DENDRITES AND SYMMETRIC PRODUCTS

Gerardo Acosta, Rodrigo Hernández-Gutiérrez and Verónica Martínez-DE-LA-VEGA
Universidad Nacional Autónoma de México, Mexico

Abstract

For a given continuum X and a natural number n, we consider the hyperspace $F_{n}(X)$ of all nonempty subsets of X with at most n points, metrized by the Hausdorff metric. In this paper we show that if X is a dendrite whose set of end points is closed, $n \in \mathbb{N}$ and Y is a continuum such that the hyperspaces $F_{n}(X)$ and $F_{n}(Y)$ are homeomorphic, then Y is a dendrite whose set of end points is closed.

1. Introduction

A continuum is a nondegenerate, compact, connected metric space. Let \mathbb{N} represent the set of positive integers. For a given continuum X and $n \in \mathbb{N}$, we consider the following hyperspaces of X :

$$
F_{n}(X)=\{A \subset X: A \text { is nonempty and has at most } n \text { points }\}
$$

and
$C_{n}(X)=\{A \subset X: A$ is closed, nonempty and has at most n components $\}$.
We call $C_{n}(X)$ the n-fold hyperspace of X and $F_{n}(X)$ the n-th symmetric product of X. Both $F_{n}(X)$ and $C_{n}(X)$ are metrized by the Hausdorff metric H ([17, Definition 2.1]).

If two continua X and Y are homeomorphic, we write $X \approx Y$. Note that if X and Y are continua, then $X \approx Y$ if and only if $F_{1}(X) \approx F_{1}(Y)$. Let \mathcal{G} be a class of continua, $n \in \mathbb{N}$ and $X \in \mathcal{G}$. We say that X has unique hyperspace $F_{n}(X)$ in \mathcal{G} if whenever $Y \in \mathcal{G}$ is such that $F_{n}(X) \approx F_{n}(Y)$, it follows that $X \approx Y$. Similarly, X has unique hyperspace $C_{n}(X)$ in \mathcal{G} if whenever $Y \in \mathcal{G}$ is

[^0]Key words and phrases. Continuum, contractibility, dendrite, finite graph, unique hyperspace.
such that $C_{n}(X) \approx C_{n}(Y)$, we have $X \approx Y$. If \mathcal{G} is the class of all continua, we simply say that X has unique hyperspace $F_{n}(X)$ or unique hyperspace $C_{n}(X)$, respectively. Note that each continuum X has unique hyperspace $F_{1}(X)$.

A dendrite is a locally connected continuum that contains no simple closed curves. Throughout this paper we denote by \mathcal{D} the class of dendrites whose set of end points is closed. In [11, Theorem 10] it is shown that if $X \in \mathcal{D}$ is not an arc, then X has unique hyperspace $C_{1}(X)$. In [16, Theorem 3] that every $X \in \mathcal{D}$ has unique hyperspace $C_{2}(X)$, and in [12, Theorem 5.7] that each $X \in \mathcal{D}$ has also unique hyperspace $C_{n}(X)$, for $n \geq 3$. In [2, Theorem 5.1] it is proved that if the set of end points of the dendrite Y is not closed, then Y does not have unique hyperspace $C_{1}(Y)$ in the class of dendrites. This result is not known for $n \geq 2$. By [1, Lemma 11] an arc Y has unique hyperspace $C_{1}(Y)$ in the class of dendrites, but not in the class of all continua.

In the First Workshop in Hyperspaces and Continuum Theory, celebrated in the city of Puebla, Mexico, July 2-13, 2007, the problem to determine if every element $X \in \mathcal{D}$ has unique hyperspace $F_{n}(X)$ was asked by A. Illanes. During the workshop, the three authors of this paper showed that if $X \in \mathcal{D}$, $n \in \mathbb{N}$ and Y is a continuum such that $F_{n}(X) \approx F_{n}(Y)$, then $Y \in \mathcal{D}$. This is the main result of this paper. In the same workshop, D. Herrera-Carrasco, M. de J. López and F. Macías-Romero proved that every element $X \in \mathcal{D}$ has unique hyperspace $F_{n}(X)$ in \mathcal{D} ([13, Theorem 3.5]). Combining these results it follows that every element $X \in \mathcal{D}$ has unique hyperspace $F_{n}(X)$. This is a partial positive answer to the following problem, which remains open.

Question 1.1. Let X be a dendrite and $n \in \mathbb{N}-\{1\}$. Does X have unique hyperspace $F_{n}(X)$?

2. General Notions and Facts

All spaces considered in this paper are assumed to be metric. For a space X, a point $x \in X$ and a positive number ε, we denote by $B_{X}(x, \varepsilon)$ the open ball in X centered at x and having radius ε. If A is a subset of the space X, we use the symbols $\mathrm{cl}_{X}(A), \operatorname{int}_{X}(A)$ and $\operatorname{bd}_{X}(A)$ to denote the closure, the interior and the boundary of A in X, respectively. We denote the diameter of A by $\operatorname{diam}(A)$, and the cardinality of A by $|A|$. The letter I stands for the unit interval $[0,1]$ in the real line \mathbb{R}.

A finite graph is a continuum that can be written as the union of finitely many arcs, each two of which intersect in a finite set. A tree is a finite graph that contains no simple closed curves.

If X is a continuum, $U_{1}, U_{2}, \ldots, U_{m} \subset X$ and $n \in \mathbb{N}$ we define:
$\left\langle U_{1}, U_{2}, \ldots, U_{m}\right\rangle_{n}=\left\{A \in F_{n}(X): A \subset \bigcup_{i=1}^{m} U_{i}\right.$ and $A \cap U_{i} \neq \emptyset$ for each $\left.i\right\}$.

It is known that the sets of the form $\left\langle U_{1}, U_{2}, \ldots, U_{m}\right\rangle_{n}$, where $m \in \mathbb{N}$ and $U_{1}, U_{2}, \ldots, U_{m}$ are open in X, form a basis of the topology of $F_{n}(X)$, i.e., a basis for the topology induced by the Hausdorff metric H on $F_{n}(X)$ ([17, Theorems 1.2 and 3.1]).

If $n \in \mathbb{N}$, then an n-cell is a space homeomorphic to the Cartesian product I^{n}.

Theorem 2.1. Let X be a continuum and $n \in \mathbb{N}$. Given $i \in\{1,2, \ldots, n\}$ let J_{i} be an arc in X with end points a_{i} and b_{i}. If the sets $J_{1}, J_{2}, \ldots, J_{n}$ are pairwise disjoint, then $\left\langle J_{1}, J_{2}, \ldots, J_{n}\right\rangle_{n}$ is an n-cell in $F_{n}(X)$ whose manifold interior is the set $\left\langle J_{1}-\left\{a_{1}, b_{1}\right\}, \ldots, J_{n}-\left\{a_{n}, b_{n}\right\}\right\rangle_{n}$.

Proof. Given $\left(x_{1}, x_{2}, \ldots, x_{n}\right) \in J_{1} \times J_{2} \times \cdots \times J_{n}$, let $g\left(x_{1}, x_{2}, \ldots, x_{n}\right)=$ $\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$. It is easy to see that $g: J_{1} \times J_{2} \times \cdots \times J_{n} \rightarrow\left\langle J_{1}, J_{2}, \ldots, J_{n}\right\rangle_{n}$ is a homeomorphism whose restriction to $\prod_{i=1}^{n}\left(J_{i}-\left\{a_{i}, b_{i}\right\}\right)$ is a homeomorphism from $\prod_{i=1}^{n}\left(J_{i}-\left\{a_{i}, b_{i}\right\}\right)$ onto $\left\langle J_{1}-\left\{a_{1}, b_{1}\right\}, \ldots, J_{n}-\left\{a_{n}, b_{n}\right\}\right\rangle_{n}$.

From now on, in this section, the letter X represents a dendrite. For properties of dendrites we refer the reader to [21, Chapter 10]. If $p \in X$ then by the order of p in X, denoted by $\operatorname{ord}_{p} X$, we mean the Menger-Urysohn order (see [21, Definition 9.3] and [23, (1.1), (iv), p. 88]). We say that $p \in X$ is an end point of X if $\operatorname{ord}_{p} X=1$. The set of all such points is denoted by $E(X)$. Let

$$
\begin{aligned}
E_{a}(X)= & \{p \in E(X): \text { there is a sequence in } E(X)-\{p\} \\
& \text { that converges to } p\} .
\end{aligned}
$$

If $p \in E(X)-E_{a}(X)$ we call p an isolated end point of X. If $\operatorname{ord}_{p} X=2$ we say that p is an ordinary point of X. The set of all such points is denoted by $O(X)$. By [18, Theorem 8, p. 302], $O(X)$ is dense in X. If $\operatorname{ord}_{p} X \geq 3$, we say that p is a ramification point of X. The set of all such points is denoted by $R(X)$.

