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FINITE p-GROUPS IN WHICH SOME SUBGROUPS ARE
GENERATED BY ELEMENTS OF ORDER p
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ABSTRACT. We prove that if a p-group G of exponent p® > p has
no subgroup H such that |Q1(H)| = pP and H/Q1(H) is cyclic of order
p¢~1 > p and H is regular provided e = 2, then G is either absolutely
regular or of maximal class. This result supplements the fundamental
theorem of Blackburn on p-groups without normal subgroups of order pP
and exponent p. For p > 2, we deduce even stronger result than (respective
result for p = 2 is unknown) a theorem of Bozikov and Janko.

The 2-groups all of whose nonmetacyclic subgroups are generated by in-
volutions, are classified in [BozJ]. Corollary 5 contains a stronger version of
main theorem from [BozJ] for p > 2.

In what follows, G is a p-group, where p is a prime. By cl(G) we denote
the class of G. Set Q0,(G) = (x € G | 22" = 1), U,(G) = (z®" | x € G),
UX(G) = (x € G| o(x) = p™), (n is a positive integer). By G',Z(G), ®(G)
we denote the derived subgroup, the center and the Frattini subgroup of G,
respectively. A p-group G is said to be absolutely regular if |G/U1(G)| < p?
[Blal]. A p-group G is said to be regular if for any x,y € G there exists
z € (x,y)’ such that (zy)? = aPyPzP [Hal]. By K, (G) we denote the n-th
member of the lower central series of G. A p-group G is said to be of mazimal
class if |G| = p™, m > 2, and cl(G) = m — 1 (so p-groups of maximal class
are nonabelian). Next, I'; is the set of all maximal subgroups of G.

DEFINITION 1. A p-group G is said to be an L,-group, if Q1(G) is of
order p™ and exponent p and G/Q1(G) is cyclic of order greater than p.

In what follows we consider L,-groups only for n = p.
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Let G be an L,-group of exponent p%; then e > 2 and |G| = pPr¢~1. Let
us prove that U1(G) is cyclic of order p¢~!. We have

P = exp(G) < exp(U1(G)) exp(G/01(G)) = p - exp(U1(G))

so |01(G)| > exp(U1(GQ)) > p°t. Therefore, it suffices to show that
|01(G)| = p~t. If G is regular, then |U1(G)| = |G/Q1(G)| = p¢~1. If G
is irregular, then, by Hall’s first regularity criterion [Ber2, Theorem 9.8(a)],
we have |G/U1(G)| > pP so |U1(G)| < p~P|G| = p¢~!, and we conclude that
|01(G)| = p°~1, as required. It follows that exp(Q._1(G)) = p°~! so we get
Q(C) = (G~ Qs(C)) = G.

Our main result is the following

THEOREM 2. Suppose that a p-group G of exponent p© > p is neither
absolutely regular nor of mazimal class. Then G contains a subgroup H of
order pP*¢=1 such that |Q1(H)| = pP, H/Q1(H) is cyclic of order p¢~! and
Qo (H) is regular (so, if e > 2, then H is an Ly,-group).

Our proof of Theorem 2 is based on Blackburn’s theory of p-groups of
maximal class [Bla2] and some its consequences (see also [Berl, §7] or [Hup,
§II1.13]). We also use some theorems from [Ber2, §13] (proofs of some of them
we reproduce below; see Lemmas J(d), 6 and 7).

If a p-group G is either absolutely regular or of maximal class, then it
has no subgroup H such as in conclusion of Theorem 2 (in the second case
this follows from Lemma J(h)) so absolutely regular p-groups and p-groups of
maximal class are excluded from hypothesis of Theorem 2.

COROLLARY 3. Suppose that a p-group G of exponent greater than p is
not absolutely reqular. If all proper not absolutely reqular subgroups of G are
generated by elements of order p, then one and only one of the following holds:

(a) |G| = pP*t and |Q(G)| > pP~L so, if G is reqular, then |Q1(G)| = pP.

