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Vol. 44(64)(2009), 83 – 87

MAXIMAL RANKS AND INTEGER POINTS ON A FAMILY
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P. G. Walsh

University of Ottawa, Canada

Abstract. We extend a result of Spearman which provides a sufficient
condition for elliptic curves of the form y2 = x3

− px, with p a prime, to
have Mordell-Weil rank 2. As in Spearman’s work, the condition given
here involves the existence of integer points on these curves.

1. Introduction

There are numerous publications which connect the rank of an elliptic
curve to the size of the set of integral points on that curve. In [5], Silver-
man showed that the number of integer solutions to a cubic Thue equation
F (x, y) = m is bounded in terms of the rank of the Mordell-Weil group of the
corresponding cubic curve F (x, y) = mz3. Ingram [3] has recently proved that
under suitable hypotheses, a rank one subgroup of a minimal elliptic curve
with integer coefficients can have at most 6 integer points. For curves of the
form

(1.1) Ep : y2 = x3 − px,

with p prime, it is known that the rank of the Mordell-Weil group is at most
2, which can be proved using the methods in section X.6 of [6]. Extending a
result of Kudo and Motose [4], Spearman [7] has recently proved that if p is
a prime of the form p = u4 + v4 for some rational integers u, v, then the rank
rp of Ep attains the maximal rp = 2. This formulation of Spearman can be
interpreted in terms of the set Ep(Z) of integer points on Ep.

Throughout the paper, p denotes an odd prime. Define E+
p (Z) to be the

set of positive integer points on Ep, where an integer point (x, y) is defined to
be positive if y > 0. It is clear that |Ep(Z)| = 2|E+

p (Z)| + 1 since (0, 0) lies
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on Ep. The purpose of specifying that integer points be positive is to avoid
the effect of torsion on the discussion at hand, as it is well known that the
rational torsion on Ep is precisely the group of order 2 generated by (0, 0).

In the proof of Theorem 2 of [9], the complete set of positive integer points
on curves of the form (1.1) were explicitly given as follows. Let ǫp = T +U

√
p

denote the fundamental unit in Z[
√

p].

(i) If p = 2u2−1 for some positive integer u, then (x, y) = (u2, u(u2−1)) ∈
Ep.

(ii) If norm(ǫp) = −1 and U = u2 for some positive integer u, then (x, y) =
(pu2, puT ) ∈ Ep.

(iii) If p = u4 + v2 for positive integers u, v, then (x, y) = (−u2, uv) ∈ Ep.

We remark that it is a consequence of the main result of [2] that there are
at most four positive integer points on Ep. In particular, there is obviously
at most one positive integer point of type (i), at most one of type (ii) by the
main result in [2], and at most two of type (iii). Furthermore, two positive
integer points of type (iii) exist precisely if p = u4 + v4 for positive integers
u, v.

Concerning the rank of the Mordell-Weil group of Ep(Q), as noted earlier,
such curves can have rank no larger than 2. The authors of [4] showed that if
p is a Fermat prime, then the rank of Ep is equal to 2. We note that this set
of primes is not only thin, but assuredly finite. This result has recently been
extended by Spearman in [7], who employed the ideas in Ch. 7 of [1] to show
that the rank of Ep is equal to 2 whenever p = u4 + v4 for positive integers
u, v. Although thin, this set of primes is conjecturally infinite.

In the present paper, we extend Spearman’s theorem by showing that the
rank of Ep is 2 whenever there are at least two positive integer points on Ep,
except possibly if there are exactly two positive integer points, with one of
them being of type (ii) above and the other being of type (iii) above. We use
the above notation in the statement of the following theorem.

Theorem 1.1. If there are at least two positive integer points on Ep, then

the rank of the Mordell-Weil group of Ep(Q) is equal to 2, unless all of the

following conditions hold, in which case the rank is either equal to 1 or to 2.

1. p = u4 + v2 with v a nonsquare integer,

2. norm(ǫp) = −1 and ǫp = T + U
√

p satisfies the property that U is a

square,

3. (p + 1)/2 is a nonsquare integer.

2. Proof

Assume that there are two positive integer points P1, P2 on Ep. The
hypotheses of the theorem allow us to assume that P1 and P2 are not simul-
taneously of the form given by (ii) and (iii) above. Furthermore, by the result
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of Spearman, we need not deal with the case that both P1 and P2 are of type
(iii). Thus, there are only two cases to consider.

Case I P1 is of type (i) and P2 is of type (ii).
We let Ep be as above, and as in [7], we define

Ep : y2 = x3 + 4px.

To compute the rank of Ep as in Chapter 7 of [1], we first need to determine
the number of quartic equations of the form

dX4 + cY 4 = Z2

which are solvable in integers X, Y, Z, with gcd(X, c) = 1, where, as in the
proof of Theorem 1 of [7], (d, c) = (p,−1) or (−1, p). Furthermore, as re-
marked in that proof, the number of such equations which are so solvable is
2ω − 2 for some integer ω ≥ 1. The hypothesis that P2 is of type (ii) implies
that ǫp = T + U

√
p satisfies norm(ǫp) = −1 and U = z2 for some integer z.