The following result is easy to prove.
Theorem 2.2. Let X be a dendrite and $n \in \mathbb{N}$. Assume that $A \in F_{n}(X)$ and that \mathcal{U} is a neighborhood of A in $F_{n}(X)$. Then, for each $k \in \mathbb{N}$ with $|A| \leq k \leq n$, there is $C \subset O(X)$ such that $|C|=k$ and $C \in \mathcal{U}$.

If $p, q \in X$ and $p \neq q$, then there is only one arc in X joining p and q. We denote such arc by $[p, q]$. We also consider the sets $(p, q)=[p, q]-\{p, q\}$, $[p, q)=[p, q]-\{q\}$ and $(p, q]=[p, q]-\{p\}$. Let $[p, q]$ be an arc in X such that $(p, q) \subset O(X)$. We say that $[p, q]$ is:
a) internal if $p, q \in R(X)$;
b) external if one end point of $[p, q]$ is an end point of X, and the other end point of $[p, q]$ is a ramification point of X.

Note that if $[p, q]$ is an internal arc in X, then $\operatorname{int}_{X}([p, q])=(p, q)$. If $[p, q]$ is an external arc in X and $p \in E(X)$, then $\operatorname{int}_{X}([p, q])=[p, q)$.

Given $n \in \mathbb{N}$, we consider the following subsets of $F_{n}(X)$:

$$
\begin{aligned}
E A_{n}(X) & =\left\{A \in F_{n}(X): A \cap E_{a}(X) \neq \emptyset\right\} \\
R_{n}(X) & =\left\{A \in F_{n}(X): A \cap R(X) \neq \emptyset\right\}
\end{aligned}
$$

and

$$
\Lambda_{n}(X)=F_{n}(X)-\left(R_{n}(X) \cup E A_{n}(X)\right) .
$$

Note that $A \in \Lambda_{n}(X)$ if and only if $A \in F_{n}(X)$ and A is contained in $O(X) \cup$ $\left(E(X)-E_{a}(X)\right)$.

3. The class \mathcal{D}

Recall that \mathcal{D} is the class of all dendrites whose set of end points is closed. Let $X \in \mathcal{D}$. By [3, Theorem 3.3] the order of every point of X is finite. Let us assume that $s \in X$ is the limit of a sequence $\left(s_{n}\right)_{n}$ of distinct ramification points of X and that $s \neq s_{1}$. By [3, Proposition 3.4] s is both the limit of a sequence of ramification points of X, all in the arc $\left[s, s_{1}\right]$, and the limit of a sequence of end points, all different than s. Now assume that $e \in X$ is the limit of a sequence $\left(e_{n}\right)_{n}$ of distinct end points of X and that $e \neq e_{1}$. Then e is also the limit of a sequence of ramification points of X, all in the arc $\left[e, e_{1}\right]$. Hence $e \in E_{a}(X)$ if and only if e is the limit of a sequence of ramification points of X.

Theorem 3.1. Let $X \in \mathcal{D}$ and $n \in \mathbb{N}$. If $A \in F_{n}(X)-E A_{n}(X)$, then there exists a tree T in X such that:

$$
\begin{equation*}
A \subset \operatorname{int}_{X}(T) \text { and } T \cap E_{a}(X)=\emptyset \tag{*}
\end{equation*}
$$

Proof. Let $A \in F_{n}(X)-E A_{n}(X)$. We proceed by induction over $|A|$. If $|A|=1$, then $A=\{x\}$. Let $k=\operatorname{ord}_{x} X$. Since $X \in \mathcal{D}, k$ is finite, so $X-\{x\}$ has exactly k components $C_{1}, C_{2}, \ldots, C_{k}$. Since $x \notin E_{a}(X)$, for each $i=\{1,2, \ldots, k\}$, there is $p_{i} \in O(X) \cap C_{i}$ such that if $T=\bigcup_{i=1}^{k}\left[p_{i}, x\right]$, then $T-\{x\} \subset O(X)$. Hence T is a tree in X that satisfies $(*)$.

Now suppose that if $B \in F_{n}(X)-E A_{n}(X)$ contains i points, with $i<n$, then there is a tree G in X that satisfies $(*)$, replacing A by B and T by G, respectively. Assume that $|A|=i+1$ and let $A=\left\{x_{1}, x_{2}, \ldots, x_{i+1}\right\}$. Let T_{1} be a tree in X such that $A-\left\{x_{i+1}\right\} \subset \operatorname{int}_{X}\left(T_{1}\right)$ and $T_{1} \cap E_{a}(X)=\emptyset$. By the first part of this proof, there exists a tree T_{2} in X such that $x_{i+1} \in \operatorname{int}_{X}\left(T_{2}\right)$ and $T_{2} \cap E_{a}(X)=\emptyset$. Thus $T=T_{1} \cup T_{2} \cup\left[x_{i}, x_{i+1}\right]$ is a tree in X that satisfies (*).

Theorem 3.2. Let $X \in \mathcal{D}$ and $m, n \in \mathbb{N}$ so that $m \leq n$. Let $\mathcal{U}=$ $\left\langle U_{1}, U_{2}, \ldots, U_{m}\right\rangle_{n}$ be an open subset of $F_{n}(X)$ such that:

1) U_{i} is an open connected subset of X, for each $i \in\{1,2, \ldots, m\}$;
2) $U_{i} \cap U_{j}=\emptyset$ if $i, j \in\{1,2, \ldots, m\}$ and $i \neq j$.

For each $i \in\{1,2, \ldots, m\}$, let $\left\{J_{\alpha}^{i}: \alpha \in \mathcal{A}_{i}\right\}$ be the set of components of $U_{i} \cap\left[O(X) \cup\left(E(X)-E_{a}(X)\right)\right]$. Then the components of $\mathcal{U} \cap \Lambda_{n}(X)$ are the nonempty sets of the form:

$$
\left\langle J_{\alpha_{1}}^{r_{1}}, J_{\alpha_{2}}^{r_{2}}, \ldots, J_{\alpha_{k}}^{r_{k}}\right\rangle_{n}
$$

where $\left\{r_{1}, r_{2}, \ldots, r_{k}\right\}=\{1,2, \ldots, m\}$, the sets $J_{\alpha_{1}}^{r_{1}}, J_{\alpha_{2}}^{r_{2}}, \ldots, J_{\alpha_{k}}^{r_{k}}$ are pairwise different and $\alpha_{t} \in \mathcal{A}_{r_{t}}$, for every $t \in\{1,2, \ldots, k\}$.

Proof. It is easy to see that for each $i \in\{1,2, \ldots, m\}$ and every $\alpha \in$ $\mathcal{A}_{i}, J_{\alpha}^{i}$ is an open connected subset of X. Let $J_{\alpha_{1}}^{r_{1}}, J_{\alpha_{2}}^{r_{2}}, \ldots, J_{\alpha_{k}}^{r_{k}}$ be a finite collection of pairwise different sets such that $\left\{r_{1}, r_{2}, \ldots, r_{k}\right\}=\{1,2, \ldots, m\}$ and $\alpha_{t} \in \mathcal{A}_{r_{t}}$, for every $t \in\{1,2, \ldots, k\}$. Since the sets $J_{\alpha_{1}}^{r_{1}}, J_{\alpha_{2}}^{r_{2}}, \ldots, J_{\alpha_{k}}^{r_{k}}$ are open and connected, by [19, Lemma 1],

$$
\left\langle J_{\alpha_{1}}^{r_{1}}, J_{\alpha_{2}}^{r_{2}}, \ldots, J_{\alpha_{k}}^{r_{k}}\right\rangle_{n}
$$

is an open connected subset of $F_{n}(X)$. Let $J_{\epsilon_{1}}^{s_{1}}, J_{\epsilon_{2}}^{s_{2}}, \ldots, J_{\epsilon_{l}}^{s_{l}}$ be a finite collection of pairwise different sets such that: $\left\{s_{1}, s_{2}, \ldots, s_{l}\right\}=\{1,2, \ldots, m\}$, $\epsilon_{v} \in \mathcal{A}_{s_{v}}$, for every $v \in\{1,2, \ldots, l\}$, and

$$
\left\{J_{\alpha_{1}}^{r_{1}}, J_{\alpha_{2}}^{r_{2}}, \ldots, J_{\alpha_{k}}^{r_{k}}\right\} \neq\left\{J_{\epsilon_{1}}^{s_{1}}, J_{\epsilon_{2}}^{s_{2}}, \ldots, J_{\epsilon_{l}}^{s_{l}}\right\}
$$

It is not difficult to see that:

$$
\left\langle J_{\alpha_{1}}^{r_{1}}, J_{\alpha_{2}}^{r_{2}}, \ldots, J_{\alpha_{k}}^{r_{k}}\right\rangle_{n} \cap\left\langle J_{\epsilon_{1}}^{s_{1}}, J_{\epsilon_{2}}^{s_{2}}, \ldots, J_{\epsilon_{l}}^{s_{l}}\right\rangle_{n}=\emptyset
$$

