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BIMORPHISMS OF A pro∗-CATEGORY
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University of Split, Croatia

Abstract. Every morphism of an abstract coarse shape category
Sh∗

(C,D)
can be viewed as a morphism of the category pro∗-D (defined on

the class of inverse systems in D), where D is dense in C. Thus, the study
of coarse shape isomorphisms reduces to the study of isomorphisms in the
appropriate category pro∗-D. In this paper bimorphisms in a category
pro∗-D are considered, for various categories D. We discuss in which cases
pro∗-D is a balanced category (category in which every bimorphism is an
isomorphism). We are interested in the question whether the fact that
one of the categories: D, pro-D and pro∗-D is balanced implies that the
other two categories are balanced. It is proved that if pro∗-D is balanced
then D is balanced. Further, if D admits sums and products and pro∗-D
is balanced then pro-D is balanced. In particular, pro∗-C is balanced for
C = Set (the category of sets and functions) and C = Grp (the category of
groups and homomorphisms).

1. Introduction

The coarse shape theory was introduced and studied by N. Uglešić and
the author in the joint paper [4]. In that paper, among others, the coarse

shape category of topological spaces Sh∗ ≡ Sh∗

(HTop,HPol) has been con-

structed. The corresponding classification of topological spaces, induced
by isomorphisms of Sh∗, is strictly coarser than the standard shape type
classification. One can apply the same construction for any category pair
(C,D), where D is dense in C (in the shape-theoretical sense [6]), to obtain
an abstract coarse shape category Sh∗

(C,D), having C-objects for the object

class. The category Sh∗

(C,D) is constructed from the category pro∗-D which
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is defined on the class of inverse systems in D. For any pair X , Y of C-
objects, every coarse shape morphism F ∗ ∈ Sh∗

(C,D) (X, Y ) is represented by

a unique morphism f∗ ∈ pro∗-D (X, Y ) between inverse systems X and Y ,
i.e. Sh∗

(C,D) (X, Y ) ≈ pro∗-D (X , Y ), where p : X → X and q : Y → Y are

D-expansions of objects X and Y , respectively. Thus, the category Sh∗

(C,D) is

obtained via the category pro∗-D in the same manner as the abstract shape
category Sh(C,D) is obtained via the category pro-D. Namely, the categories
pro-D and pro∗-D have the same object class (inverse systems in D), but
sets of morphisms are much larger in pro∗-D. Since a certain faithful functor
J ≡ JD : pro-D → pro∗-D, keeping the objects fixed, has been constructed,
one may consider pro-D to be a subcategory of pro∗-D. Therefore, we may
write

(1) D ⊆ pro-D ⊆ pro∗-D.

In any category the problem of detecting isomorphisms is essential. It
can be readily seen that the discussion about coarse shape isomorphisms (iso-
morphisms in Sh∗

(C;D)) reduces to the studying of isomorphisms in the cat-

egory pro∗-D. For many familiar categories (Set - the category of sets and
functions, Grp - the category of groups and homomorphisms, Cpt - the cate-
gory of compact Hausdorff spaces) every morphism which is simultaneously a
monomorphism and an epimorphism (called bimorphism) is an isomorphism.
Such a category is called balanced. Notice that if a category is balanced, then,
generally, its subcategory (or supercategory) needs not to be balanced. In
this paper we are interested whether the fact that one of the categories in (1)
is balanced implies that the other categories in (1) are balanced.

2. Preliminaries

Let us recall the basic facts about pro-categories (see [6]) as well as pro∗-
categories (see [4]).

