ2)
L(2z+2,χ2)

L(2z+3,χ2)ε(2z+2,χ2)
L(2z−1,χ2)L(2z,χ2)

L(2z+1,χ2)L(2z+2,χ2)ε(2z−1,χ2)ε(2z,χ2)2ε(2z+1,χ2)∏
v∈SD

L(2z,χ2
v)L(2z+1,χ2

v)

L(−2z,χ−2
v )L(1−2z,χ−2

v )

Table 8. Residues along s1 − s2 = 2 of case C normalizing factors

For the pole at C1 we must look at the poles of the terms in Table 8 at
z = 3/2. The pole may occur only if χ is a quadratic character. Then, all the
L–functions in Table 8 are the Hecke L–function of the trivial character and
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only the term corresponding to the Weyl group element w1w2w1w2 has the
simple pole at z = 3/2. Hence, the iterated residue at C1, up to the nonzero
constant, equals N((5/2, 1/2), π′, w1w2w1w2). Since w1w2w1w2(5/2, 1/2) =
(−5/2,−1/2), Lemma 2.7 is satisfied.

It remains to prove the irreducibility of that image. Using Lemma 2.9 we
prove the irreducibility of the image of N((5/2, 1/2), π′v, w1w2w1w2) at every
place v. Let w = w1w2w1w2 and s = (5/2, 1/2). At a non–split place the
image is irreducible by the Langlands classification since π′v is supercuspidal,
s is in the positive Weyl chamber and w is the longest element of the Weyl
group.

For a split place, χi,v ◦detv is the unique irreducible subrepresentation of
the induced representation

Ind
GL2(kv)
GL1(kv)×GL1(kv)

(
µi,v| · |−1/2 ⊗ µi,v| · |1/2

)
.

Hence, πv is the unique irreducible subrepresentation induced from a tempered
representation of GL1(kv)×GL1(kv)×GL1(kv)×GL1(kv) and, in the notation
of Lemma 2.9, s + s′ = (2, 3, 0, 1). Let w′ of Lemma 2.9 be the Weyl group
element corresponding, in the notation of the proof of Proposition 1.12, to
w′ = (1, 2)(3, 4). Then w′−1(s + s′) is in the positive Weyl chamber and
N(w′−1(s + s′), w′−1(τv), w′) is surjective onto I(s, πv). Since ww′ is the
longest Weyl group element, let w′′ = 1. Then, by Lemma 2.9, the image of
N((5/2, 1/2), πv, w) is irreducible.

Before decomposing L2
C2

we consider the induced representation

Ind
G′

1(kv)

GL′

1(kv)

(
χv ◦ det′v

)

where χv is a quadratic character. It is irreducible by Lemma 2.15 since
the central character χ2

v is trivial. Therefore, the normalized intertwining
operator N(0, χv ◦ det′v, w2) acts as ±Idv. Denote the sign by ηv.

Theorem 2.27. The subspace L2
C2

of the residual spectrum of G′2(A) de-
composes into

L2
C2

= ⊕π′C2(π
′),

where the sum is over all the one–dimensional cuspidal automorphic repre-
sentations π′ ∼= (χ ◦ det′) ⊗ (χ ◦ det′) of M ′0(A) such that χ is a quadratic
character and the parity condition

∏
v ηv = −1 holds.

C2(π
′) is the irreducible space of automorphic forms spanned by the iter-

ated residue
Resz=1 Ress1−s2=2E(s, g; fs, π

′)

at s = (2, 0) of the Eisenstein series attached to π′. By (2.8), the constant
term map induces an isomorphism of C2(π

′) and the image of the normalized
intertwining operator

N((2, 0), π′, w1w2w1).
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Proof. For the contribution at C2 to the residual spectrum the pole
along s1−s2 = 2 was already considered in the proof of the previous Theorem.
It is simple, occurs only if χ = χ1 = χ2 and the residues are given in Table 8.

Now, we must look at the pole at z = 1 of the terms in the Table 8. The
pole may occur only if χ is a quadratic character. Then, the terms corre-
sponding to w1w2w1 and w1w2w1w2 have the simple pole and the residues,
up to the nonzero constant

L(4,1)

L(5,1)ε(4,1)

Ress=1 L(s,1)L(2,1)

L(3,1)L(4,1)ε(1,1)ε(2,1)2ε(3,1)

∏

v∈SD

L(2,1v)L(3,1v)

L(−2,1v)L(−1,1v)
,

are equal to
N((2, 0), (χ ◦ det′) ⊗ (χ ◦ det′), w1w2w1)

and
−N((2, 0), (χ ◦ det′) ⊗ (χ ◦ det′), w1w2w1w2).

The sign in the latter comes from the fraction L(2z−2,1)L(2z−1,1)−1ε(2z−
2,1)−1 which is equal to −1 at z = 1 by Lemma 2.8. According to Proposition
1.4, up to a nonzero constant, the residue at C2 can be written acting on ⊗vfv

as
⊗vN((2, 0), π′v, w1w2w1) [⊗vfv −⊗vN((2, 0), π′v, w2)fv] .

But the normalized intertwining operator N((2, 0), π′v, w2) is the G′1(kv)–
intertwining operator N(0, χv ◦ det′v, w2). By the discussion preceding the
statement of the Theorem it acts as ηvIdv. Therefore the expression in the
brackets is non–vanishing if

∏
v ηv = −1 and the residue is the normalized in-

tertwining operator N((2, 0), π′, w1w2w1). It is square–integrable by Lemma
2.7 since w1w2w1w2(2, 0) = w1w2w1(2, 0) = (−2, 0).

It remains to prove that the image of N((2, 0), π′, w1w2w1) is irreducible.
Using Lemma 2.9 we prove that the image of the local normalized intertwining
operators N((2, 0), π′v, w1w2w1) is irreducible at every place v. At a non–split
place χv ◦det′v is supercuspidal and by the discussion preceding the statement

of the Theorem the G′1(kv) induced representation Ind
G′

1(kv)

GL′

1(kv)

(
χv ◦ det′v

)
is

irreducible and tempered. The Weyl group element w1w2w1 is actually the
longest Weyl group element for the GL′1 ×G′1 ⊂ G′2 case and 2 is in the
positive Weyl chamber. Hence, by the Langlands classification the image of
N((2, 0), π′v, w1w2w1) is irreducible.