Now assume that \mathcal{C} is a component of $\mathcal{U} \cap \Lambda_{n}(X)$. Note that, for every $A \in \mathcal{C}$, there is a unique finite collection

$$
J_{\sigma_{1}}^{s_{1}}, J_{\sigma_{2}}^{s_{2}}, \ldots, J_{\sigma_{w}}^{s_{w}}
$$

of pairwise different sets such that: $\left\{s_{1}, s_{2}, \ldots, s_{w}\right\}=\{1,2, \ldots, m\}, \sigma_{j} \in \mathcal{A}_{s_{j}}$, for each $j \in\{1,2, \ldots, w\}$, and

$$
A \in \mathcal{V}_{A}=\left\langle J_{\sigma_{1}}^{s_{1}}, J_{\sigma_{2}}^{s_{2}}, \ldots, J_{\sigma_{w}}^{s_{w}}\right\rangle_{n} .
$$

Hence $\mathcal{C}=\bigcup_{A \in \mathcal{C}} \mathcal{V}_{A}$, which expresses the open connected set \mathcal{C} as a union of nonempty pairwise disjoint open connected sets. Thus \mathcal{C} is of the form $\left\langle J_{\alpha_{1}}^{r_{1}}, J_{\alpha_{2}}^{r_{2}}, \ldots, J_{\alpha_{k}}^{r_{k}}\right\rangle_{n}$. where $\left\{r_{1}, r_{2}, \ldots, r_{k}\right\}=\{1,2, \ldots, m\}$, the sets $J_{\alpha_{1}}^{r_{1}}, J_{\alpha_{2}}^{r_{2}}, \ldots, J_{\alpha_{k}}^{r_{k}}$ are pairwise different and $\alpha_{t} \in \mathcal{A}_{r_{t}}$, for every $t \in$ $\{1,2, \ldots, k\}$.

Assume that $X \in \mathcal{D}$. It is not difficult to see that $\Lambda_{n}(X)$ is an open subset of $F_{n}(X)$. As a particular case of Theorem 3.2 we obtain the following result, which is the equivalent version of [7, Lemma 4.1] for elements of \mathcal{D}.

Theorem 3.3. Let $X \in \mathcal{D}$ such that X is not an arc and $n \in \mathbb{N}$. Then the components of $\Lambda_{n}(X)$ are exactly the sets of the form:

$$
\left\langle\operatorname{int}_{X}\left(I_{1}\right), \operatorname{int}_{X}\left(I_{2}\right), \ldots, \operatorname{int}_{X}\left(I_{m}\right)\right\rangle_{n}
$$

where $m \leq n, I_{j}$ is either an internal or an external arc in X for every $j \in\{1,2, \ldots, m\}$, and the sets $\operatorname{int}_{X}\left(I_{1}\right), \operatorname{int}_{X}\left(I_{2}\right), \ldots, \operatorname{int}_{X}\left(I_{m}\right)$ are pairwise disjoint.

The following result is the equivalent version of [7, Lemma 4.3], for elements of \mathcal{D}.

Theorem 3.4. Let $X \in \mathcal{D}$ and $n \geq 4$. If $A \in F_{n-1}(X)$, then no neighborhood of A in $F_{n}(X)$ can be embedded in \mathbb{R}^{n}.

Proof. We show first that:
$(*)$ if $C \in F_{n-1}(X)-E A_{n}(X)$, then no neighborhood of C in $F_{n}(X)$ can be embedded in \mathbb{R}^{n}.
To show $(*)$ let $C \in F_{n-1}(X)-E A_{n}(X)$ and assume that there is a neighborhood \mathcal{V} of C in $F_{n}(X)$ that can be embedded in \mathbb{R}^{n}. By Theorem 3.1, there is a tree T in X such that $C \subset \operatorname{int}_{X}(T)$ and $T \cap E_{a}(X)=\emptyset$. Then $\mathcal{V} \cap F_{n}(T)$ is a neighborhood of C in $F_{n}(T)$ that can be embedded in \mathbb{R}^{n}. Since this contradicts [7, Lemma 4.3], claim ($*$) holds.

To show the theorem let $A \in F_{n-1}(X)$. Assume that there is a neighborhood \mathcal{U} of A in $F_{n}(X)$ that can be embedded in \mathbb{R}^{n}. By Theorem 2.2, there is $C \subset O(X)$ such that $|C|=|A|$ and $C \in \operatorname{int}_{F_{n}(X)}(\mathcal{U})$. Since $A \in F_{n-1}(X)$ it follows that $C \in F_{n-1}(X)-E A_{n}(X)$. Then, by ($*$), no neighborhood of C in $F_{n}(X)$ can be embedded in \mathbb{R}^{n}. However, since $C \in \operatorname{int}_{F_{n}(X)}(\mathcal{U})$, the set \mathcal{U} is a neighborhood of C in $F_{n}(X)$ that can be embedded in \mathbb{R}^{n}. This contradiction completes the proof of the theorem.

4. The Set $\mathcal{E}_{n}(X)$

Given a continuum X and a natural number n, we consider the following set:

$$
\mathcal{E}_{n}(X)=\left\{A \in F_{n}(X): A \text { has a neighborhood in } F_{n}(X) \text { which is an } n \text {-cell }\right\} .
$$

In this section we prove some properties of $\mathcal{E}_{n}(X)$.
Theorem 4.1. Let X and Y be continua and $n \in \mathbb{N}$. If $h: F_{n}(X) \rightarrow$ $F_{n}(Y)$ is a homeomorphism, then $h\left(\mathcal{E}_{n}(X)\right)=\mathcal{E}_{n}(Y)$.

A simple triod is a continuum G that can be written as the union of three $\operatorname{arcs} I_{1}, I_{2}$ and I_{3} such that: $I_{1} \cap I_{2} \cap I_{3}=\{p\}, p$ is an end point of each arc I_{i} and $\left(I_{i}-\{p\}\right) \cap\left(I_{j}-\{p\}\right)=\emptyset$, if $i \neq j$. The point p is called the core of G.

Given a continuum X let:

$$
T(X)=\{p \in X: p \text { is the core of a simple triod in } X\} .
$$

Let X be a locally connected continuum and $A \in \mathcal{E}_{n}(X)$. In [7, Lemma 3.1] it is shown that $A \cap T(X)=\emptyset$. A straightforward modification can be applied to obtain the following result.

THEOREM 4.2. Let X be a locally connected continuum and $n \in \mathbb{N}$. If $A \in \mathcal{E}_{n}(X)$, then $A \cap \operatorname{cl}_{X}(T(X))=\emptyset$.

Theorem 4.3. Let $X \in \mathcal{D}$ and $n \in \mathbb{N}$. Then $\Lambda_{n}(X)-F_{n-1}(X) \subset \mathcal{E}_{n}(X)$.
Proof. Take $A \in \Lambda_{n}(X)-F_{n-1}(X)$. Then $|A|=n$, so we can write

$$
A=\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}
$$

Since $A \in \Lambda_{n}(X)$, we have $A \subset O(X) \cup\left(E(X)-E_{a}(X)\right)$. Then there exist n pairwise disjoint arcs $J_{1}, J_{2}, \ldots, J_{n}$ in X such that $x_{i} \in \operatorname{int}_{X}\left(J_{i}\right)$, for each $i \in\{1,2, \ldots, n\}$, and

$$
J_{1} \cup J_{2} \cup \cdots \cup J_{n} \subset O(X) \cup\left(E(X)-E_{a}(X)\right)
$$

Note that $\left\langle J_{1}, J_{2}, \ldots, J_{n}\right\rangle_{n}$ is a neighborhood of A in $F_{n}(X)$ which is an n-cell, by Theorem 2.1. Then $A \in \mathcal{E}_{n}(X)$.

Theorem 4.4. Let $X \in \mathcal{D}$ and $n \in \mathbb{N}$. Then $\mathcal{E}_{n}(X)$ is dense in $F_{n}(X)$.
Proof. Let \mathcal{U} be a nonempty open subset of $F_{n}(X)$. By Theorem 2.2 there is $D \subset O(X)$ such that $|D|=n$ and $D \in \mathcal{U}$. Note that $D \in \Lambda_{n}(X)-$ $F_{n-1}(X)$ so, by Theorem $4.3, D \in \mathcal{E}_{n}(X)$. This shows that $\mathcal{E}_{n}(X)$ is dense in $F_{n}(X)$.

Theorem 4.5. Let $X \in \mathcal{D}$ and $n \in \mathbb{N}$. Then
a) $\mathcal{E}_{n}(X) \subset \Lambda_{n}(X)$;
b) if $n \in\{2,3\}$, then $\mathcal{E}_{n}(X)=\Lambda_{n}(X)$;
c) if $n \geq 4$, then $\mathcal{E}_{n}(X)=\Lambda_{n}(X)-F_{n-1}(X)$.