(b) |G| = pPTL, cl(G) = p, |QU(G)| = pP~! (in that case, all proper sub-
groups of G are absolutely reqular).

(c) G is of mazimal class, |G| > pPT1 and every irregular member of the

set Ty has two distinct subgroups of order pP and exponent p (so, if
p =2, then G is dihedral).

COROLLARY 4. Let G be an irregular p-group, p > 2. Suppose that,
whenever H < G is neither absolutely reqular nor of mazimal class, then
QO (H) = H. Then G is of mazimal class.

COROLLARY 5. Let p > 2 and let M be a mazximal metacyclic subgroup
of a nonmetacyclic p-group G, where |M| > p?. Suppose that, whenever
M < N <G and [N : M| = p, then Q1(N) = N. Then p =3 and G is of

mazimal class.
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In particular, if p > 2 and a p-group G of exponent greater than p is
neither metacyclic nor minimal nonmetacyclic and such that all proper non-
metacyclic subgroups of G are generated by elements of order p, then one and
only one of the following assertions holds:

(a) G is regular of order p* and |Q1(GQ)| = p?.

(b) G is of maximal class and order 3%, |Q(G)| > 32.

(c) p = 3, G is of maximal class, |G| > 3* and every irregular member
of the set I'; has two distinct (nonabelian) subgroups of order 33 and
exponent 3.

Note that if a 3-group of maximal class has elementary abelian subgroup of
order 32, then G is isomorphic to a Sylow 3-subgroup of the symmetric group
of degree 32 ([Berl, Theorem 5.2]). Therefore, a group of Corollary 5(c) has
no abelian subgroups of order 3% and exponent 3.

In Lemma J we collected known results which are used in what follows.

LEMMA J. Let G > {1} be a p-group, p > 2.

(a) (P. Hall [Hal]) If G is regular, then exp(Q1(G)) = p and | (G)| =
|G/0G1(G)|. Absolutely regular p-groups, groups of exponent p and p-
groups of class < p are reqular.

(b) [Ber2, Exercise 9.1(b)] If G is of mazimal class and order p™, then it
has exactly one normal subgroup of order p* for all i < m — 1.

(c) (Suzuki; see [Ber2, Proposition 1.8]) If H < G is of order p?> and
|Ca(H)| = p?, then G is of mazimal class.

(d) [Ber2, Exercise 13.10(a)] If A < G and all subgroups of G of order p|A|
and containing A are of mazimal class (so that |A| > p), then G is
also of maximal class.

(e) [Berl, Theorem 7.4] Suppose that L = L1 € T'y is irregular of maximal
class. If G is not of mazimal class, then G/K,(G) is of order pP*!
and exponent p and I'y = {L = Ly,..., Ly, Th,...,Tpy1}, where all
L;’s are of mazimal class and all T;’s are not of mazimal class (T are
also not absolutely reqular since |G/U1(G)| > pPTt), n(G) = ﬂf:ll T;
has index p* in G and G /n(G) is abelian of type (p,p) so Uf:ll T, =G
so that exp(T;) = exp(G) for some i.

(f) ([Bla2]; see also [Berl, Theorem 7.5)) If G is neither absolutely regular
nor of maximal class and H € T’y is absolutely regular, then G =
HO4(G), where Q1(Q) is of order pP and exponent p (in particular,
94 (H)| = ).

(g) [Berl, Remark 7.2] and [Bla3]. If G is neither absolutely regular nor of
maximal class, then the number of subgroups of order p? and exponent
pin G is =1 (mod p).

(h) (Blackburn [Bla2]) If G is of maximal class and order greater than
pPTL then Ty = {G1,Ga,...,Gpi1}, where Gy is absolutely regular
with |Q1(G1)| = pP~1 (G1 is called the fundamental subgroup of G),
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and Ga, ...,Gpt1 are irreqular of mazimal class. All p-groups of maz-
imal class and order pP*! are irregular.