At a split place πv is the unique irreducible subrepresentation of the
induced representation

Ind
GL2(kv)×GL2(kv)
T (kv)

(
χv| · |−1/2 ⊗ χv| · |1/2 ⊗ χv| · |−1/2 ⊗ χv| · |1/2

)
,

where T = GL1 ×GL1 ×GL1 ×GL1. Since N((2, 0), πv, w2) acts as ηvIdv,
it is an isomorphism and hence the image of N((2, 0), π′v, w1w2w1) is the
same as the image of N((2, 0), π′v, w1w2w1w2). Let w = w1w2w1w2 and s =
(2, 0). In the notation of Lemma 2.9, the Levi factor L = T , representation
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τv = χv ⊗ χv ⊗ χv ⊗ χv is supercuspidal and s + s′ = (3/2, 5/2,−1/2, 1/2).
Let w′ be the Weyl group element corresponding to the permutation w′ =
(1, 2)(3, 4) and w′′ = 1. Then w′−1(s+s′) satisfies inequality (2.10) of Lemma
2.9, w′′ww′ is the longest Weyl group element for (SO8, T ) and the image of
N(w′−1(s+ s′), τv, w

′) is precisely I((2, 0), πv). Therefore, by Lemma 2.9, the
image of N((2, 0), πv, w) is irreducible.

Before describing L2
C3

we need the composition series of the induced rep-
resentation

I = Ind
G′

1(A)

GL′

1(A)

(
(χ ◦ det′)ν−1/2

)
.

At a split place let T (kv) be the maximal split torus of SO4(kv), P1(kv) and
P2(kv) the two maximal parabolic subgroups with Levi factors L1(kv) and
L2(kv) isomorphic to GL2(kv), where P1(kv) is the one with the property
that the minimal parabolic subgroup defined over k of G′1(kv) is an inner
form of P1(kv). Then, the local component at a split place v of the induced
representation above is the induced representation

Iv = Ind
SO4(kv)
L1(kv)

(
(χv ◦ detv)ν

−1/2
)
.

The composition series for the local induced representations are considered in
the following Lemma.

Lemma 2.28. The local induced representation

Iv = Ind
G′

1(kv)

GL′

1(kv)

(
(χv ◦ det′v)ν

−1/2
)

is at most of length two. It is irreducible if and only if χ2
v is nontrivial.

At a split place v, if χ2
v is trivial, then the subrepresentation is isomorphic

to the Langlands quotient, denoted Xv, of the standard module

Ind
SO4(kv)
T (kv) (χv| · | ⊗ χv) ,

while the quotient is isomorphic to the Langlands quotient, denoted Yv, of the
standard module

Ind
SO4(kv)
L2(kv)

(
Stχv

ν1/2
)
.

At a non–split place v, if χ2
v is trivial, the subrepresentation is isomorphic

to the Langlands quotient, denoted Xv, of

Ind
G′

1(kv)

GL′

1(kv)

(
(χv ◦ det′v)ν

1/2
)
,

while the quotient, denoted Yv, is square–integrable.

Proof. The first part of the Lemma follows from Lemma 2.15. For v
non–split, the composition series is obvious because χv ◦det′v is supercuspidal.

If v is split we look at the composition series of the induced representation

Vv = Ind
SO4(kv)
T (kv)

(
χv| · |−1 ⊗ χv

)
.
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By induction in stages, inducing to L1(kv) ∼= GL2(kv) shows that both

Iv = Ind
SO4(kv)
L1(kv)

(
(χv ◦ detv)ν−1/2

)

and

Jv = Ind
SO4(kv)
L1(kv)

(
Stχv

ν−1/2
)

are subquotients of Vv. Both representations Iv and Jv are of length two by
Lemma 2.15. Thus Vv is of length four. On the other hand, first inducing to
L2(kv) ∼= GL2(kv) shows that

I ′v = Ind
SO4(kv)
L2(kv)

(
(χv ◦ detv)ν−1/2

)

and

J ′v = Ind
SO4(kv)
L2(kv)

(
Stχv

ν−1/2
)

are also subquotients of Vv, both of length two.
Observe that the exponents of Vv satisfy the conditions for the open neg-

ative Weyl chamber. Thus, Vv contains the unique irreducible subrepresenta-
tion which is the Langlands quotient Xv of the first standard module in the
Lemma. Since Iv and I ′v are subrepresentations of Vv, they both contain Xv

as a subrepresentation.
It remains to determine the quotient of Iv. Observe that the exponents

of Jv and J ′v are in the negative open Weyl chamber. Hence, Jv and J ′v
have the corresponding Langlands quotients as subrepresentations. Then, the
quotients of Jv and J ′v are isomorphic since the length of Vv is four. This also
shows that the composition series of Vv is multiplicity free. Now, the quotient
of Iv is precisely the irreducible subquotient of Vv which does not appear as
a subquotient of Jv and that is the Langlands quotient Yv of J ′v as claimed.

Next, we study the poles at s = −1/2 of the local normalized intertwining
operators N(s, χ ◦ det′v, w2) acting on the induced representation Iv decom-
posed in the previous Lemma. This is precisely the point excluded in Theorem
2.3.

Lemma 2.29. If χ2
v is nontrivial, then the local normalized intertwining

operator
N(s, χv ◦ det′v, w2)

is holomorphic and non–vanishing at s = −1/2. Moreover, it is an isomor-
phism.

If χ2
v is trivial, then the local normalized intertwining operator

N(s, χv ◦ det′v, w2)

has a pole at s = −1/2. Moreover, the operator

Ñ(−1/2, χv ◦ det′v, w2) = lim
s→−1/2

(s+ 1/2)N(s, χv ◦ det′v, w2)
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is holomorphic and non–vanishing. In the notation of the previous Lemma
2.28, its kernel is Xv and its image is isomorphic to Yv. Thus, N(s, χv ◦
det′v, w2) at s = −1/2 restricted to the subrepresentation Xv of Iv does not
have a pole.