Proof. To show a) let $A \in \mathcal{E}_{n}(X)$. By Theorem 4.2, $A \cap \operatorname{cl}_{X}(T(X))=\emptyset$. Since $X \in \mathcal{D}$, this implies that $A \cap\left(R(X) \cup E_{a}(X)\right)=\emptyset$. Thus $A \in \Lambda_{n}(X)$, so a) holds. Assertion b) follows from a) and the proof of [7, Lemma 5.1]. To show c) assume that $n \geq 4$. Take $A \in \mathcal{E}_{n}(X)$. By a), $A \in \Lambda_{n}(X)$. Let \mathcal{U} be a neighborhood of A in $F_{n}(X)$ which is an n-cell. Then \mathcal{U} can be embedded in \mathbb{R}^{n} so, by Theorem 3.4, $A \notin F_{n-1}(X)$. This shows that $\mathcal{E}_{n}(X) \subset$ $\Lambda_{n}(X)-F_{n-1}(X)$. The other inclusion holds by Theorem 4.3.

Theorem 4.6. Let $X \in \mathcal{D}$ and $A \in F_{n}(X)$. If $A \cap E_{a}(X)=\emptyset$, then there exists a basis \mathfrak{B} of open neighborhoods of A in $F_{n}(X)$ such that for each $\mathcal{V} \in \mathfrak{B}$, the set $\mathcal{V} \cap \mathcal{E}_{n}(X)$ is nonempty and has a finite number of components.

Proof. Since $A \cap E_{a}(X)=\emptyset$, we have $A \in F_{n}(X)-E A_{n}(X)$. Thus, by Theorem 3.1, there is a tree T in X such that $A \subset \operatorname{int}_{X}(T)$ and $T \cap E_{a}(X)=\emptyset$. Let $A=\left\{x_{1}, x_{2}, \ldots, x_{m}\right\}$ and consider that A has exactly m points. Let $\varepsilon>0$. Choose a finite collection $U_{1}, U_{2}, \ldots, U_{m}$ of pairwise disjoint open connected subsets of X with the following properties:

1) $x_{i} \in U_{i} \subset \operatorname{int}_{X}(T) \cap B_{X}\left(x_{i}, \varepsilon\right)$, for each $i \in\{1,2, \ldots, m\}$;
2) $U_{i}-\left\{x_{i}\right\} \subset O(X)$, for each $i \in\{1,2, \ldots, m\}$.

Let $\mathcal{V}_{\varepsilon}=\left\langle U_{1}, U_{2}, \ldots, U_{m}\right\rangle_{n}$. By 1) we have $\mathcal{V}_{\varepsilon} \subset B_{F_{n}(X)}(A, \varepsilon)$ and, by Theorem 4.4, $\mathcal{V}_{\varepsilon} \cap \mathcal{E}_{n}(X) \neq \emptyset$. Given $i \in\{1,2, \ldots, m\}$, since $X \in \mathcal{D}$, the order of x_{i} in X is finite. From this and 2), the set

$$
U_{i} \cap\left[O(X) \cup\left(E(X)-E_{a}(X)\right)\right]
$$

has a finite number of components. Let $\left\{J_{1}^{i}, J_{2}^{i}, \ldots, J_{l_{i}}^{i}\right\}$ be the set of components of $U_{i} \cap\left[O(X) \cup\left(E(X)-E_{a}(X)\right)\right]$. By Theorem 3.2 the components of $\mathcal{V}_{\varepsilon} \cap \Lambda_{n}(X)$ are the nonempty sets of the form:

$$
\begin{equation*}
\left\langle J_{s_{1}}^{r_{1}}, J_{s_{2}}^{r_{2}}, \ldots, J_{s_{k}}^{r_{k}}\right\rangle_{n} \tag{4.1}
\end{equation*}
$$

where $\left\{r_{1}, r_{2}, \ldots, r_{k}\right\}=\{1,2, \ldots, m\}$, the sets $J_{s_{1}}^{r_{1}}, J_{s_{2}}^{r_{2}}, \ldots, J_{s_{k}}^{r_{k}}$ are pairwise different and $s_{t} \in\left\{1,2, \ldots, l_{r_{t}}\right\}$, for every $t \in\{1,2, \ldots, k\}$. Since we have a finite number of elements of the form $J_{s_{t}}^{r_{i}}$, the number of nonempty sets of the form (4.1) is finite.

If $n \in\{2,3\}$ then, by part b) of Theorem 4.5, the nonempty sets of the form (4.1) are the components of $\mathcal{V}_{\mathcal{E}} \cap \mathcal{E}_{n}(X)$. Assume then that $n \geq 4$. Then, by part c) of Theorem $4.5, \mathcal{E}_{n}(X)=\Lambda_{n}(X)-F_{n-1}(X)$. Given a component $\mathcal{C}=\left\langle J_{s_{1}}^{r_{1}}, J_{s_{2}}^{r_{2}}, \ldots, J_{s_{k}}^{r_{k}}\right\rangle_{n}$ of $\mathcal{V}_{\varepsilon} \cap \Lambda_{n}(X)$ and $\left(q_{1}, q_{2}, \ldots, q_{k}\right) \in \mathbb{N}^{k}$ such that $q_{1}+q_{2}+\cdots+q_{k}=n$ let:

$$
\mathcal{C}\left(q_{1}, q_{2}, \ldots, q_{k}\right)=\left\{C \in \mathcal{C}:\left|C \cap J_{s_{t}}^{r_{t}}\right|=q_{t} \text { for each } t \in\{1,2, \ldots, k\}\right\} .
$$

Note that $\mathcal{C}\left(q_{1}, q_{2}, \ldots, q_{k}\right) \subset \mathcal{V}_{\mathcal{\varepsilon}} \cap \mathcal{E}_{n}(X)$. It is not difficult to see that $\mathcal{C}\left(q_{1}, q_{2}, \ldots, q_{k}\right)$ is homeomorphic to

$$
\left(F_{q_{1}}\left(J_{s_{1}}^{r_{1}}\right)-F_{q_{1}-1}\left(J_{s_{1}}^{r_{1}}\right)\right) \times \cdots \times\left(F_{q_{k}}\left(J_{s_{k}}^{r_{k}}\right)-F_{q_{k}-1}\left(J_{s_{k}}^{r_{k}}\right)\right),
$$

where we agree that $F_{0}(R)=\emptyset$ for each continuum R. Since the sets

$$
F_{q_{1}}\left(J_{s_{1}}^{r_{1}}\right)-F_{q_{1}-1}\left(J_{s_{1}}^{r_{1}}\right), \ldots, F_{q_{k}}\left(J_{s_{k}}^{r_{k}}\right)-F_{q_{k}-1}\left(J_{s_{k}}^{r_{k}}\right)
$$

are connected, $\mathcal{C}\left(q_{1}, q_{2}, \ldots, q_{k}\right)$ is a connected subset of $\mathcal{V}_{\varepsilon} \cap \mathcal{E}_{n}(X)$. Moreover

$$
\mathcal{C} \cap \mathcal{E}_{n}(X)=\bigcup\left\{\mathcal{C}\left(q_{1}, \ldots, q_{k}\right):\left(q_{1}, \ldots, q_{k}\right) \in \mathbb{N}^{k} \text { and } q_{1}+\cdots+q_{k}=n\right\}
$$

This implies that $\mathcal{C} \cap \mathcal{E}_{n}(X)$ has a finite number of components. Since each component of $\mathcal{C} \cap \mathcal{E}_{n}(X)$ is a component of $\mathcal{V}_{\varepsilon} \cap \mathcal{E}_{n}(X)$ and $\mathcal{V}_{\varepsilon} \cap \Lambda_{n}(X)$ has a finite number of components, the set $\mathcal{V}_{\varepsilon} \cap \mathcal{E}_{n}(X)$ has a finite number of components as well.

To finish the proof note that $\mathfrak{B}=\left\{\mathcal{V}_{\varepsilon}: \varepsilon>0\right\}$ is a basis of open neighborhoods of A in $F_{n}(X)$.

In [4] and [20] it is proved that locally connected continua admit a convex metric d. This means that every two points $x, y \in X$ can be joined by an arc J in X, in such a way that J is isometric to the closed interval $[0, d(x, y)]$.

Theorem 4.7. Let $X \in \mathcal{D}$ and $A \in F_{n}(X)$. Assume that $A \cap E(X) \neq \emptyset$. Then there exists a basis \mathfrak{B} of open neighborhoods of A in $F_{n}(X)$ such that, for each $\mathcal{V} \in \mathfrak{B}$, the set $\mathcal{V}-\{A\}$ is contractible. Moreover if $A \cap E_{a}(X) \neq \emptyset$
we can choose \mathfrak{B} with the additional property that, for each $\mathcal{V} \in \mathfrak{B}$, the set $\mathcal{V} \cap \mathcal{E}_{n}(X)$ has infinitely many components.