A p-group G of maximal class and order greater than p?*! has no normal
subgroup of order p? and exponent p. Assume that this is false, and let R<G
be of order p? and exponent p. Then, by Lemma J(b), R < ®(G) < G4, a
contradiction since the fundamental subgroup G is absolutely regular.

If a p-group G satisfies exp(€21(G)) > p, then it is irregular (Lemma J(a)).

To facilitate the proof of Theorem 2, we prove the following three asser-
tions.

LEMMA 6. If H < G is such that N = Ng(H) is of mazimal class, then
G is also of mazimal class.

PROOF. We use induction on |G|. One may assume that N < G; then H
is not characteristic in N (otherwise, N = G). In that case, by Lemma J(b),
we have [N : H| = p. Since |Z(N)| = p and Z(G) < N, we get Z(G) = Z(N)
s0 |Z(G)| = p and Z(G) < ®(N) < H. Set G = G/Z(G). If |H| = p, then
Ca(H) = N is of order p? so G is of maximal class (Lemma J(c)). Now
let |[H| > p; then N is of maximal class so G is also of maximal class, by
induction, and we are done since |Z(G)| = p. O

PrOOF OF LEMMA J(D). In view of Lemma 6, it suffices to show that
N = Ng(4) is of maximal class, so one may assume that |[N : A| > p and
N = G; then A<G and |G : A| > p. Let D < A be G-invariant of index p?
and set C' = Cg(A/D); then |G : C] < pso A < C since |G : A > p. Let
B/A < C/A be of order p; then |B| = p|A|. Since B/D is abelian of order p?,
B is not of maximal class, a contradiction. 0

LEMMA 7. Let G be a p-group. Suppose that A € 'y is absolutely regqular
and M < G is irreqular of maximal class. Then G is of maximal class.

PROOF. Assume that G is not of maximal class. Then, by Lemma J(d),
M < H < G, where |H : M| = p and H is not of maximal class. In that
case, by Lemma J(e), H/K,(H) is of order pP*! and exponent p. It follows
that H has no absolutely regular maximal subgroups. However, A N H is an
absolutely regular maximal subgroup of H, and this is a contradiction. O

LEMMA 8. All proper subgroups of an Ly,-group G are regular; in partic-
ular, Q2(G) is regular.

PRrROOF. It suffices to show that all maximal subgroups of G are regular.
Take M € 1I'y.

Suppose that Q1 (G) £ M; then Q; (M) = MNQ4(G) is of order pP~1 (and
exponent p). Since M is not of maximal class (indeed, M/ (M) = G/ (G)
is cyclic of order > p), it follows that M is absolutely regular so regular
(Lemma J(g,a)).
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Now let Q1(G) < M. Let D < Q1(G) be a G-invariant subgroup of index
p?. Set C = Cg(1(G)/D); then |G : C| < p. Take in C'/Q1(G) a subgroup
H/Q1(G) which is maximal in G/ (G); then H/D is abelian so cl(H) < p,
and hence H is regular (Lemma J(a)). Since G/ (G) has only one maximal
subgroup, we get H = M. O

Suppose that p > 2 and G is an irregular L-group of exponent p®. Assume
that there is in G a normal cyclic subgroup C' of order p¢. Set D = CNQ4(G);
then |D| = pand G/D = (C/D) x (21(G)/D)) so d(G) > 2. By Lemma 8, all
proper subgroups of G are regular. It follows that d(G) = 2, contrary to what
has just been proved. Thus, all cyclic subgroups of order p® are not normal
in G.