Let C be a category. An inverse system in C, denoted by X =
(Xλ, pλλ′ , Λ), consists of a directed preordered set (Λ,≤), of C-objects Xλ

for each λ ∈ Λ, and of C-morphisms pλλ′ : Xλ′ → Xλ (pλλ = 1Xλ
), for each

related pair λ ≤ λ′ in Λ, such that pλλ′pλ′λ′′ = pλλ′′ , whenever λ ≤ λ′ ≤ λ′′.
A morphism of inverse systems (f, fµ) : X → Y = (Yµ, qµµ′ , M) consists of
a function f : M → Λ, and of C-morphisms fµ : Xf(µ) → Yµ for each µ ∈M ,
such that, for every related pair µ ≤ µ′, there exists a λ ∈ Λ, λ ≥ f(µ), f(µ′),
such that

fµpf(µ)λ = qµµ′fµ′pf(µ′)λ.

Let X and Y be two inverse systems over the same index set Λ. A
morphism (1Λ, fλ) : X → Y is called a level morphism of inverse systems,
provided
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fλpλλ′ = qλλ′fλ′ ,

for every related pair λ ≤ λ′.
A morphism (f, fµ) : X → Y is said to be equivalent to a morphism

(f ′, f ′
µ) : X → Y , denoted by (f, fµ) ∼ (f ′, f ′

µ), provided each µ ∈M admits
a λ ∈ Λ, λ > f(µ), f ′(µ), such that

fµpf(µ)λ = f ′

µpf ′(µ)λ.

The equivalence class [(f, fµ)] of an (f, fµ) is denoted by f . The composition

of equivalence classes is well defined by putting

gf = [(g, gν)][(f, fµ)] = [(g, gν)(f, fµ)].

The corresponding quotient category having all inverse systems X in C for
objects, all equivalence classes f of morphisms of inverse systems for mor-
phisms and 1X = [(1Λ, 1Xλ

)] for the identity morphism on an X is de-
noted by pro-C and is called the pro-category for the category C. We may
treat each C-morphism f : X → Y as a morphism in pro-C by putting
f = (f) : (X) → (Y ), where (X) and (Y ) are the rudimentary inverse sys-
tems. A morphism f is said to be induced by f. In this way, a category C can
be considered as a subcategory of pro-C.

An S∗-morphism of inverse systems, (f, fn
µ ) : X → Y , consists of a

function f : M → Λ, called the index function, and of a set of C-morphisms
fn

µ : Xf(µ) → Yµ, n ∈ N, µ ∈ M, such that, for every related pair µ ≤ µ′ in
M , there exists a λ ∈ Λ, λ > f(µ), f (µ′), and there exists an n ∈ N so that,
for every n′ > n,

fn′

µ pf(µ)λ = qµµ′fn′

µ′ pf(µ′)λ.

If the index function f is increasing and, for every pair µ ≤ µ′, one may put
λ = f(µ′), then (f, fn

µ ) is said to be a simple S∗-morphism. If, in addition,
M = Λ and f = 1Λ, then (1Λ, fn

λ ) is said to be a level S∗-morphism.
The composition of S∗-morphisms of inverse systems is defined as follows:

If (f, fn
µ ) : X → Y and (g, gn

ν ) : Y → Z, then (g, gn
ν )(f, fn

µ ) = (h, hn
ν ) : X →

Z, where h = fg and hn
ν = gn

ν fn
g(ν). The identity S∗-morphism on X is an

S∗-morphism (1Λ, 1n
Xλ

) : X → X, consisting of the identity function 1Λ and
of the identity morphisms 1n

Xλ
= 1Xλ

in C, for every n ∈ N and every λ ∈ Λ.
An S∗-morphism (f, fn

µ ) : X → Y of inverse systems in C is said to
be equivalent to an S∗-morphism (f ′, f ′n

µ ) : X → Y , denoted by (f, fn
µ ) ∼

(f ′, f ′n
µ ), provided every µ ∈ M admits a λ ∈ Λ, λ > f(µ), f ′(µ), and an

n ∈ N, such that, for every n′ > n,

fn′

µ pf(µ)λ = f ′n′

µ pf ′(µ)λ.