Proof. Let d be a convex metric on X. Assume that $|A|=m$. Let $A=\left\{x_{1}, x_{2}, \ldots, x_{m}\right\}$ and assume that $x_{1} \in E(X)$. Let $\varepsilon>0$. Choose a finite collection $U_{1}, U_{2}, \ldots, U_{m}$ of pairwise disjoint open connected subsets of X such that $x_{i} \in U_{i} \subset B_{X}\left(x_{i}, \varepsilon\right)$, for each $i \in\{1,2, \ldots, m\}$. Let $\mathcal{V}_{\varepsilon}=$ $\left\langle U_{1}, U_{2}, \ldots, U_{m}\right\rangle_{n}$. Clearly $A \in \mathcal{V}_{\varepsilon} \subset B_{F_{n}(X)}(A, \varepsilon)$. Assume that $\operatorname{diam}\left(U_{i}\right)<$ 1 , for each $i \in\{1,2, \ldots, m\}$. Fix $B=\left\{b_{1}, b_{2}, \ldots, b_{m}\right\}$ so that $b_{1} \in U_{1}-\left\{x_{1}\right\}$ and $b_{i} \in U_{i}$ for each $i \in\{2,3, \ldots, m\}$. Note that $B \in \mathcal{V}_{\varepsilon}-\{A\}$. Given $i \in\{1,2, \ldots, m\}$ and $(x, t) \in U_{i} \times I$, by [21, Theorem 8.26], $\left[x, b_{i}\right] \subset U_{i}$. We also have that $\left[x, b_{i}\right]$ is isometric to the closed interval $\left[0, d\left(x, b_{i}\right)\right]$. Hence if $d\left(x, b_{i}\right) \geq t$ there is a unique point $y_{x} \in\left[x, b_{i}\right]$ such that $d\left(x, y_{x}\right)=t$. We can then define a function $g_{i}: U_{i} \times I \rightarrow U_{i}$ by:

$$
g_{i}(x, t)= \begin{cases}b_{i}, & \text { if } d\left(x, b_{i}\right) \leq t \\ y_{x}, & \text { if } d\left(x, b_{i}\right) \geq t\end{cases}
$$

It is not difficult to prove that g_{i} is a continuous function. Note that $g_{i}(x, 0)=$ x and $g_{i}(x, 1)=b_{i}$, for all $x \in U_{i}$. If $x \in U_{1}-\left\{x_{1}\right\}$ then $\left[x, b_{1}\right] \subset U_{1}-\left\{x_{1}\right\}$ so, by the definition of g_{1}, we have $g_{1}(x, t) \in U_{1}-\left\{x_{1}\right\}$ for every $t \in I$.

Define $G:\left(\mathcal{V}_{\varepsilon}-\{A\}\right) \times I \rightarrow \mathcal{V}_{\varepsilon}-\{A\}$ so that if $(D, t) \in\left(\mathcal{V}_{\varepsilon}-\{A\}\right) \times I$, then:

$$
G(D, t)=\bigcup_{i=1}^{m} g_{i}\left(\left(D \cap U_{i}\right) \times\{t\}\right)
$$

It is not difficult to see that G is well defined and continuous. Since $G(D, 0)=$ $\bigcup_{i=1}^{m}\left(D \cap U_{i}\right)=D$ and $G(D, 1)=B$, for each $D \in \mathcal{V}_{\varepsilon}-\{A\}$, the set $\mathcal{V}_{\varepsilon}-\{A\}$ is contractible.

Let us assume now that $x_{1} \in E_{a}(X)$. Since $X \in \mathcal{D}$, each element of $E_{a}(X)$ is the limit of a sequence of distinct ramification points of X, all in the same arc. We also have, since $X \in \mathcal{D}$, that $R(X)$ is discrete ([3, Corollary 3.6]). Then we can find a sequence $\left(r_{k}\right)_{k}$ in $R(X) \cap U_{1}$ such that:

1) $\left(r_{k}\right)_{k}$ converges to x_{1};
2) $\left(r_{k+1}, r_{k}\right)$ is an internal arc in X, for every $k \in \mathbb{N}$;
3) $r_{k+1} \in\left(r_{k+2}, r_{k}\right) \subset U_{1}$, for each $k \in \mathbb{N}$.

Given $i \in\{2,3, \ldots, m\}$ fix an arc I_{i} in $\operatorname{cl}_{X}\left(U_{i}\right)$ which is either external or internal in $\operatorname{cl}_{X}\left(U_{i}\right)$. Let $J_{i}=\operatorname{int}_{U_{i}}\left(I_{i} \cap U_{i}\right)$. By Theorems 3.2 and 4.5, for every $k \in \mathbb{N}$, the set:

$$
\mathcal{W}_{k}=\left\langle J_{2}, J_{3}, \ldots, J_{m},\left(r_{k+1}, r_{k}\right),\left(r_{k+2}, r_{k+1}\right), \ldots,\left(r_{k+n-m+1}, r_{k+n-m}\right)\right\rangle_{n}
$$

is a component of $\mathcal{V}_{\varepsilon} \cap \mathcal{E}_{n}(X)$. Since $\mathcal{W}_{k} \cap \mathcal{W}_{l}=\emptyset$, if $k \neq l$, the set $\mathcal{V}_{\varepsilon} \cap \mathcal{E}_{n}(X)$ has infinitely many components.

To finish the proof, note that $\mathfrak{B}=\left\{\mathcal{V}_{\varepsilon}: \varepsilon>0\right\}$ is a basis of open neighborhoods of A in $F_{n}(X)$ as required.

Theorem 4.8. Let X be a locally connected continuum and Z be a nondegenerate subcontinuum of X such that $\operatorname{cl}_{X}(T(X) \cap Z)=Z$. Assume that there is a point $p \in Z$ such that $p \in \operatorname{int}_{X}(Z)$. Then there exists a basis \mathfrak{B} of open neighborhoods of $\{p\}$ in $F_{n}(X)$ such that, for each $\mathcal{V} \in \mathfrak{B}$, the set $\mathcal{V} \cap \mathcal{E}_{n}(X)$ is empty.

Proof. Take $\varepsilon>0$ such that $B_{X}(p, \varepsilon) \subset \operatorname{int}_{X}(Z)$. Let

$$
\mathfrak{B}=\left\{B_{F_{n}(X)}(\{p\}, \delta): \delta<\varepsilon\right\}
$$

$\mathcal{V} \in \mathfrak{B}$ and $A \in \mathcal{V} \cap F_{n}(Z)$. Since $\operatorname{cl}_{X}(T(X) \cap Z)=Z$, we have $A \cap$ $\mathrm{cl}_{X}(T(X)) \neq \emptyset$. Thus, by Theorem 4.2, $A \notin \mathcal{E}_{n}(X)$. This implies that $\mathcal{V} \cap \mathcal{E}_{n}(X)=\emptyset$.

Let X be a continuum and A be an arc in X with end points p and q. We say that A is a free arc of X if $A-\{p, q\}$ is an open subset of X.

TheOrem 4.9. Let X be a locally connected continuum and $n \in \mathbb{N}$ such that $\mathcal{E}_{n}(X)$ is dense in $F_{n}(X)$. Then, for each nonempty open subset U of X, there is a free arc of X contained in U.

Proof. Assume, to the contrary, that U contains no free arcs. Let V be a nonempty open connected subset of X such that $\operatorname{cl}_{X}(V) \subset U$. Define $Z=\mathrm{cl}_{X}(V)$. We prove that $Z=\mathrm{cl}_{X}(T(X) \cap Z)$. Let $y \in Z$ and W be an open subset of X such that $y \in W$. Let $p \in W \cap V$ and A be an arc such that $p \in A \subset V \cap W$. Since U has no free arcs and open subsets of X are locally arcwise connected (see [21, Definition 8.24 and Theorem 8.25]) it can be shown that there is $a \in A \cap T(X) \cap W$. Thus $W \cap T(X) \cap Z \neq \emptyset$. This shows that $Z \subset \operatorname{cl}_{X}(T(X) \cap Z)$ and, since the other inclusion also holds, we have $\mathrm{cl}_{X}(T(X) \cap Z)=Z$. Since the interior of Z is nonempty, by Theorem 4.8, there is an open set \mathcal{V} in $F_{n}(X)$ such that $\mathcal{V} \cap \mathcal{E}_{n}(X)=\emptyset$. This contradicts the fact that $\mathcal{E}_{n}(X)$ is dense in $F_{n}(X)$. Therefore U contains a free arc.

5. The Main Theorem

We start this section by showing the following result, which is a positive answer to $[15$, Question 2]. In its proof we will use the fact that a continuum Z is locally connected if and only if $F_{n}(Z)$ is locally connected ([9, Theorem 6.3]), and also that if Z is a one-dimensional continuum, then $\operatorname{dim}\left(F_{n}(Z)\right)=n$. This follows from [6, Theorem 3] and [10, Proof of Lemma 3.1].

THEOREM 5.1. Let X be a dendrite and $n \in \mathbb{N}$. If Y is a continuum such that $F_{n}(X) \approx F_{n}(Y)$, then Y is a dendrite.