Proof. If χ2
v is nontrivial, the claim on the holomorphy and non–

vanishing is already proved in Lemma 1.12 for a split place and Lemma 1.22
for a non–split place. Then, the operator is an isomorphism since it acts on
an irreducible representation.

First, let v be a non–split place and χ2
v trivial. The normalized intertwin-

ing operator N(1/2, χv ◦ det′v, w2) is the operator of the Langlands classifica-
tion. Hence, it is holomorphic, its kernel is isomorphic to Yv and its image is
Xv. Since

N(s, χv ◦ det′v, w2)N(−s, χv ◦ det′v, w2) = Id,

the normalized operator N(s, χv ◦ det′v, w2) has a pole at s = −1/2 because
otherwise the composition would have nontrivial kernel. The pole is simple by
Lemma 2.15 since the corresponding pole for SL2(kv) is simple. Furthermore,
after cancelling the pole we have

Ñ(−1/2, χv ◦ det′v, w2)N(1/2, χv ◦ det′v, w2) = 0,

and the holomorphic and non–vanishing operator Ñ(−1/2, χv ◦ det′v, w2) acts
on length two representation. Thus, its kernel is the image of N(1/2, χv ◦
det′v, w2) which is Xv, while its image is the kernel of N(1/2, χv ◦ det′v, w2)
which is isomorphic to Yv.

Finally, let v be a split place and χ2
v trivial. We use the notation of the

proof of the previous Lemma 2.28. Consider the operator

N((−1, 0), χv ⊗ χv, w2),

acting on the induced representation Vv. It is just the L2(kv) ∼= GL2(kv)
normalized operator. Hence, it has a simple pole at (−1, 0). After cancelling
the pole, the kernel is I ′v and the image is isomorphic to J ′v. Now N(−1/2, χv◦
detv, w2) is its restriction to Iv and thus it has at most simple pole. After

cancelling the pole, the operator Ñ(−1/2, χv ◦det′v, w2) has kernel isomorphic
to the intersection of I ′v and Iv which is Xv and the image is isomorphic to
the mutual subquotient of J ′v and Iv which is Yv.

The last claim follows directly from the fact that Xv is the kernel of

Ñ(−1/2, χ ◦ det′v, w2).

Corollary 2.30. Let the notation be as above. If χ2
v is nontrivial, then

the image, which we denote W ′′v , of the normalized intertwining operator

N((3/2,−1/2), (χv ◦ det′v) ⊗ (χv ◦ det′v), w1w2w1w2)

is isomorphic to the Langlands quotient of the standard module

Ind
SO8(kv)
T (kv)

(
χv| · |2 ⊗ χv| · | ⊗ χv| · | ⊗ χv

)
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at split places, and the Langlands quotient of the standard module

Ind
G′

2(kv)

GL′

1(kv)×GL′

1(kv)

(
(χv ◦ det′v)ν3/2 ⊗ (χv ◦ det′v)ν

1/2
)

at non–split places.
If χ2

v is trivial, then the image of

N((3/2, 1/2), (χv ◦ det′v) ⊗ (χv ◦ det′v), w1w2w1)Ñ(−1/2, χv ◦ det′v, w2),

which we denote W ′v is isomorphic to the Langlands quotient of the standard
module

Ind
SO8(kv)
GL1(kv)×GL1(kv)×L2(kv)

(
χv| · |2 ⊗ χv| · | ⊗ Stχv

)

at split places, and the Langlands quotient of the standard module

Ind
G′

2(kv)

GL′

1(kv)×G′

1(kv)

(
(χv ◦ det′v)ν

3/2 ⊗ Yv

)

at non–split places.
Furthermore, if χ2

v is trivial, then the image of

N((3/2, 1/2), (χv ◦ det′v) ⊗ (χv ◦ det′v), w1w2w1),

which we denote Wv, is non–trivial and contains W ′v as a subrepresentation.

Proof. The proof applies the idea of Lemma 2.9 with w′′ = 1 and w′

chosen appropriately. The choice of w′ is based on Lemma 2.29.

Let S be the finite set of places containing the set of archimedean places
S∞, the set of non–split places SD, and the set of all non–archimedean split
places where χv is ramified. In other words, places v 6∈ S are precisely non–
archimedean split unramified places. For χ2 nontrivial let S1 be the (possibly
empty) set of places where χ2

v is trivial.

Theorem 2.31. The subspace L2
C3

of the residual spectrum of G′2(A) de-
composes into

L2
C3

=
(
⊕π′C(1)

3 (π′)
)
⊕
(
⊕π′C(2)

3 (π′)
)
.

The former sum is over all one–dimensional cuspidal automorphic represen-
tations π′ ∼= (χ ◦ det′) ⊗ (χ ◦ det′) of M ′0(A) such that χ2 is trivial. The
latter sum is over all one–dimensional cuspidal automorphic representations
π′ ∼= (χ ◦ det′)⊗ (χ ◦ det′) of M ′0(A) such that χ2 is nontrivial, but there is at
least one split place v 6∈ SD such that χ2

v is trivial.

The spaces C(1)
3 (π′) and C(2)

3 (π′) are the spaces of automorphic forms gen-
erated by the residues

lim
z→1/2

(z − 1/2)n Ress1−s2=2E(s, g; fs, π
′)

at s = (3/2,−1/2) of the Eisenstein series attached to π′, where n is the order
of the pole at z = 1/2.
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If χ2 is trivial, then by (2.8) the constant term map induces an isomor-

phism of C(1)
3 (π′) and

⊕V [(⊗v∈VW
′
v) ⊗ (⊗v 6∈V Wv)] ,

where the sum is over all finite sets of places V such that |V | = |SD|, and W ′v,
Wv are the images of the intertwining operators defined in Corollary 2.30.

If χ2 is nontrivial, then by (2.8) the constant term map induces an iso-

morphism of C(2)
3 (π′) and

⊕V

[
(⊗v∈VW

′
v) ⊗

(
⊗v∈S1\V Wv

)
⊗ (⊗v 6∈S1W

′′
v )
]
,

where the sum is over all finite sets of places V contained in the set S1 of
places where χ2

v is trivial and such that |V | = |SD ∩S1|+1, and W ′v, Wv, W
′′
v

are the images of the intertwining operators defined in Corollary 2.30.