We therefore have that pz4 − 1 = T 2. Thus, 2ω − 2 > 0, and so ω ≥ 2.
Following the method of Chapter 7 of [1] one step further, we now need

to determine the number of quartic equations of the form

dX4 + cY 4 = Z2

which are solvable in integers X, Y, Z, with gcd(X, c) = 1, where, as in the
proof of Theorem 1 of [7], (d, c) = (2p, 2) or (2, 2p). Furthermore, as remarked
in that proof, the number of such equations which are so solvable is 2ω − 2
for some integer ω ≥ 1. Since P1 is of type (i), it follows that p = 2u2 − 1
for some integer u, and hence that 2p + 2 = (2u)2. Thus, 2ω − 2 > 0, and so
ω ≥ 2.

Finally, as in the proof of Theorem 1 of [7], or appealing directly to
Corollary 7.5 of [1], the rank of Ep is given by ω +ω−2. We now deduce that

2 ≥ rank(Ep) = ω + ω − 2 ≥ 2 + 2 − 2 = 2,

yielding the result as claimed.

Case II P1 is of type (i) and P2 is of type (iii).
The proof for this case is identical to the previous case, except only that

the equation p−u4 = v2 is used in the estimation of ω in place of the equation
pz4 − 1 = T 2 used above.

To complete the proof, we need only consider the case that Ep contain two
positive integer points, one of which being of type (ii) and the other of type
(iii). Both of these points are of infinite order, whence the rank is positive.
Since the rank is at most 2, the proof of the theorem is complete.
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3. Examples and Heuristics

It is not difficult to construct examples of curves which satisfy the prop-
erty of having rank equal to 2 by way of Theorem 1.1, and which are not in the
set of curves already found by Spearman in [7]. The following approach finds
curves of rank 2 with one positive integer point of type (i) and one positive
integer point of type (iii).

Let v denote an odd integer such that (v4+1)/2 is divisible only by primes

q ≡ ±1 (mod 8), so that X2 − 2Y 2 = (v4 + 1)/2 is solvable. If x0 + y0

√
2 is

an element in Z[
√

2] of norm (v4 + 1)/2, let

xi + yi

√
2 = (x0 + y0

√
2)(3 + 2

√
2)i,

for i ∈ Z. For each value i ∈ Z, determine if 2x2
i − 1 is prime and if |2yi| is

nonsquare. If these conditions are satisfied, let p = 2x2
i − 1. Then it follows

that Ep has one positive integer point of type (i) and exactly one positive
integer point of type (iii). By choosing v = 1, one obtains the examples
p = 17, 97, 577 in this way.

It is conjecturally the case that for each fixed v, the above construction
leads to infinitely many examples. According to standard conjectures on the
distributions of primes, the integer 2x2

i − 1 is to be prime for infinitely many
i. More precisely, the sequence {xi} grows exponentially, roughly like ci for
some c > 0, and so the probability that 2x2

i −1 is prime is roughly (log c)/(2i),
which forces the sum of the probabilities, over all i, to diverge. Furthermore,
one can also let v vary as well, thereby increasing the set of primes for which
Theorem 1.1 applies.

Although we do not have a precise heuristic for the number of primes up
to x for which the rank of Ep is 2, our computations indicate that this number

grows roughly in size with x1/2. Standard heuristics for the number of primes
of the form u4+v4 show that Spearman’s theorem will apply slightly more than
about x1/4 of the primes up to x. Similarly, using estimates for the number of
primes simultaneously satisfying conditions (i) and (ii) or conditions (i) and
(iii), we conjecture that Theorem 1.1 will also only apply to slightly more
than x1/4 of the primes up to x. Therefore, although Theorem 1.1 increases
the set of primes p for which one can deduce that Ep has rank 2, this set of
primes appears to be substantially smaller than the entire set of p for which
Ep has rank 2.

It is worth noting that if Ep has one positive integer point of type (ii)
and another of type (iii), then the rank of Ep can be equal to 1. It is not
difficult to find many such examples, the smallest one being p = 5. Other
such examples can be found by finding primes p of the form p = u2 + 1, with
u nonsquare, and we conjecture that there are infinitely such p for which the
rank of Ep = 1. Thus, in this sense, Theorem 1.1 is best possible. However,
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we are unable to prove that there are infinitely many primes p for which Ep

has rank 2 using Theorem 1.1.
In [8], Spearman proves an analogous theorem for curves of the form

y2 = x3 − 2px, where p is of the form p = (u2 + 2v2)4 + (u2 − 2v2)4. In future
work, we will prove an analogue of Theorem 1.1 for these curves.
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