PROOF OF THEOREM 2. Let p = 2. Since G is not of maximal class,
there is in G a normal abelian subgroup R of type (2,2) (Lemma J(g)). Put
C = Cg(R); then |G : C| < 2 so exp(C) > 2¢1. Suppose that exp(C) = 2¢;
then there is in C'— R an element z of order 2¢. In that case, A = (z, R) is
abelian of type (2¢,2) or (2¢,2,2). In any case, A contains an abelian subgroup
H of type (2¢,2), and H is the desired subgroup. Now let exp(C) = 2¢71.
Take y € G —C of order 2¢. Suppose that U = Cg(y) is cyclic; then Cq(U) =
U and Z(G) is cyclic. If e = 2, then G is of maximal class (Lemma J(c)),
contrary to the hypothesis. Thus, e > 2. In that case, U N R is of order 2
so H = RU is an Lg-subgroup of exponent 2¢. If Cg(y) is noncyclic, then
there is an involution z € Cg(y) — (y); in that case, H = (z,y) = (z) x (y) is
abelian of type (2¢,2) so H is the desired subgroup.

In what follows we assume that p > 2. We use induction on |G|. Take
an element x € G of order p°. Let x € L < G, where L is either absolutely
regular or irregular of maximal class such that if L < M < @, then M is
neither absolutely regular nor of maximal class (L exists, by hypothesis). Let
L < F < G and |F : L| = p; then F is neither absolutely regular nor of
maximal class, by the choice of L. Therefore, if F' < G, then F' contains the
desired subgroup H. Next assume that F' = G; then |G : L| = p.

(i) Let L be absolutely regular. Then, by Lemma J(f), G = LO1(G),
where ;1 (G)(< G) is of order p? and exponent p. Set H = (x,Q1(G)), where
x € L has order p¢; then Q;(H) = Q1(G) is of order p? and |H| = pP*e~ 1 by
the product formula. If e > 2, then H is an L,-group. It remains to show that
if e = 2, then H is regular. This is true provided H = G since, by hypothesis,
G is not of maximal class, so cl(G) < p (Lemma J(a)). Now let H < G
and assume, by the way of contradiction, that H is irregular. Then H is of
maximal class since |H| = pP™! (Lemma J(a) again) and, by assumption, L
is absolutely regular of index p in G (indeed, L N H = Q4 (L) is of order pP~!
so |G| = p|L|, by the product formula). It follows from Lemma 7 that G is of
maximal class, contrary to the hypothesis. Thus, H is the desired subgroup.
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(ii) Now let L be irregular of maximal class (indeed, since exp(L) = p® > p
and L is not absolutely regular, we get |[L| > pPT! so it is irregular, by
Lemma J(h), since it is of maximal class). Then, by Lemma J(e), we have
I'y ={L =1Ly,La,...,Lp2,Th,...,Tpy1}, where Ly, ..., L,> are of maximal
class and T, ..., T,41 are neither absolutely regular nor of maximal class and
G = Ufill T;. Tt follows that one of T;’s, say T, has exponent p°®. Therefore,
by induction, there is H < T of exponent p¢ such that Qq(H) is of order p?
and exponent p, H/Q(H) is cyclic of order p¢~!, and H is regular if e = 2.

O

LEMMA 9. Suppose that A is a proper absolutely regular subgroup of a
p-group G, exp(A) > p and, whenever A < B < G and |B : A| = p, then
04 (B) = B. Then G is of mazimal class.

PROOF. By Lemma J(a), B is irregular so G is also irregular. Assume
that G is not of maximal class. Let |G : A| = p; then 4(G) = G, by
hypothesis. However, by Lemma J(f), G = AQ;(G), where |Q1(G)| = p? <
|G| = |921(G)], a contradiction. Now let |G : A| > p. If A < B < G, where
|B : A| = p, then by what has just been proved, B is of maximal class so G is
also of maximal class, by Lemma J(d). O

ProOOF OF COROLLARY 3. Suppose that G is regular and set L = Q;(G);
then |L| > p? since G is not absolutely regular. By Lemma J(a), |G : L| =p
so G is as in (a) (indeed, |L| = pP since every maximal subgroup of G not
containing L is absolutely regular because of it is not generated by elements
of order p).