Proof. The standard intertwining operators having nontrivial residues
along s1 − s2 = 2 correspond to the Weyl group elements w1, w2w1, w1w2w1

and w1w2w1w2. The first three normalized intertwining operators are holo-
morphic and non–vanishing at C3 by Theorem 2.3. The residues along
s1 − s2 = 2 of their normalizing factors, given in Table 8, are holomorphic
at C3 as well, i.e. at z = 1/2 in the new variable z on s1 − s2 = 2 defined
at the beginning of this Section 2.4. Recall that z is given by s1 = z + 1
and s2 = z − 1. Hence, the possible pole at z = 1/2 of the Eisenstein se-
ries coincides with the pole of the residue along s1 − s2 = 2 of the standard
intertwining operator

Ress1−s2=2A((s1, s2), π
′, w),

where w = w1w2w1w2, π
′ ∼= χ ◦ det′ ⊗χ ◦ det′ and χ is a unitary character of

A×/k×.
The difficulty in studying the analytic properties of that operator is due

to the maximal parabolic case intertwining operator A(z − 1, χ ◦ det′, w2) as
we will see in a moment. Let us decompose

A((s1, s2), π
′, w) = A((s1,−s2), w2(π

′), w1w2w1)A(s2, χ ◦ det′, w2)

= r((s1,−s2), w2(π
′), w1w2w1)

N((s1,−s2), w2(π
′), w1w2w1)A(s2, χ ◦ det′, w2),

according to the reduced decomposition of the Weyl group element. Along
the singular hyperplane s1 − s2 = 2 the intertwining operator corresponding
to the Weyl group element w1w2w1 has a simple pole coming from the nor-
malizing factor. Therefore, up to the same non–zero constant as in the proof
of Theorem 2.26, the residue Ress1−s2=2A((s1, s2), π

′, w) written in the new
variable z equals

L(2z − 1, χ2)L(2z, χ2)

L(2z + 1, χ2)L(2z + 2, χ2)ε(2z − 1, χ2)ε(2z, χ2)2ε(2z + 1, χ2)
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(
∏

v∈SD

L(2z, χ2
v)L(2z + 1, χ2

v)

L(−2z, χ−2
v )L(1 − 2z, χ−2

v )

)
L(2z + 2, χ2)

L(2z + 3, χ2)ε(2z + 2, χ2)

(2.32) ·N((z + 1, 1 − z), w2(π
′), w1w2w1)A(z − 1, χ ◦ det′, w2).

At z = 1/2 the normalized intertwining operator in (2.32) is holomorphic and
non–vanishing. The scalar factor does not have a pole at z = 1/2. Indeed, if
χ2 is trivial, the simple poles of the two L–functions L(2z−1,1) and L(2z,1)
are cancelled with the poles of the local L–functions L(1− 2z,1v) for v ∈ SD

since |SD| > 2. Hence, if χ2 is trivial the scalar factor in (2.32) has a zero
of order |SD| − 2 > 0 at z = 1/2. If χ2 is nontrivial, then only the local
L–functions L(1 − 2z, χ2

v) for v ∈ SD may have a pole at z = 1/2. Indeed
they have a simple pole if χ2

v is trivial, i.e. v ∈ S1. Hence, the order of a zero
at z = 1/2 of the scalar factor in (2.32) equals |S1 ∩ SD| > 0.

It remains to study the poles at z = 1/2 of A(z − 1, χ ◦ det′, w2). The
order of the pole depends on the decomposable section fz = fs

∣∣
s1−s2=2

used

to form the Eisenstein series. Let

fz = (⊗v∈T fz,v) ⊗ (⊗v 6∈T f
◦
z,v) ∈ I((z + 1, z − 1), π′),

where T is a finite set of places containing S, and f◦z,v is the normalized
unramified vector in I((z + 1, z − 1), π′) for v 6∈ T . Normalizing the standard
intertwining operator acting on fz gives

A(z − 1, χ ◦ det′, w2)fz =
L(2z, χ2)

L(1 + 2z, χ2)ε(2z, χ2)[(
⊗v∈TN(z − 1, χv ◦ det′v, w2)fz,v

)
⊗
(
⊗v 6∈T f̃

◦
z,v

)]
,(2.33)

where f̃◦z,v is again normalized unramified vector in the appropriate induced
representation. For v 6∈ T this is justified by the fact that the unramified vec-
tor f◦1/2,v is in the subrepresentation Xv, and by Lemma 2.29 the normalized

intertwining operator at z = 1/2 does not have a pole there.
Consider first the case χ2 is trivial. Then, the global normalizing factor

in (2.33) has a simple zero at z = 1/2. The order of the pole at z = 1/2 of
(2.33) depends on the order of the pole of the local normalized intertwining
operators

N(z − 1, χv ◦ det′v, w2)fz,v

for the places v ∈ T . Since χ2
v is trivial for all v, Lemma 2.29 shows that the

pole occurs if and only if fz,v is not in

Ind
G′

2(kv)

GL′

1(kv)×G′

1(kv)

(
(χv ◦ det′v)ν3/2 ⊗Xv

)
.

Let T0(fz) be the set of such places. Then, the order of the pole at z = 1/2
of (2.33) equals |T0(fz)| − 1. Looking back at the initial residue (2.32) acting
on fz, the order of the pole at z = 1/2 equals |T0(fz)| − |SD| + 1. Observe
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that T always contains SD and S∞ and hence |T | > |SD| + 1. Therefore, for
any T we can vary the local components fz,v at v ∈ T in such a way that the
number of places in T0(fz) remains always greater than |SD| which assures
that the Eisenstein series has a pole at z = 1/2. In other words, for any
finite set of places V in T such that |V | = |SD|, we can choose any fz,v at
v ∈ T \ V , while at every v ∈ V we can choose only those fz,v which give a
pole of the local intertwining operator, i.e. fz,v is not in the above induced
representation involving Xv.