Proof. Since X is locally connected, Y is also locally connected. By [8, Theorem 1.1(19)], $\operatorname{dim}(X)=1$. Thus $\operatorname{dim}\left(F_{n}(Y)\right)=\operatorname{dim}\left(F_{n}(X)\right)=n$. Assume that $\operatorname{dim}(Y)>1$. Then there exist $q \in Y$ and a compact neighborhood B of q such that $\operatorname{dim}(B) \geq 2$. Such B can be chosen so that there is a finite
collection $A_{1}, A_{2}, \ldots, A_{n-1}$ of pairwise disjoint arcs in Y such that $B \cap A_{i}=\emptyset$, for all $i \in\{1,2, \ldots, n-1\}$. Then $\mathcal{B}=\left\langle B, A_{1}, A_{2}, \ldots, A_{n-1}\right\rangle_{n}$ is a subset of $F_{n}(Y)$ which is homeomorphic to $B \times A_{1} \times A_{2} \times \cdots \times A_{n-1}$. Since B is compact and $\operatorname{dim}\left(A_{i}\right)=1$ for every $i \in\{1,2, \ldots, n-1\}$, by [14, Remark, p. 34], $\operatorname{dim}(\mathcal{B})=\operatorname{dim}\left(B \times A_{1} \times A_{2} \times \cdots \times A_{n-1}\right)=\operatorname{dim}(B)+n-1 \geq n+1$. Hence $\operatorname{dim}\left(F_{n}(Y)\right) \geq n+1$. Since this is a contradiction, $\operatorname{dim}(Y)=1$.

Assume that Y contains a simple closed curve S^{1}. Since $\operatorname{dim}(Y)=1$, by $\left[22,18.8\right.$, p. 104], there is a retraction $r: Y \rightarrow S^{1}$. Consider the function $R: F_{n}(Y) \rightarrow F_{n}\left(S^{1}\right)$ defined, for $A \in F_{n}(Y)$, by $R(A)=r(A)$. It is not difficult to see that R is a well defined retraction. Since X is contractible ([8, Theorem 1.2(21)]), $F_{n}(X)$ is contractible. Thus $F_{n}\left(S^{1}\right)$ is a retract of the contractible space $F_{n}(Y)$, so $F_{n}\left(S^{1}\right)$ is contractible as well ([5, Theorem 13.2]). However, in [24] it is shown that there is no $n \in \mathbb{N}$ so that $F_{n}\left(S^{1}\right)$ is contractible. This contradiction shows that Y does not contain a simple closed curve. We conclude that Y is a dendrite.

Let X be a dendrite and K be a subcontinuum of X. Define $r: X \rightarrow K$ as follows: $r(x)=x$ if $x \in K$ and, otherwise, $r(x)$ is the unique point in K such that $r(x)$ is a point of every arc in X from x to any point of K (see [21, Lemma 10.24]). In [21, Lemma 10.25] it is shown that r is a retraction. Such function is called the first point map for K. We use this function in the proof of the following result.

Theorem 5.2. Let $X \in \mathcal{D}$ and $n \in \mathbb{N}$. If Y is a continuum such that $F_{n}(X) \approx F_{n}(Y)$, then $Y \in \mathcal{D}$.

Proof. Since $X \approx F_{1}(X)$, the result is true for $n=1$, so we consider that $n \geq 2$. By Theorem 5.1, Y is a dendrite. Let us assume that the metric d for Y is convex. If $p, q \in \mathbb{R}^{2}$, we denote by $[p, q]$ the straight line segment in \mathbb{R}^{2} joining p and q. We consider that $(p, q)=[p, q]-\{p, q\}$.

Assume, to the contrary, that $Y \notin \mathcal{D}$. Then, by [3, Theorem 3.3], Y contains either a copy of

$$
F_{\omega}=[(-1,0),(1,0)] \cup\left(\bigcup_{m=1}^{\infty}\left[(0,0),\left(\frac{1}{m}, \frac{1}{m^{2}}\right)\right]\right)
$$

or of

$$
W=[(-1,0),(1,0)] \cup\left(\bigcup_{m=1}^{\infty}\left[\left(-\frac{1}{m}, 0\right),\left(-\frac{1}{m}, \frac{1}{m}\right)\right]\right)
$$

To simplify notation let us assume that either $F_{\omega} \subset Y$ or $W \subset Y$. Note that $(0,0) \in \operatorname{cl}_{Y}(E(Y))-E(Y)$. Let $x_{1}=(0,0)$. Since $O(Y)$ is dense in Y, we can take $n-1$ points $x_{2}, x_{3} \ldots, x_{n}$ in $O(Y) \cap((0,0),(1,0))$. Let

$$
B=\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}
$$

Let $h: F_{n}(X) \rightarrow F_{n}(Y)$ be a homeomorphism. We will proceed as follows: after proving Claim 1, we consider the cases $h^{-1}(B) \cap E_{a}(X)=\emptyset$ and $h^{-1}(B) \cap E_{a}(X) \neq \emptyset$. In both situations we will find a contradiction. Thus the assumption $Y \notin \mathcal{D}$ is not correct and, in this way, the proof of the theorem will be complete.

By Theorems 4.1 and $4.4, h\left(\mathcal{E}_{n}(X)\right)=\mathcal{E}_{n}(Y)$ and $\mathcal{E}_{n}(Y)$ is dense in $F_{n}(Y)$.
Take $\delta>0$ such that $B_{Y}\left(x_{i}, \delta\right) \cap B_{Y}\left(x_{j}, \delta\right)=\emptyset$ for each $i, j \in\{1,2, \ldots, n\}$ with $i \neq j$.

Claim 1. For each open neighborhood \mathcal{V} of B in $F_{n}(Y)$ with $\mathcal{V} \subset$ $B_{F_{n}(Y)}(B, \delta)$, the set $\mathcal{V} \cap \mathcal{E}_{n}(Y)$ has infinitely many components.

To show Claim 1, let \mathcal{V} be an open neighborhood of B in $F_{n}(Y)$ such that $\mathcal{V} \subset B_{F_{n}(Y)}(B, \delta)$. Let $0<\varepsilon<\delta$ be such that the sets $B_{Y}\left(x_{1}, \varepsilon\right)$, $B_{Y}\left(x_{2}, \varepsilon\right), \ldots, B_{Y}\left(x_{n}, \varepsilon\right)$ are pairwise disjoint and

$$
\left\langle B_{Y}\left(x_{1}, \varepsilon\right), B_{Y}\left(x_{2}, \varepsilon\right), \ldots, B_{Y}\left(x_{n}, \varepsilon\right)\right\rangle_{n} \subset \mathcal{V}
$$

Since $x_{1} \in B_{Y}\left(x_{1}, \varepsilon\right)$ and either $F_{\omega} \subset Y$ or $W \subset Y$, there exists $N \in \mathbb{N}$ such that either

$$
\begin{equation*}
\bigcup_{m=N}^{\infty}\left[(0,0),\left(\frac{1}{m}, \frac{1}{m^{2}}\right)\right] \subset B_{Y}\left(x_{1}, \varepsilon\right) \tag{5.1}
\end{equation*}
$$

or

$$
\begin{equation*}
\bigcup_{m=N}^{\infty}\left[\left(-\frac{1}{m}, 0\right),\left(-\frac{1}{m}, \frac{1}{m}\right)\right] \subset B_{Y}\left(x_{1}, \varepsilon\right) . \tag{5.2}
\end{equation*}
$$

Also, since Y is a dendrite, $x_{1} \in \operatorname{cl}_{Y}(E(Y))-E(Y)$ and, according the case, the sequences $\left(\left(\frac{1}{m}, \frac{1}{m^{2}}\right)\right)_{m}$ or $\left(\left(-\frac{1}{m}, 0\right)\right)_{m}$ and $\left(\left(-\frac{1}{m}, \frac{1}{m}\right)\right)_{m}$ converge to x_{1}, we can take N so that, for every $m \geq N$, if (5.1) holds then the component of $B_{Y}\left(x_{1}, \varepsilon\right)-\left\{x_{1}\right\}$ that contains $\left(\frac{1}{m}, \frac{1}{m^{2}}\right)$ coincides with the component of $Y-\left\{x_{1}\right\}$ that contains $\left(\frac{1}{m}, \frac{1}{m^{2}}\right)$; and if (5.2) holds, then the component of $B_{Y}\left(x_{1}, \varepsilon\right)-\left\{\left(-\frac{1}{m}, 0\right)\right\}$ that contains $\left(-\frac{1}{m}, \frac{1}{m}\right)$ coincides with the component of $Y-\left\{\left(-\frac{1}{m}, 0\right)\right\}$ that contains $\left(-\frac{1}{m}, \frac{1}{m}\right)$.

Given $m \geq N$ we define Z_{m} as follows: if (5.1) holds, then Z_{m} is the component of $Y-\left\{x_{1}\right\}$ that contains $\left(\frac{1}{m}, \frac{1}{m^{2}}\right)$ and, if (5.2) holds, then Z_{m} is the component of $Y-\left\{\left(-\frac{1}{m}, 0\right)\right\}$ that contains $\left(-\frac{1}{m}, \frac{1}{m}\right)$. Since each Z_{m} is open in Y and $\mathcal{E}_{n}(Y)$ is dense in $F_{n}(Y)$, by Theorem 4.9, there is a free arc A_{m} of Y contained in Z_{m}. Note that $\left\{\operatorname{int}_{Y}\left(A_{m}\right): m \geq N\right\}$ is a sequence of pairwise disjoint open connected subsets of $B_{Y}\left(x_{1}, \varepsilon\right)$.