The relation ∼ is an equivalence relation among S∗-morphisms of inverse
systems in C. The equivalence class [(f, fn

µ )] of an S∗-morphism (f, fn
µ ) : X →

Y is briefly denoted by f∗.
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The category pro∗-C has as objects all inverse systems X in C and as
morphisms all equivalence classes f∗ = [(f, fn

µ )] of S∗-morphisms (f, fn
µ ).

Since the equivalence relation respects the composition of S∗-morphisms, a
composition in pro∗-C is well defined by putting

g∗f∗ = h∗ ≡ [(h, hn
ν )],

where (h, hn
ν ) = (g, gn

ν )(f, fn
µ ) = (fg, gn

ν fn
g(ν)). For every inverse system X in

C, the identity morphism in pro∗-C is 1
∗

X = [(1Λ, 1Xλ
)].

A functor J ≡ JC : pro-C → pro∗-C is defined as follows. It keeps objects
fixed, i.e. J (X) = X, for every inverse system X in C. If f ∈ pro-C(X, Y )
and if (f, fµ) is any representative of f , then a morphism J (f ) = f

∗ =
[(f, fn

µ )] ∈ pro∗-C(X, Y ) is represented by an S∗-morphism (f, fn
µ ) where

fn
µ = fµ for all µ ∈ M and n ∈ N. The morphism f

∗ is said to be induced

by f . Since the functor J is faithful, we may consider the category pro-C
as a subcategory of pro∗-C. Thus, every morphism f in pro-C can also be
considered as a morphism of the category pro∗-C.

Recall that an index set is said to be cofinite if its preordering is an
ordering and every µ ∈M has finitely many predecessors. Concerning inverse
systems indexed by a cofinite index set, we have a very useful lemma which
easily follows from [4, Lemma 10].

Lemma 2.1. Let X = (Xλ, pλλ′ , Λ) and Y = (Yµ, qµµ′ , M) be inverse

systems in C with M cofinite. Then every morphism f∗ : X → Y of pro∗-C
admits a simple representative (f, fn

µ ) : X → Y . Moreover, if (f ′, f ′n
µ ) is any

simple representative of f∗, then, for every µ ∈ M , there exists nµ ∈ N such

that, for every µ′ ≤ µ and every n ≥ nµ,

f ′n
µ′ pf ′(µ′)f ′(µ) = qµ′µf ′n

µ

In general, a morphism f∗ : X → Y in pro∗-C does not admit a level
representative. However, the following “reindexing” theorem will help to over-
come some technical difficulties concerning this fact.

Theorem 2.2. Let f∗ ∈ pro∗-C(X, Y ). Then there exist inverse systems

X ′ and Y ′ in C having the same cofinite index set (N,≤), there exists a

morphism f ′∗ : X ′ → Y ′ having a level representative (1N , f ′
ν) and there

exist isomorphisms i∗ : X → X ′ and j∗ : Y → Y ′ in pro∗-C, such that the

following diagram in pro∗-C commutes:

X
f∗

→ Y

i∗ ↓ ↓ j∗

X ′ f ′∗

→ Y ′

.

The analogous theorem ([6, Theorem 1.1.3.]) holds in every pro-category
pro-C. Concerning many problems, these ”reindexing theorems” allow to as-
sume that each morphism in pro-C or pro∗-C admits a level representative.
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Moreover, we can assume that both inverse systems are indexed by the same
cofinite index set.

3. Isomorphisms in a pro∗-category

In this section we are dealing with isomorphisms in pro∗-C which are
induced by morphisms in pro-C. Notice that, if B is a subcategory of A, and a
morphism f ∈ B (X, Y ) ⊆ A (X, Y ) is an isomorphism in a category B then f
is an isomorphisms in a category A, as well. But the converse is not generally
true. Since pro-C can be viewed as a subcategory of pro∗-C the following
question naturally arises:

Problem 3.1. If a morphism f∗ = J (f) ∈ pro∗ (X, Y ), induced by

f ∈ pro-C (X, Y ) , is an isomorphism of pro∗-C, is it true that the morphism

f is an isomorphism of pro-C?