Since the Langlands square–integrability criterion of Lemma 2.7 is satis-
fied, cancelling the pole of the Eisenstein series, for a fixed V ⊂ T such that
|V | = |SD| we obtain the space of square–integrable automorphic forms which
is isomorphic to

[
(⊗v∈V W

′
v) ⊗

(
⊗v∈T\V Wv

)
⊗
(
⊗v 6∈T

˜̃
f
◦

1/2,v

)]
,

where W ′v and Wv are the images, described in Corollary 2.30, of the local

intertwining operators after cancelling the pole where required, and
˜̃
f
◦

1/2,v is
the normalized unramified vector of the appropriate induced representation.
Recall that for v ∈ T \V we are allowed to vary fz,v without restriction giving
Wv as the image at those places.

Since the calculation holds for any finite set T of places containing S and
all V ⊂ T such that |V | = |SD| the space of automorphic forms obtained as
residues in this case is precisely as claimed in the Theorem.

Next, we consider the case when χ2 is nontrivial. Then, the global nor-
malizing factor in (2.33) is a non–zero constant at z = 1/2. By Lemma 2.29,
the local normalized intertwining operators in (2.33) do not have a pole at
z = 1/2 if χ2

v is nontrivial, i.e. v 6∈ S1. If χ2
v is trivial, i.e. v ∈ S1, the pole

depends on the sections fz,v. Namely, the simple pole occurs at z = 1/2 if
and only if f1/2,v is not in the subrepresentation

Ind
G′

2(kv)

GL′

1(kv)×G′

1(kv)

(
(χv ◦ det′v)ν3/2 ⊗Xv

)
.

Let T0(fz) ⊂ T ∩ S1 be the set of such places. Now, looking back at (2.32),
the order of the pole of the Eisenstein series attached to fz equals |T0(fz)| −
|S1 ∩ SD|. Thus if the set of places T contains at least one place v ∈ S1 \ SD,
we can vary the local components in such a way that the Eisenstein series has
a pole.

Proceeding as in the previous case, for any V ⊂ T ∩ S1 such that |V | =
|SD ∩ S1|+ 1, cancelling the pole of the Eisenstein series we obtain the space
of square–integrable automorphic forms isomorphic to

[
(⊗v∈VW

′
v) ⊗

(
⊗v∈(T∩S1)\V Wv

)
⊗
(
⊗v∈T\S1

W ′′v
)
⊗
(
⊗v 6∈T

˜̃
f
◦

1/2,v

)]
,
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whereW ′v, Wv andW ′′v are the images, described in Corollary 2.30, of the local

intertwining operators after cancelling the pole where required, and
˜̃
f
◦

1/2,v is
the normalized unramified vector of the appropriate induced representation.

This holds for any finite set of places T containing S and at least one place
of S1 \ SD, and any V ⊂ S1 ∩ T such that |V | = |SD ∩ S1| + 1. Observe that
the space is nontrivial if and only if such T exists, i.e. S1 \ SD is nonempty.
Varying T shows that the obtained space of automorphic forms is as stated
in the Theorem.

Corollary 2.34. The image Wv (defined in Corollary 2.29) of the nor-
malized intertwining operator

N((3/2, 1/2), (χv ◦ det′v) ⊗ (χv ◦ det′v), w1w2w1),

where χ2
v is trivial, is semisimple.

Proof. This is a consequence of the fact that Wv is the local component
at v of an automorphic representation belonging to the residual spectrum.

Theorem 2.35. The subspace L2
C4

of the residual spectrum of G′2(A) is
trivial, i.e. there is no contribution to the residual spectrum at point C4.

Proof. For the contribution at C4, first we look at the pole along the
singular hyperplane 2s2 = 1. From Table 7, the pole along 2s2 = 1 occurs if
and only if χ2

2 is trivial for the intertwining operators corresponding to the
Weyl group elements w2, w1w2, w2w1w2 and w1w2w1w2 and it is simple. The
residues along 2s2 = 1, up to the nonzero constant

Ress=1 L(s,1)L(2,1)−1ε(1,1)−1,

written in the new variable z are given in Table 9.
The terms in Table 9 may have the simple pole at z = 3/2 only if χ1χ2

is trivial i.e. χ = χ1 = χ2 is a quadratic character. But then, the terms
corresponding to w1w2 and w2w1w2 have the simple pole at z = 3/2 and the
term corresponding to w1w2w1w2 has the simple pole at z = 3/2 only if |SD| =
2. Since w1w2(3/2, 1/2) = (−1/2, 3/2) does not satisfy the Langlands square
integrability criterion of Lemma 2.7, the contribution from the corresponding
term should be zero. In other words, if f = ⊗vfv is an automorphic form in

Ind
G′

2(A)

GL′

1(A)×GL′

1(A)

(
(χ ◦ det′)ν3/2 ⊗ (χ ◦ det′)ν1/2

)

then, in order to get a square–integrable residue, it should satisfy

N((3/2, 1/2), π′, w1w2)f = 0.
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w Res2s2=1 r(s, π
′, w)

w2 1

w1w2
L(z−1/2,χ1χ2)L(z+1/2,χ1χ2)

L(z+3/2,χ1χ2)L(z+5/2,χ1χ2)ε(z−1/2,χ1χ2)ε(z+1/2,χ1χ2)2ε(z+3/2,χ1χ2)∏
v∈SD

L(z+1/2,χ1,vχ2,v)L(z+3/2,χ1,vχ2,v)

L(−z−1/2,χ−1
1,vχ−1

2,v)L(1/2−z,χ−1
1,vχ−1

2,v)

w2w1w2
L(z−1/2,χ1χ2)L(z+1/2,χ1χ2)

L(z+3/2,χ1χ2)L(z+5/2,χ1χ2)ε(z−1/2,χ1χ2)ε(z+1/2,χ1χ2)2ε(z+3/2,χ1χ2)∏
v∈SD

L(z+1/2,χ1,vχ2,v)L(z+3/2,χ1,vχ2,v)

L(−z−1/2,χ−1
1,vχ−1

2,v)L(1/2−z,χ−1
1,vχ−1

2,v)
· L(2z,χ2

1)