Next we assume that G is irregular. Since G has a proper absolutely
regular subgroup of composite exponent, it follows from Lemma 9 that G is
of maximal class. If all maximal subgroups of G are absolutely regular, then
G is as in (b), by Lemma J(h). Obviously, every group of maximal class
and order pP*! satisfies the hypothesis. Now let |G| > pPTL. If M € I'y is
irregular, then Q;(M) = M, by hypothesis. If L = Q1(®(G)), then L is of
order pP~! and exponent p (Lemma J(h,a,b)). Take an element x € M — L
of order p and set Uy = (x, L). Take an element y € M — U; of order p and
set Uz = (y,L). Then U; and Us are distinct of order p? and exponent p
(Lemma J(a)), and the proof is complete since Uy, Uz < M. O

PrOOF OF COROLLARY 4. Assume that G is not of maximal class. Then
there is in G a subgroup H such as in Theorem 2. Since H is neither absolutely
regular nor of maximal class and Q;(H) # H, we get a contradiction. O

PROOF OF COROLLARY 5. Let M be as in the statement of the corollary.
Then M is absolutely regular since p > 2 so, by Lemma 9, G is of maximal
class. Let M < N < G, where |[N : M| = p. Then N is irregular of maximal
class (Lemma 9). Since p?P~! = |Q1(M)| < p? and p > 2, we get p = 3. O
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REMARK 10. Here we offer another proof of Theorem 2 in the case
exp(G) = p® > p?. We have to prove that G contains an L,-subgroup of
order pP*¢~1. We use induction on |G|. By Lemma J(g), there is M < G of
order pP and exponent p. Take a cyclic X < G of order p® and set F' = M X
then F of exponent p® > p? is neither absolutely regular nor of maximal class.
Therefore, if F' < GG, the result follows by induction. Now let ' = G. Suppose
that X N M > {1}; then |G| = pP**~!. We claim that G is an L,-group. It
suffices to show that Q;(G) = M. Assume that this is false. Since G/M is
cyclic, we conclude that |Q;(G)| < pP*1. Assume that |Q;(G)| = pP*!. Then
X N Q4(G) is cyclic of order p? so Q1(G) is irregular and we conclude that
it is of maximal class (Lemma J(a)). Since G is not of maximal class, the
number e,(G) of subgroups of order p” and exponent p in G is congruent
with 1 modulo p (Lemma J(g)), and all these subgroups lie in 04 (G). Since
ep(G) > 1 and d(Q:1(G)) = 2, it follows that all maximal subgroups of 0 (G)
have exponent p, so exp(1(G)) = p and Q;(G) is regular (Lemma J(a)), a
contradiction. Thus, in the case under consideration, G is an L,-group. Now
let XN M = {1}. Let R < M be a G-invariant subgroup of index p. Set
H = RX. Let us show that H is an L,-group. Indeed, H is not absolutely
regular since ©;(X)R is of order pP and exponent p (Lemma J(a)). Next,
H/R is cyclic of order p¢ > p? so H is not of maximal class. If K/R < H/R
is of order p, then Oy (H) < K < Qy(H) so Q1 (H) = Q1 (X)R = K is of order
pP and exponent p whence H is an Lj-subgroup.

THEOREM 11. Let H be a normal absolutely regular subgroup of a p-group
G, |H|>p"~! and 0 (G) £ H.
(a) If for every z € G — H of order p, the subgroup V. = (z,H) is of
maximal class, then G is also of maximal class.
(b) If, in addition, |H| > pP and, for every z € G — H of order p, we have
O ((z, H)) = (2, H), then G is of mazimal class.