Before we answer the above question affirmatively (see Theorem 3.2, be-
low) let us recall an analogue of the well known Morita lemma ([6, Theorem
2.2.5]) which characterizes isomorphisms in a pro∗-category ([4, Theorem 5]).

Theorem 3.1. Let X = (Xλ, pλλ′ , Λ) and Y = (Yλ, qλλ′ , Λ) be inverse

systems in C over the same index set. Let a morphism f∗ : X → Y in pro∗-C
admit a level representative (1Λ, fn

λ ). Then f∗ is an isomorphism if and only

if, for every λ ∈ Λ, there exist a λ′ ≥ λ and an n ∈ N such that, for every

n′ ≥ n, there exists a morphism hn′

λ : Yλ′ → Xλ in C, such that the following

diagram in C commutes:

(2)

Xλ ←− Xλ′

fn′

λ ↓ hn′

λ տ ↓ fn′

λ′

Yλ ←− Yλ′

.

Theorem 3.2. A morphism f : X → Y in pro-C is an isomorphism if

and only if the induced morphism f∗ = J (f) : X → Y is an isomorphism of

pro∗-C.

Proof. Since J is a functor, the necessity holds trivially. Conversely,
suppose that the induced morphism f∗ = J (f ) is an isomorphism of pro∗-C.
By the ”reindexing theorem” ([6, Theorem 1.1.3]) there is no loss of generality
in assuming that f is represented by a level morphism (1Λ, fλ). Hence, the
induced morphism f∗ = J (f ) : X → Y in pro∗-C is represented by the
induced level S∗-morphism (1Λ, fn

λ ), fn
λ = fλ, for all n ∈ N, λ ∈ Λ. Since, f∗

is an isomorphism, the level representative (1Λ, fn
λ ) satisfies the condition of

Theorem 3.1. That means that, for every λ ∈ Λ, there exist a λ′ ≥ λ and an
n ∈ N such that, for every n′ ≥ n, there exists a morphism hn′

λ : Yλ′ → Xλ in
C, so that diagram (2) in C commutes. Now, for every n′ ≥ n, it follows that

fλhn′

λ = fn′

λ hn′

λ = qλλ′



160 N. KOCEIĆ BILAN

and
hn′

λ fλ = hn′

λ fn′

λ = pλλ′ ,

which means that the morphism (1Λ, fλ) fulfills the condition of the Morita
lemma in pro-C ([6, Theorem 2.2.5]). Therefore, f = [(1Λ, fλ)] is an isomor-
phism of pro-C.

Notice that, by Morita lemma, it follows that a morphism f : X → Y
is an isomorphism of a category C if and only if the induced morphism (f) :
(X) → (Y ) in pro-C is an isomorphism. Therefore, by Theorem 3.2, the
following corollary holds

Corollary 3.3. Let f : X → Y be a morphism of a category C. Then

the following three conditions are equivalent:

(i) f : X → Y is an isomorphism of C.
(ii) The induced morphism (f) : (X)→ (Y ) is an isomorphism of pro-C.
(iii) The induced morphism f∗ = J ((f)) : (X) → (Y ) is an isomorphism

of pro∗-C.

4. Bimorphisms in a pro∗-category

We are interested in determining under what conditions the fact that one
of the categories in (1) is balanced implies that the two other categories in
(1) are balanced.

Theorem 4.1. If pro∗-C or pro-C is a balanced category, then C is also

a balanced category.

Proof. Assuming on the contrary, i.e. if C is not a balanced category,
then there exists a bimorphism f : X → Y of C which is not an isomorphism.
According to [5, Corollary 3 and Corollary 6], every bimorphism of C is also
a bimorphism of pro-C and pro∗-C. Thus, the induced morphisms (f) in
pro-C and J ((f)) in pro∗-C are bimorphisms. This bimorphisms cannot be
isomorphisms of pro-C nor pro∗-C, respectively, because, by Corollary 3.3, it
would imply that f is a C-isomorphism. Hence, pro-C and pro∗-C are not
balanced, which is a contradiction.