Given $i \in\{2,3, \ldots, n\}$, since $B_{Y}\left(x_{i}, \varepsilon\right)$ is open in Y and $\mathcal{E}_{n}(Y)$ is dense in $F_{n}(Y)$, by Theorem 4.9, there is a free arc J_{i} of Y contained in $B_{Y}\left(x_{i}, \varepsilon\right)$. Note that $\operatorname{int}_{Y}\left(J_{2}\right), \ldots, \operatorname{int}_{Y}\left(J_{n}\right)$ is a finite sequence of pairwise disjoint open connected subsets of Y.

For $m \geq N$ define

$$
\mathcal{A}_{m}=\left\langle\operatorname{int}_{Y}\left(A_{m}\right), \operatorname{int}_{Y}\left(J_{2}\right), \ldots, \operatorname{int}_{Y}\left(J_{n}\right)\right\rangle_{n}
$$

Since $\operatorname{int}_{Y}\left(A_{m}\right), \operatorname{int}_{Y}\left(J_{2}\right), \ldots, \operatorname{int}_{Y}\left(J_{n}\right)$ are open connected subsets of Y, by Theorem 2.1, \mathcal{A}_{m} is an open connected subset of $F_{n}(Y)$. Since $\operatorname{int}_{Y}\left(A_{m}\right) \cap$ $\operatorname{int}_{Y}\left(A_{k}\right)=\emptyset$ if $m \neq k$, we have $\mathcal{A}_{m} \cap \mathcal{A}_{k}=\emptyset$. Given $C \in \mathcal{A}_{m}$, by Theorem 2.1, the set $\left\langle A_{m}, J_{2}, \ldots, J_{n}\right\rangle_{n}$ is an n-cell in $F_{n}(Y)$ that contains C in its interior. Thus $C \in \mathcal{E}_{n}(Y)$, so $\mathcal{A}_{m} \subset \mathcal{E}_{n}(Y)$. Moreover, we have

$$
\mathcal{A}_{m} \subset\left\langle B_{Y}\left(x_{1}, \varepsilon\right), B_{Y}\left(x_{2}, \varepsilon\right), \ldots, B_{Y}\left(x_{n}, \varepsilon\right)\right\rangle_{n} \subset \mathcal{V}
$$

so $\mathcal{A}_{m} \subset \mathcal{V} \cap \mathcal{E}_{n}(Y)$.
Let \mathcal{B}_{m} be the component of $\mathcal{V} \cap \mathcal{E}_{n}(Y)$ that contains \mathcal{A}_{m}. We claim that $\mathcal{B}_{m} \cap \mathcal{B}_{k}=\emptyset$ for different $m, k \geq N$. Assume, to the contrary, that $\mathcal{B}_{m}=\mathcal{B}_{k}$. Let $D_{1} \in \mathcal{A}_{m}$ and $D_{2} \in \mathcal{A}_{k}$. Since $F_{n}(Y)$ is locally connected and \mathcal{B}_{m} is a component of the open subset $\mathcal{V} \cap \mathcal{E}_{n}(Y)$ of $F_{n}(Y)$, the set \mathcal{B}_{m} is arcwise connected. Then there is an $\operatorname{arc} \alpha:[0,1] \rightarrow \mathcal{B}_{m}$ such that $\alpha(0)=D_{1}$ and $\alpha(1)=D_{2}$. Let

$$
K=\bigcup\{\alpha(t): t \in[0,1]\}
$$

Given $j \in\{1,2, \ldots, n\}$, let $K_{j}=K \cap B_{Y}\left(x_{j}, \delta\right)$. Since $\alpha([0,1])$ is connected in $F_{n}(Y)$, the subset K of Y has at most n components ([9, Lemma 6.1]). Since $D_{1}, D_{2} \subset K$, the sets $B_{Y}\left(x_{1}, \delta\right), B_{Y}\left(x_{2}, \delta\right), \ldots, B_{Y}\left(x_{n}, \delta\right)$ are pairwise disjoint and $D_{i} \cap B_{Y}\left(x_{j}, \delta\right) \neq \emptyset$, for each $i \in\{1,2\}$ and every $j \in\{1,2, \ldots, n\}$, it follows that $K_{1}, K_{2}, \ldots, K_{n}$ are the components of K. Note that $K_{1} \cap A_{m} \neq \emptyset$ and $K_{1} \cap A_{k} \neq \emptyset$ so, if (5.1) holds, then $x_{1} \in K_{1}$ and, if (5.2) holds, then $\left(-\frac{1}{m}, 0\right) \in K_{1}$. This implies that $K \cap R(Y) \neq \emptyset$, so one element of \mathcal{B}_{m} contains a ramification point of Y. This contradicts Theorem 4.2. Hence $\mathcal{B}_{m} \cap \mathcal{B}_{k}=\emptyset$.

Therefore $\mathcal{V} \cap \mathcal{E}_{n}(Y)$ has infinitely many components. This completes the proof of Claim 1.

Let us assume that $h^{-1}(B) \cap E_{a}(X)=\emptyset$. Then, by Theorem 4.6, there exists a basis \mathfrak{B}_{X} of open neighborhoods of $h^{-1}(B)$ in $F_{n}(X)$ such that, for each $\mathcal{U} \in \mathfrak{B}_{X}$, the set $\mathcal{U} \cap \mathcal{E}_{n}(X)$ is nonempty and has a finite number of components. Let $\mathfrak{B}_{Y}=\left\{h(\mathcal{U}): \mathcal{U} \in \mathfrak{B}_{X}\right\}$. Then \mathfrak{B}_{Y} is a basis of open neighborhoods of B in $F_{n}(Y)$ such that, for each $\mathcal{V} \in \mathfrak{B}_{Y}$, the set $\mathcal{V} \cap \mathcal{E}_{n}(Y)$ is nonempty and has a finite number of components. Let $\mathcal{V} \in \mathfrak{B}_{Y}$ such that $\mathcal{V} \subset B_{F_{n}(Y)}(B, \delta)$. By Claim 1. the set $\mathcal{V} \cap \mathcal{E}_{n}(Y)$ has infinitely many components. This is a contradiction.

Let us assume now that $h^{-1}(B) \cap E_{a}(X) \neq \emptyset$. Then, by Theorem 4.7, there is a basis \mathfrak{B} of open neighborhoods of $h^{-1}(B)$ in $F_{n}(X)$ such that, for each $\mathcal{U} \in \mathfrak{B}$, the set $\mathcal{U}-\left\{h^{-1}(B)\right\}$ is contractible. Let $\mathfrak{C}=\{h(\mathcal{U}): \mathcal{U} \in \mathfrak{B}\}$. Then \mathfrak{C} is a basis of open neighborhoods of B in $F_{n}(Y)$ such that, for each $\mathcal{V} \in \mathfrak{C}$, the set $\mathcal{V}-\{B\}$ is contractible.

Let $A=[(-1,0),(1,0)]$. Note that A is an arc in Y such that $x_{1}=(0,0) \in$ $((-1,0),(1,0))$.

Claim 2. There is a retraction $r: Y \rightarrow A$ such that $r^{-1}\left(x_{i}\right)=\left\{x_{i}\right\}$, for each $i \in\{1,2, \ldots, n\}$.

To show Claim 2, let $r_{1}: Y \rightarrow A$ be the first point map for A. By [21, Lemma 10.25], r_{1} is a retraction. Given $i \in\{2,3, \ldots, n\}$, since $x_{i} \in O(Y)$, we have $r_{1}^{-1}\left(x_{i}\right)=\left\{x_{i}\right\}$. If $x_{1} \in O(Y)$, then $r_{1}^{-1}\left(x_{1}\right)=\left\{x_{1}\right\}$ and r_{1} has the required properties. If $x_{1} \notin O(Y)$, then $r_{1}^{-1}\left(x_{1}\right)=\left\{y \in Y:\left[y, x_{1}\right] \cap A=\left\{x_{1}\right\}\right\}$. Let $A_{0}=[(-1,0),(0,0)]$. Given $y \in r_{1}^{-1}\left(x_{1}\right)$, if $d\left(x_{1}, y\right) \leq d\left(x_{1},(-1,0)\right)$, there is a unique $z_{y} \in A_{0}$ such that $d\left(x_{1}, z_{y}\right)=d\left(x_{1}, y\right)$. Then we can define a function $r_{2}: r_{1}^{-1}\left(x_{1}\right) \rightarrow A_{0}$ so that:

$$
r_{2}(y)=\left\{\begin{aligned}
z_{y}, & \text { if } d\left(x_{1}, y\right) \leq d\left(x_{1},(-1,0)\right) \\
(-1,0), & \text { if } d\left(x_{1}, y\right) \geq d\left(x_{1},(-1,0)\right)
\end{aligned}\right.
$$

It is not difficult to see that r_{2} is a well defined continuous function such that $r_{2}^{-1}\left(x_{1}\right)=x_{1}$. Now define $r: Y \rightarrow A$ so that, if $y \in Y$, then:

$$
r(y)= \begin{cases}r_{1}(y), & \text { if } y \notin r_{1}^{-1}\left(x_{1}\right) \\ r_{2}(y), & \text { if } y \in r_{1}^{-1}\left(x_{1}\right)\end{cases}
$$

Then r is a retraction such that $r^{-1}(y)=\left\{x_{i}\right\}$, for each $i \in\{1,2, \ldots, n\}$. This proves Claim 2.