L(2z+1,χ2
1)ε(2z,χ2

1)

L(z−1/2,χ1χ2)L(z+1/2,χ1χ2)
L(z+3/2,χ1χ2)L(z+5/2,χ1χ2)ε(z−1/2,χ1χ2)ε(z+1/2,χ1χ2)2ε(z+3/2,χ1χ2)

w1w2w1w2

∏
v∈SD

L(z+1/2,χ1,vχ2,v)L(z+3/2,χ1,vχ2,v)

L(−z−1/2,χ−1
1,vχ−1

2,v)L(1/2−z,χ−1
1,vχ−1

2,v)
· L(2z,χ2

1)

L(2z+1,χ2
1)ε(2z,χ2

1)

L(z−3/2,χ1χ2)L(z−1/2,χ1χ2)
L(z+1/2,χ1χ2)L(z+3/2,χ1χ2)ε(z−3/2,χ1χ2)ε(z−1/2,χ1χ2)2ε(z+1/2,χ1χ2)∏

v∈SD

L(z−1/2,χ1,vχ2,v)L(z+1/2,χ1,vχ2,v)

L(−z+1/2,χ−1
1,vχ−1

2,v)L(3/2−z,χ−1
1,vχ−1

2,v)

Table 9. Residues along 2s2 = 1 of case C normalizing factors

But then L2
C4

is trivial because the residues of the other two terms in Table
9 that may have the simple poles are up to a constants equal to

N((3/2, 1/2), π′, w2w1w2)f

= N((−1/2, 3/2), π′, w2)N((3/2, 1/2), π′, w1w2)f = 0,

N((3/2, 1/2), π′, w1w2w1w2)f

= N((−1/2, 3/2), π′, w1w2)N((3/2, 1/2), π′, w1w2)f = 0.

Before giving the decomposition of L2
C5

we introduce some notation. Con-

sider the local normalized GL′2(kv)–intertwining operator N(0, (χ1,v ◦det′v)⊗
(χ2,v ◦ det′v), w1) acting on the induced representation

Ind
GL′

2(kv)

GL′

1(kv)×GL′

1(kv)

(
(χ1,v ◦ det′v) ⊗ (χ2,v ◦ det′v)

)
.

By Theorem 4.2 of [6] at split non–archimedean, Theorem B.2.d of [8] at non–
split and results of [47] at archimedean places, this induced representation is
irreducible. Hence, the normalized operator acts as ±Idv. Denote the sign by
ηv. The following Lemma describes the image of the normalized intertwining
operator N((1/2, 1/2), (χ1,v ◦ det′v) ⊗ (χ2,v ◦ det′v), w2w1w2), where χ1,v and
χ2,v are quadratic characters of k×v .

Lemma 2.36. Let π′v
∼= (χ1,v ◦ det′v)⊗ (χ2,v ◦ det′v) be a representation of

M ′0(kv), where χ1,v and χ2,v are quadratic characters of k×v . The image of the
normalized intertwining operator N((1/2, 1/2), π′v, w2w1w2) is irreducible at
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all non–split places and the split places where χ1,v = χ2,v, while it is the direct
sum of two irreducible representations at the split places where χ1,v 6= χ2,v.

Proof. In the proof we apply Lemma 2.9 and use its notation. Since the
normalized intertwining operator N(w2w1w2(1/2, 1/2), w2w1w2(π

′
v), w1) =

ηvIdv, the image of N((1/2, 1/2), π′v, w2w1w2) is isomorphic to the image of
N((1/2, 1/2), π′v, w1w2w1w2). Let w = w1w2w1w2 and s = (1/2, 1/2). For a
non–split place the image is irreducible by the Langlands classification since
π′v is supercuspidal and w is the longest Weyl group element.

Let v be a split place. As in the proof of Theorem 2.26, πv is the unique
irreducible subrepresentation of the induced representation from the torus
T ∼= GL1 ×GL1 ×GL1 ×GL1 and, in the notation of Lemma 2.9, L = T and

s+ s′ = (0, 1, 0, 1),

τv = χ1,v ⊗ χ1,v ⊗ χ2,v ⊗ χ2,v.

For w′ of Lemma 2.9 we take the Weyl group element corresponding, in the
notation as in the proof of Proposition 1.12, to the permutation

w′ = (1, 4, 3)(2).

Then

w′−1(s+ s′) = (1, 1, 0, 0),

w′−1(τv) = χ2,v ⊗ χ1,v ⊗ χ1,v ⊗ χ2,v.

Writing w′ = (1)(2)(3, 4) ◦ (1, 3, 2)(4) ◦ (1)(2, 3)(4) shows that the normal-
ized intertwining operator N(w′−1(s + s′), w′−1(τv), w′) is surjective onto

Ind
SO8(kv)
GL2(kv)×GL2(kv)(π

′
v) since it decomposes into

Ind
SO8(kv)
T (kv) (χ2,v| · | ⊗ χ1,v| · | ⊗ χ1,v ⊗ χ2,v) →

Ind
SO8(kv)
GL1(kv)×GL2(kv)×GL1(kv)

(
χ2,v| · | ⊗ (χ1,v ◦ detv)ν

1/2 ⊗ χ2,v

)
→

Ind
SO8(kv)
GL2(kv)×GL1(kv)×GL1(kv)

(
(χ1,v ◦ detv)ν1/2 ⊗ χ2,v| · | ⊗ χ2,v

)
→

Ind
SO8(kv)
GL2(kv)×GL2(kv)

(
(χ1,v ◦ detv)ν

1/2 ⊗ (χ2,v ◦ detv)ν
1/2
)
,

where the first and the third arrows are surjective and the second is an iso-
morphism.