Theorem 4.2. Let C be a category admitting sums and products. If pro∗-
C is balanced, then pro-C is also a balanced category.

Proof. Assuming on the contrary, i.e. if pro-C is not a balanced cat-
egory, then there exists a bimorphism f : X → Y of pro-C which is not
an isomorphism. According to [5, Theorem 3 and Theorem 5], every bimor-
phism of pro-C is also a bimorphism of pro∗-C. Thus, the induced morphism
f∗ = J (f) is a bimorphism of pro∗-C. Now, f∗ cannot be an isomorphism,
because, by Theorem 3.2, that would imply that f is an isomorphism. That
means, the morphism f∗ is a bimorphism, but not an isomorphism of pro∗-C.
Hence, pro∗-C is not balanced, which is a contradiction.
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The question: ”Is the category pro-C balanced when C is balanced?” posed
in [1] was recently answered negatively in [2]. It has been proved ([2], Propo-
sition 3.12.) that the category whose objects are compact connected spaces
and morphisms are maps is a balanced category, but the corresponding pro-
category is not balanced. Since the category of compact connected spaces is
balanced but it does not admit sums, we cannot apply Theorem 4.2. Conse-
quently, the following problem remains open.

Problem 4.1. If C be a balanced category, is the category pro∗-C bal-

anced?

We will prove that in two important cases of balanced categories, C = Set
and C = Grp, the category pro∗-C is balanced.

Definition 4.3. We say that a category C ∗-additive if it has zero-objects,

admits sums and products, every morphism of C has the kernel and cokernel

and every morphism set C (X, Y ) is a group such that the composition ◦ :
C (X, Y )× C (Y, Z)→ C (X, Z) is bilinear.

A zero-object of a category C is denoted by 0. For any two objects, a
unique zero-morphism which factorizes through 0 is denoted by oXY : X → Y
(briefly o). Notice that a zero-morphism is the unit element of the group
C (X, Y ) (see [3]), therefore we denote the group operation additively, although
C (X, Y ) is not, in general, an abelian group. The kernel of a morphism
f : X → Y we denote by ker f : N → X , while coker f : Y → C denotes the
cokernel of f .

Proposition 4.4. Let C be a ∗-additive category. Let X = (Xλ, pλλ′ , Λ)
and Y = (Yλ, qλλ′ , Λ) be inverse systems in C over the same cofinite index

set. Let a morphism f∗ : X → Y in pro∗-C admit a level representative

(1Λ, fn
λ ). A morphism f∗ is a monomorphism if and only if (1Λ, fn

λ ) satisfies

the following condition:

(M-Add) For every λ ∈ Λ, there exist a λ′ > λ and an n0 ∈ N such that, for

every n > n0, pλλ′ (ker fn
λ′) = o.

Further, f∗ is an epimorphism if and only if (1Λ, fn
λ ) satisfies the follow-

ing condition:

(E-Add) For every λ ∈ Λ, there exists a λ′ > λ and an n0 ∈ N such that, for

every n > n0, (coker fn
λ ) qλλ′ = o.