PROOF. By hypothesis, exp(H) > p. Assume that (a) and (b) are not
true. Let z € G — H be of order p and V = (z, H). Then, by Lemma J(a),
V is irregular. In (a), if V' = @G, then, by hypothesis, G is of maximal class.
In (b), if V = G, then, by Lemma J(f), G is of maximal class. Assume that
this is false. Then there is R < G of order pP and exponent p. Let Ry < R be
G-invariant and minimal such that Ry £ H. Then F = RyH = (x, H) for any
x € Rg — H. By hypothesis, Q1 (F) = F so F is irregular of maximal class,
contrary to Lemma J(b) (indeed, |Ry| < p” since F is of maximal class and
order > pP™1 and so Q;(H) and Ry are F-invariant of indices greater that p
and non-incident). Therefore, in both cases, one may assume that V < G so
|G : H| > p.

(a) Let H < Hy < G, where Hj is absolutely regular such that |Hp| is as
large as possible. By Lemma J(d), Hy < B < G, where |B : Hy| = p and B is
not of maximal class. Then, by Lemma J(f), B = HoQy(B), where Q4(B) is
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of order p? and exponent p so there exists an element z € Q4 (B) — Hy of order
p. Set U = (H,x); then, by hypothesis and Lemma J(a,h), U is of maximal
class and order > pP*! so irregular. We have Hy,U < B, Hy is absolutely
regular of index p in B and U is irregular of maximal class. Therefore, by
Lemma 7, B is of maximal class, contrary to its choice.

(b) Set Ng(Q1(H)) = N. If the set N — H has no elements of order p,
then Q4 (V) = Q4 (H) is characteristic in N so N = G, a contradiction since
01(G) £ H, by hypothesis. Therefore, there is an element y € N — H of order
p. By Lemma 6, N is not of maximal class. If N is absolutely regular, there
is in Q1(N)/Q1(H) an N-invariant subgroup R/Qq(H) of order p. In that
case, HR is absolutely regular of order p|H| and Q4 (HR) # HR, contrary to
the hypothesis since HR = (z, H) for every z € R — H. Otherwise, there is
S <N of order p? and exponent p (Lemma J(g)). Let So be an N-invariant
subgroup of S such that Sy £ H and |Sp| is as small as possible. Then
|SoH : H| = p and SoH = (y,H) for every y € Sy — H. Therefore, by
hypothesis, Q1 (SoH) = SoH so, by Lemma J(f), SoH is of maximal class.
Then, by Lemma J(b), Sy < ®(SoH) < H, contrary to the choice of Sp. 0O

PROBLEMS

Below G is a nonabelian p-group.

1. Study the 2-groups G containing a proper metacyclic subgroup M of
order > 4 such that, whenever M < N < G and |N : M| = 2, then
Q1 (N) =N (d(N) =2).

2. Classify the 2-groups all of whose proper nonabelian subgroups that
are nonmetacyclic, are generated by elements of order p (compare with
[BozJ]).

3. Study the p-groups G containing an abelian subgroup M of exponent
greater than p such that, whenever M < N < G and |[N : M| = p,
then Q;(N) = N.

4. Study the irregular p-groups G, p > 2, such that |Q5(G)| = pP*L.

5. Study the p-groups G containing a proper minimal nonabelian sub-
group M of order greater than p® and such that, whenever M < N < G
and [N : M| = p, then (i) Q;(N) = N (in that case, p < 3, by
Lemma J(g,h)), (ii) d(NV) = 2.

6. Let A be a subgroup of index > p¥ > p in a p-group G. Suppose
that all subgroups of G containing A as a subgroup of index p*, are
of maximal class. Is it true that G is also of maximal class (compare
with Lemma J(d))?

7. Study the p-groups G containing a subgroup M of maximal class and
order > p? such that, whenever M < N < G and |N : M| = p, then
Q:(N)=N.
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Study the p-groups G of order greater than pP*2 containing a maximal
regular subgroup A of order pP*1.

Suppose that G is an Ly-group. Is it true that G is regular if and only
if G/U2(G) is regular?

Study the irregular p-groups G' containing an L,-subgroup of index p.
Does there exist a positive integer n such that a p-group G, p > 2, is
regular if and only if G/U,,(G) is regular?

Classify the 2-groups G such that Q;(G) is nonabelian of order 2*.
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