Now, for w′′ of Lemma 2.9 we take the Weyl group element such that
w′′ww′ is the longest Weyl group element. Thus, w′′ = (1, 2, 3)(4). We claim
that the restriction of the normalized intertwining operator

N(w(s + s′), w(τv), w′′)

acting on the induced representation

Ind
SO8(kv)
T (kv)

(
χ−1

1,v| · | ⊗ χ1,v ⊗ χ2,v| · |−1 ⊗ χ2,v

)
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to the subrepresentation

Ind
SO8(kv)
GL2(kv)×GL2(kv)

(
(χ1,v ◦ detv)ν−1/2 ⊗ (χ2,v ◦ detv)ν−1/2

)

is injective. In other words, its kernel does not intersect that subrepre-
sentation. If χ1,v 6= χ2,v it is an isomorphism since it is the product
of two GL2(kv) normalized intertwining operators both acting on an irre-
ducible induced representation. Otherwise, if χ1,v = χ2,v = χv, then writing
w′′ = (1, 2)(3)(4) ◦ (1)(2, 3)(4), it decomposes into

Ind
SO8(kv)
T (kv)

(
χv| · |−1 ⊗ χv ⊗ χv| · |−1 ⊗ χv

)
→

Ind
SO8(kv)
T (kv)

(
χv| · |−1 ⊗ χv| · |−1 ⊗ χv ⊗ χv

)
→

Ind
SO8(kv)
T (kv)

(
χv| · |−1 ⊗ χv| · |−1 ⊗ χv ⊗ χv

)
,

where the second arrow is just the isomorphism interchanging the first two
characters. Hence, the kernel of N(w(s+ s′), w(τv), w′′) is isomorphic to

Ind
SO8(kv)
GL1(kv)×GL2(kv)×GL1(kv)

(
χv| · |−1 ⊗ Stχv

ν−1/2 ⊗ χv

)
,

where, at archimedean places, abusing the non–archimedean notation, we
denote by Stχv

the unique irreducible subrepresentation of

Ind
GL2(kv)
GL1(kv)×GL1(kv)

(
χv| · |1/2 ⊗ χv| · |−1/2

)
.

By the Langlands classification, the kernel contains the unique irreducible
subrepresentation, namely the Langlands quotient. If the kernel intersected

Ind
SO8(kv)
GL2(kv)×GL2(kv)

(
(χ1,v ◦ detv)ν

−1/2 ⊗ (χ2,v ◦ detv)ν
−1/2

)
,

then the intersection would contain that Langlands quotient as a subrepre-
sentation. However, such subrepresentation is isomorphic to a quotient of

Ind
SO8(kv)
GL2(kv)×GL2(kv)

(
(χ1,v ◦ detv)ν1/2 ⊗ (χ2,v ◦ detv)ν1/2

)

and, by the surjectivity of the normalized intertwining operator corresponding
to w′, it is a quotient of the induced representation

Ind
SO8(kv)
T (kv) (χv| · | ⊗ χv| · | ⊗ χv ⊗ χv) .

By the induction in stages, we first induce the last two characters to SO4(kv).
This induced representation is irreducible, by Lemma 2.15 since χv is a qua-
dratic character, and it is tempered. Denote it by σv. Then,

Ind
SO8(kv)
T (kv) (χv| · | ⊗ χv| · | ⊗ χv ⊗ χv)

∼= Ind
SO8(kv)
GL1(kv)×GL1(kv)×SO4(kv) (χv| · | ⊗ χv| · | ⊗ σv) ,
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and by the Langlands classification, this induced representation has the unique
irreducible Langlands quotient which is not isomorphic to the Langlands quo-
tient in the kernel. This shows our claim and thus injectivity for χ1,v = χ2,v.

Therefore, as in the proof of Lemma 2.9, by the surjectivity and injectivity
proved above, the image of N(w′−1(s+ s′), w′−1(τv), w′′ww′) is isomorphic to
the image of N(s, π′v, w). Recall that here s = (1/2, 1/2). However, although
w′′ww′ is the longest Weyl group element, w′−1(s+s′) does not satisfy inequal-
ities (2.10) of Lemma 2.9 and we can not apply the Langlands classification
directly. Nevertheless, we can describe the image. By the induction in stages,
as in the proof of the injectivity above,

Ind
SO8(kv)
T (kv) (χ2,v|·| ⊗ χ1,v|·| ⊗ χ1,v ⊗ χ2,v) ∼=

Ind
SO8(kv)
GL1(kv)×GL1(kv)×SO4(kv)

(
χ2,v|·| ⊗ χ1,v|·| ⊗ Ind

SO4(kv)
GL1(kv)×GL1(kv)(χ1,v⊗χ2,v)

)
.

By Lemma 2.15, the SO4(kv) induced representation is irreducible and tem-
pered if χ1,v = χ2,v and it is the direct sum of two irreducible tempered
representations if χ1,v 6= χ2,v. In any case, writing the longest Weyl group el-
ement as the product of the longest element for GL1 ×GL1 × SO4 ⊂ SO8 and
the longest one for GL1 ×GL1 ⊂ SO4 allows the application of the Langlands
classification for each tempered component of the SO4(kv) induced represen-
tation which proves the Lemma.

Theorem 2.37. The subspace L2
C5

of the residual spectrum of G′2(A) de-
composes into

L2
C5

=
(
⊕π′C(1)

5 (π′)
)
⊕
(
⊕π′C(2)

5 (π′)
)
.

The former sum is over all the one–dimensional cuspidal automorphic rep-
resentations π′ ∼= (χ1 ◦ det′) ⊗ (χ2 ◦ det′) of M ′0(A) such that χ1 6= χ2 are
both quadratic characters, χ1,v 6= χ2,v for all v ∈ SD and the parity condition∏

v ηv = 1 holds. The latter sum is over all the one–dimensional cuspidal
automorphic representations π′ ∼= (χ1 ◦ det′)⊗ (χ2 ◦ det′) of M ′0(A) such that
χ1 = χ2 is a quadratic character, the cardinality |SD| = 2 and the parity
condition

∏
v ηv = −1 holds.

Both C(1)
5 (π′) and C(2)

5 (π′) are the spaces of automorphic forms spanned
by the iterated residues

Resz=1/2 Res2s2=1E(s, g; fs, π
′)

at s = (1/2, 1/2) of the Eisenstein series attached to π′. The space C(2)
5 (π′)

is irreducible and, by (2.8), the constant term map induces an isomorphism
with the image of the normalized intertwining operator

N((1/2, 1/2), π′v, w2w1w2).