Proof. Assume that f∗ is a monomorphism. Then, according to [5,
Theorem 4], a level representative (1Λ, fn

λ ) satisfies condition (M) of the same
theorem. For an arbitrary λ, let λ′ ≥ λ be as in condition (M). Let us
put un = ker fn

λ′ : Nn
λ′ → Xλ′ and vn : Nn

λ′ → Xλ′ , vn = o, for every
n ∈ N. Obviously, fn

λ′un = fn
λ′vn = o holds for every n ∈ N. Now by (M),

there exist an n0 ∈ N such that, pλλ′ ker fn
λ′ = pλλ′un = pλλ′vn = o, for

every n ≥ n0, which establishes (M-Add). Conversely, suppose that (1Λ, fn
λ )
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satisfies (M-Add). Then, for an arbitrary λ ∈ Λ, there exist a λ′ > λ and
an n0 ∈ N as in condition (M-Add). Let (un) , (vn) be a pair of sequences
of C-morphism un, vn : Pn → Xλ′ , Pn ∈ Ob (C), such that fn

λ′un = fn
λ′vn,

for every n ∈ N. It implies fn
λ′ (un − vn) = o, for every n ∈ N. Consider

the kernel ker fn
λ′ : Nn

λ′ → Xλ′ of fn
λ′ , for every n ∈ N. According to the

universal property of a kernel, for every n ∈ N, there exists a morphism
hn : Pn → Nn

λ′ such that (ker fn
λ′)hn = (un − vn) . Now, by (M-Add), it follows

that pλλ′ (un − vn) = pλλ′ (ker fn
λ′)hn = o, for every n ≥ n0, which implies

that pλλ′un = pλλ′vn, for every n ≥ n0. Thus, (1Λ, fn
λ ) satisfies condition (M)

of [5, Theorem 4], and, by the same theorem, f∗ is a monomorphism.
Analogously, one can prove a statement concerning an epimorphism, i.e.

the equivalence, for a ∗-additive category, between (E-Add) and the condition
(E) of [5, Theorem 2].

Example 4.5. Clearly, the category Grp is a ∗-additive category. Thus,
we can apply Proposition 4.4 to characterize epimorphisms and monomor-
phisms in pro∗-Grp. We point out that a group operation is denoted addi-
tively and the unit element is denoted by 0, for every group, not necessarily
abelian. Recall that a kernel of a homomorphism f : X → Y is the inclusion
i : f−1 (0) →֒ X (the group f−1 (0) is usually denoted by kerf) and a cokernel
of f is the quotient homomorphism p : Y → Y/ Im f . One can easily verify
that, for C = Grp, (E-Add) is equivalent to the following condition:

(E-Grp) For every λ ∈ Λ, there exist a λ′ ∈ Λ, λ′ > λ, and an n0 ∈ N such

that Im qλλ′ ⊆ Im fn
λ , for all n > n0.

Further, for C = Grp, (M-Add) is equivalent to the condition

(M-Grp) For every λ ∈ Λ there exist a λ′ ∈ Λ, λ′ > λ, and an n0 ∈ N such that

ker fn
λ′ ⊆ kerpλλ′ , for every n > n0.

Remark 4.6. Let us consider a morphism f = [(f, fµ)] in pro-Grp. For
the induced morphism f∗ =

[(
f, fn

µ

)]
= J (f) , fn

µ = fµ, for every n ∈ N,
Proposition 4.4 allows to put n0 = 1, for every λ. Thus, for the induced mor-
phism, the dependence on the indices n in the conditions (E-Grp) and (M-Grp)
vanishes. Consequently, the conditions (E-Grp) and (M-Grp) in the subcate-
gory pro-Grp become the well-known conditions for f being a monomorphism
and an epimorphism of pro-Grp respectively (see [6, Theorem 2.2.1 and The-
orem 2.2.3]).

Theorem 4.7. The categories pro∗-Set and pro∗-Grp are balanced.

Proof. We need to prove that every bimorphism in pro∗-Grp (pro∗-
Set) is an isomorphism. Suppose f∗ : X → Y is a bimorphism of pro∗-
Grp (pro∗-Set). By the ”reindexing theorem” (Theorem 2.2), there is no
loss of generality in assuming that f∗ is represented by a level morphism
(1Λ, fλ) : X → Y where X = (Xλ, pλλ′ , Λ) and Y = (Yλ, qλλ′ , Λ) are inverse
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systems in pro∗-Grp (pro∗-Set) over the same cofinite index set. Therefore,
by Lemma 2.1, for every λ ∈ Λ, there exist an nλ ∈ N such that, for every
λ′ ≤ λ and every n ≥ nλ, fn

λ′pλ′λ = qλ′λfn
λ .

First, let us show that a bimorphism f∗ of pro∗-Grp is an isomorphism.
By Example 4.5, (1Λ, fλ) fulfills conditions (M-Grp) and (E-Grp). Hence, for
an arbitrary λ ∈ Λ, there exist a λ′ > λ and an n0 ∈ N such that

(3) ker pλλ′ ⊇ ker fn′

λ′ , for every n′ ≥ n0.

Further, for this λ′, there exist a λ′′ ≥ λ′ and an n′
0 such that

(4) Im fn′

λ′ ⊇ Im qλ′λ′′ , n′
> n′

0.

Let us put n = max {n0, n
′
0, nλ′ , nλ′′} . For every n′ > n, we will now define a

homomorphism hn′

λ : Yλ′′ → Xλ as follows. For y ∈ Yλ′′ , we put

hn′

λ (y) = pλλ′ (x) ,

where x ∈ Xλ′ is chosen such that

(5) fn′

λ′ (x) = qλ′λ′′ (y) .

By (4), such an element exists. Notice that the value of the function hn′

λ at y
does not depend on a particular choice of x for which (5) holds. Indeed, for

any x′ ∈ Xλ′ , fn′

λ′ (x′) = qλ′λ′′ (y) , by (5), it follows fn′

λ′ (x) − fn′

λ′ (x′) = 0,

i.e. fn′

λ′ (x− x′) = 0, which, by (3), implies pλλ′ (x− x′) = 0, i.e. pλλ′ (x) =

pλλ′ (x′) . Thus, hn′

λ is well defined. Let us show that it is a homomorphism.

Let y1, y2 ∈ Yλ′′ . Then there exist x1, x2 ∈ Xλ′ such that fn′

λ′ (x1) = qλ′λ′′ (y1),

fn′

λ′ (x2) = qλ′λ′′ (y2) . Then,

fn′

λ′ (x1 + x2) = fn′

λ′ (x1) + fn′

λ′ (x2) = qλ′λ′′ (y1) + qλλ′′ (y2) = qλλ′′ (y1 + y2) .

Now, by the definition of hn′

λ ,

hn′

λ (y1 + y2) = pλλ′ (x1 + x2) = pλλ′ (x1) + pλλ′ (x2) = hn′

λ (y1) + hn′

λ (y2) ,

which proves that hn′

λ is a homomorphism. In order to show that f∗ is an
isomorphism, it suffices, by Theorem 3.1, to check that, for every n′ > n,

(6) hn′

λ fn′

λ′′ = pλλ′′

and

(7) fn′

λ hn′

λ = qλλ′′

hold. By definition of hn′

λ , for an x ∈ Xλ′′ ,

(8) hn′

λ fn′

λ′′ (x) = pλλ′ (x′) ,

holds, where x′ is an element of Xλ′ such that

(9) fn′

λ′ (x′) = qλ′λ′′fn′

λ′′ (x) .
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Since n′ > nλ′′ , for the pair λ′ ≤ λ′′, the appropriate commutativity condition
holds, i.e.

(10) qλ′λ′′fn′

λ′′ = fn′

λ′ pλ′λ′′ .

Now, (9) and (10) imply fn′

λ′ (x′ − pλ′λ′′ (x)) = 0, and therefore,

x′ − pλ′λ′′ (x) ∈ ker fn′

λ′ .

Using (3) one obtains pλλ′ (x′ − pλ′λ′′ (x)) = 0, which implies

(11) pλλ′ (x′) = pλλ′pλ′λ′′ (x) = pλλ′′ (x) .