By (2.8), the constant term map induces an isomorphism of C(1)
5 (π′) and

the sum of the irreducible spaces of the form ⊗vΠ
′
v, where Π′v is one of at



ON THE RESIDUAL SPECTRUM 77

most two components of the image of the normalized intertwining operator
N((1/2, 1/2), π′v, w2w1w2) and it is the unramified one at almost all places.

Proof. For the contribution to the residual spectrum at C5 we look first
at the pole along the singular hyperplane 2s2 = 1. It was already considered
in the proof of the previous Theorem. The simple pole along 2s2 = 1 occurs
only if χ2 is a quadratic character. The residues written in the new variable
z are given in Table 9. We must look at their poles at z = 1/2.

First assume that χ1 6= χ2, i.e. χ1χ2 is nontrivial. Only the terms
corresponding to w2w1w2 and w1w2w1w2 may have the simple poles at z =
1/2 if χ1 is a quadratic character. The residues are, up to the nonzero constant

Ress=1 L(s,1)

L(2,1)ε(1,1)

L(0, χ1χ2)L(1, χ1χ2)

L(2, χ1χ2)L(3, χ1χ2)ε(0, χ1χ2)ε(1, χ1χ2)2ε(2, χ1χ2)
·

·
∏

v∈SD

L(1, χ1,vχ2,v)L(2, χ1,vχ2,v)

L(−1, χ1,vχ2,v)
,

equal to ∏

v∈SD

L(0, χ1,vχ2,v)
−1N((1/2, 1/2), π′, w2w1w2),

and
L(−1, χ1χ2)L(0, χ1χ2)

L(1, χ1χ2)L(2, χ1χ2)ε(−1, χ1χ2)ε(0, χ1χ2)2ε(1, χ1χ2)
·

·
∏

v∈SD

L(0, χ1,vχ2,v)
−1N((1/2, 1/2), π′, w1w2w1w2).

By the global functional equation

L(−1, χ1χ2) = ε(−1, χ1χ2)L(2, χ1χ2),

L(0, χ1χ2) = ε(0, χ1χ2)L(1, χ1χ2),

ε(0, χ1χ2)ε(1, χ1χ2) = 1,

and hence the latter residue equals
∏

v∈SD

L(0, χ1,vχ2,v)
−1N((1/2, 1/2), π′, w1w2w1w2).

Using the decomposition of the intertwining operators of Proposition 1.4, the
residue at C5 applied to f = ⊗vfv can be written as

∏

v∈SD

L(0, χ1,vχ2,v)
−1

· ⊗v N((1/2, 1/2), π′v, w2w1w2)
(
⊗v fv + ⊗vN((1/2, 1/2), π′v, w1)fv

)
.
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The normalized intertwining operator N((1/2, 1/2), π′v, w1) is actually the lo-
cal intertwining operator considered before the statement of the Theorem.
Hence, it acts as ηvIdv and the residue at C5 equals

∏

v∈SD

L(0, χ1,vχ2,v)
−1

(
1 +

∏

v

ηv

)
N((1/2, 1/2), π′, w2w1w2).

It is non–vanishing if and only if χ1,v 6= χ2,v for all v ∈ SD and
∏

v ηv = 1.
Then, it equals the normalized operator N((1/2, 1/2), π′, w2w1w2). Since
w1w2w1w2(1/2, 1/2) = w2w1w2(1/2, 1/2) = (−1/2,−1/2), Lemma 2.7 is sat-
isfied.

Assume now that χ1 = χ2, i.e. χ1χ2 is trivial. Then χ1 is a quadratic
character. Consider the terms in Table 9. The term corresponding to w1w2

has the zero of order |SD| − 2 at z = 1/2. Since |SD| > 2 it does not have the
pole at z = 1/2. The terms corresponding to w2w1w2 and w1w2w1w2 have
the zero or pole of order |SD| − 3 at z = 1/2. If |SD| > 4 these two terms
do not have the pole at z = 1/2 and there is no contribution to the residual
spectrum. Hence, let |SD| = 2. Then terms corresponding to w2w1w2 and
w1w2w1w2 have the simple pole at z = 1/2. The residues are, up to the
nonzero constant

Ress=1 L(s,1)

L(2,1)ε(1,1)

Ress=0 L(s,1)Ress=1 L(s,1)

L(2,1)L(3,1)ε(0,1)ε(1,1)2ε(2,1)

·
∏

v∈SD

L(1,1v)L(2,1v)

L(−1,1v)Ress=0 L(s,1v)

equal to N((1/2, 1/2), π′, w2w1w2) and

L(−1,1)

L(2,1)ε(−1,1)ε(0,1)ε(1,1)
· L(s,1)

L(s+ 1,1)ε(s,1)

∣∣∣
s=0

·
∏

v∈SD

L(s,1v)

L(−s,1v)

∣∣∣
s=0

N((1/2, 1/2), π′, w1w2w1w2).

By the global functional equation we have L(−1,1) = ε(−1,1)L(2,1) and
ε(0,1)ε(1,1) = 1 and Lemma 2.8

L(s,1)L(s+ 1,1)−1ε(s,1)−1
∣∣
s=0

= −1

and ∏

v∈SD

L(s,1v)L(−s,1v)
−1
∣∣
s=0

= (−1)|SD| = 1.

Hence, the latter residue is equal to −N((1/2, 1/2), π′, w1w2w1w2). As in
the previous case, decomposing the intertwining operators and the discussion
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preceding the statement of the Theorem give for the residue
(

1 −
∏

v

ηv

)
N((1/2, 1/2), π′, w2w1w2).

Therefore, the residue is nonzero if
∏

v ηv = −1 as claimed. Lemma 2.7 is
satisfied as above and the residue equals the normalized intertwining operator
N((1/2, 1/2), π′, w2w1w2).

In both cases, the image of the normalized intertwining operator

N((1/2, 1/2), π′, w2w1w2)

is described locally at every place in Lemma 2.36, thus finishing the proof.
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[41] G. Muić, On certain classes of unitary representations for split classical groups,
Canad. J. Math. 59 (2007), 148–185.
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