Now, (8) and (11) establish (6) . Further, by definition of hn′

λ , for an arbitrary
y ∈ Yλ′′ , one gets

(12) fn′

λ hn′

λ (y) = fn′

λ pλλ′ (x′) ,

where x′ is an element of Xλ′ such that

(13) fn′

λ′ (x′) = qλ′λ′′ (y) .

Since n′ > nλ′ , for the pair λ ≤ λ′, the appropriate commutativity condition
holds, i.e.

(14) fn′

λ pλλ′ = qλλ′fn′

λ′ .

Now, by combining (12) and (14), one obtains

(15) fn′

λ hn′

λ (y) = qλλ′fn′

λ′ (x′) .

Finally, (15) and (13) imply (7). Thus, we have proved that (1Λ, fλ) fulfills the
conditions of Theorem 3.1, and therefore, f∗ is an isomorphism of pro∗-Grp.

Now, let us show that a bimorphism f∗ of pro∗-Set is an isomorphism.
Since f∗ is a monomorphism, by [5, Theorem 4], (1Λ, fλ) fulfills condition
(M ′′) of the same theorem. Therefore, for an arbitrary λ ∈ Λ, there exist
a λ′ > λ, such that the appropriate condition (M ′′) holds. Since f∗ is an
epimorphism, (1Λ, fn

λ ) satisfies condition (E-Set) from [5, Example 1]. Hence,
for this λ′, there exist a λ′′ > λ′ and an n0 ∈ N such that

(16) qλ′λ′′ (Yλ′′) ⊆ fn′

λ′ (Xλ′) ,

for every n > n0. Now, for every n ≥ n0, let h̃n
λ : Yλ′′ → Xλ′ be any function

such that

h̃n
λ (y) ∈ (fn

λ′)−1 (qλ′λ′′ (y)) ,

for every y ∈ Yλ′′ . Because of (16), such a function exists. Clearly, for every
n ≥ n0,

(17) fn
λ′ h̃n

λ = qλ′λ′′ .

Let us define functions un, vn : Xλ′′ → Xλ′ by putting un = h̃n
λfn

λ′′ and
vn = pλ′λ′′ , for every n ≥ max {n0, nλ′′} , and un = vn = pλ′λ′′ , for every
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n < max {n0, nλ′′}. For every n ≥ max {n0, nλ′′}, using (10) and (17) , one
obtains

fn
λ′un = fn

λ′ h̃n
λfn

λ′′

(17)
= qλ′λ′′fn

λ′′

(10)
= fn

λ′pλ′λ′′ = fn
λ′vn.

If n < max {n0, nλ′′} , it trivially follows that

fn
λ′un = fn

λ′vn

Now, by condition (M ′′) from [5, Theorem 4], there exists an n1 ∈ N such
that,

pλλ′un′

= pλλ′vn′

,

for every n ≥ n1. Therefore, for every n ≥ max {n0, n1, nλ′′}, one has

(18) pλλ′ h̃n
λfn

λ′′ = pλλ′′ .

Further, for n > nλ′ , for the pair λ ≤ λ′, the appropriate commutativity
condition (14) holds. Therefore, for n ≥ max {n0, n1, nλ′′ , nλ′}, one has

(19) fn
λ pλλ′ h̃n

λ

(14)
= qλλ′fn

λ′ h̃n
λ

(17)
= qλλ′′ .

Finally, for every n′ ≥ n = max {n0, n1, nλ′′ , nλ′} , we define

hn′

λ = pλλ′ h̃n′

λ .

Now, by (18) and (19) , a straightforward argument shows that (6) and (7)
hold. Thus, we have proved that (1Λ, fn

λ ) fulfills the conditions of Theorem
3.1 and therefore, f∗ is an isomorphism of pro∗-Set.

An immediate consequence of Theorem 4.2 and Theorem 4.7 is the fol-
lowing:

Corollary 4.8. The category pro-Set is balanced.
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