Let $r: Y \rightarrow A$ as in Claim 2. Define $R: F_{n}(Y) \rightarrow F_{n}(A)$, at $D \in F_{n}(Y)$, by $R(D)=r(D)$. Then R is a retraction such that $R^{-1}(B)=\{B\}$. For each $\varepsilon>0$ with $\varepsilon<\delta$, let $U_{i}^{\varepsilon}=B_{Y}\left(x_{i}, \varepsilon\right)$ for $i \in\{1,2, \ldots, n\}$ and $\mathcal{U}^{\varepsilon}=$ $\left\langle U_{1}^{\varepsilon}, U_{2}^{\varepsilon}, \ldots, U_{n}^{\varepsilon}\right\rangle_{n}$.

Claim 3. For each $\varepsilon>0$ with $\varepsilon<\delta$, the set $R\left(\mathcal{U}^{\varepsilon}\right)$ is a connected open subset of $F_{n}(A)$ homeomorphic to the Euclidean space \mathbb{R}^{n}.

Considering the sets $U_{1}^{\varepsilon}, U_{2}^{\varepsilon}, \ldots, U_{n}^{\varepsilon}$ are pairwise disjoint, it is not difficult to prove that $R\left(\mathcal{U}^{\varepsilon}\right)=\left\langle r\left(U_{1}^{\varepsilon}\right), r\left(U_{2}^{\varepsilon}\right), \ldots, r\left(U_{n}^{\varepsilon}\right)\right\rangle_{n}$. Since the metric for Y is convex, by the definition of $r, r\left(U_{1}^{\varepsilon}\right), r\left(U_{2}^{\varepsilon}\right), \ldots, r\left(U_{n}^{\varepsilon}\right)$ are open connected subsets of A. Thus $R\left(\mathcal{U}^{\varepsilon}\right)$ is an open connected subset of $F_{n}(A)$. Moreover, since A is an arc, by Theorem 2.1, $R\left(\mathcal{U}^{\varepsilon}\right)$ is homeomorphic to \mathbb{R}^{n}. This proves Claim 3.

Now we are ready to show the final argument. Fix $\gamma>0$ with $\gamma<\delta$ and take $\mathcal{V} \in \mathfrak{C}$ such that $B \in \mathcal{V} \subset \mathcal{U}^{\gamma}$. Now let $\sigma>0$ such that $B \in \mathcal{U}^{\sigma} \subset \mathcal{V} \subset \mathcal{U}^{\gamma}$. Since R is a retraction, $\mathcal{V}-\{B\}$ is contractible and $R(\mathcal{V}-\{B\})=R(\mathcal{V})-\{B\}$, we have the set $R(\mathcal{V})-\{B\}$ is contractible.

Since $B \in \mathcal{U}^{\sigma} \subset \mathcal{V} \subset \mathcal{U}^{\gamma}$, by the definition of $R, B \in R\left(\mathcal{U}^{\sigma}\right) \subset R(\mathcal{V}) \subset$ $R\left(\mathcal{U}^{\gamma}\right)$. Thus, by Claim 3, $R\left(\mathcal{U}^{\sigma}\right)$ is an open neighborhood of B homeomorphic to \mathbb{R}^{n} and contained in the set $R(\mathcal{V})$. Then there exists an n-cell G such that $B \in G \subset R(\mathcal{V})$ and $B \notin \partial G$, where ∂G is the manifold boundary of G. By Claim $3, R\left(\mathcal{U}^{\gamma}\right)$ is also homeomorphic to \mathbb{R}^{n} so there is a retraction $S: R\left(\mathcal{U}^{\gamma}\right)-$ $\{B\} \rightarrow \partial G$. Then $S_{\mid R(\mathcal{V})-\{B\}}: R(\mathcal{V})-\{B\} \rightarrow \partial G$ is also a retraction. Since
$R(\mathcal{V})-\{B\}$ is contractible, the set ∂G is contractible. This is a contradiction to [14, p. 37] that came from the assumption that $h^{-1}(B) \cap E_{a}(X) \neq \emptyset$.

Since both cases $h^{-1}(B) \cap E_{a}(X)=\emptyset$ and $h^{-1}(B) \cap E_{a}(X) \neq \emptyset$ produced a contradiction, the assumtion that $Y \notin \mathcal{D}$ is not correct. Therefore $Y \in \mathcal{D}$.

Acknowledgements.

We would like to thank professor Alejandro Illanes for his suggestions for this paper. We would also like to thank the referee for his/her fruitful comments for the improvement of this paper.

References

[1] G. Acosta, Continua with unique hyperspace, Lecture Notes in Pure and Applied Mathematics 230, Marcel Dekker, Inc., New York, 2002, 33-49.
[2] G. Acosta and D. Herrera-Carrasco, Dendrites without unique hyperspace, Houston J. Math. 35 (2009), 469-484.
[3] D. Arévalo, W. J. Charatonik, P. Pellicer-Covarruvias and L. Simón, Dendrites with a closed set of end points, Topology Appl. 115 (2001), 1-17.
[4] R. H. Bing, Partitioning a set, Bull. Amer. Math. Soc. 55 (1949), 1101-1110.
[5] K. Borsuk, Theory of Retracts, Monografie Matematyczne 44, Polish Scientific Publishers, Warszawa, Poland, 1967.
[6] K. Borsuk and S. Ulam, On symmetric products of topological spaces, Bull. Amer. Math. Soc. 37 (1931), 875-882.
[7] E. Castañeda and A. Illanes, Finite graphs have unique symmetric products, Topology Appl. 153 (2006), 1434-1450.
[8] J. J. Charatonik and W. J. Charatonik, Dendrites, Aportaciones Mat. Comun. 22, Soc. Mat. Mexicana, México (1998), 227-253.
[9] J.J. Charatonik and A. Illanes, Local connectedness in hyperspaces, Rocky Mountain J. Math. 36 (2006), 811-856.
[10] D. Curtis and N. T. Nhu, Hyperspaces of finite subsets which are homeomorphic to \aleph_{0}-dimensional linear metric spaces, Topology Appl. 19 (1985), 251-260.
[11] D. Herrera-Carrasco, Dendrites with unique hyperspace, Houston J. Math. 33 (2007), 795-805.
[12] D. Herrera-Carrasco and F. Macías-Romero, Dendrites with unique n-fold hyperspace, Topology Proc. 32 (2008), 321-337.
[13] D. Herrera-Carrasco, M. de J. López and F. Macías-Romero, Dendrites with unique symmetric products, to appear in Topology Proc.
[14] W. Hurewicz and H. Wallman, Dimension Teory, Princeton University Press, Princeton, 1941.
[15] A. Illanes, Dendrites with unique hyperspace $F_{2}(X)$, JP J. Geom. Topol. 2 (2002), 75-96.
[16] A. Illanes, Dendrites with unique hyperspace $C_{2}(X)$, II, Topology Proc. 34 (2009), 77-96.
[17] A. Illanes and S. B. Nadler Jr., Hyperspaces. Fundamentals and recent advances, Pure and Applied Mathematics 216, Marcel Dekker, Inc., New York, 1999.
[18] K. Kuratowski, Topology, Vol. 2, Academic Press and PWN, New York, London and Warszawa, 1968.
[19] J. M. Martinez-Montejano, Non-confluence of the natural map of products onto symmetric products, Lecture Notes in Pure and Applied Mathematics 230, Marcel Dekker, Inc., New York, 2002, 229-236.
[20] E. E. Moise, Grille decomposition and convexification theorems for compact locally connected continua, Bull. Amer. Math. Soc. 55 (1949), 1111-1121.
[21] S. B. Nadler, Jr., Continuum theory. An introduction, Monographs and Textbooks in Pure and Applied Math. 158, Marcel Dekker, Inc., New York, 1992.
[22] S. B. Nadler, Jr., Dimension theory: an introduction with exercises, Aportaciones Matemáticas: Textos [Mathematical Contributions: Texts], 18. Sociedad Matemática Mexicana, México, 2002.
[23] G. T. Whyburn, Analytic topology, American Mathematical Society Colloquium Publications 28, American Mathematical Society, New York, 1942, reprinted with corrections 1971.
[24] W. Wu, Note sur les produits essentiels symétriques des espaces topologiques, C. R. Acad. Sci. Paris 224 (1947), 1139-1141.
G. Acosta

Instituto de Matemáticas
Universidad Nacional Autónoma de México
Ciudad Universitaria
México D.F., 04510
México
E-mail: gacosta@matem.unam.mx
R. Hernández-Gutiérrez

Instituto de Matemáticas
Universidad Nacional Autónoma de México
Ciudad Universitaria
México D.F., 04510
México
E-mail: rod@matem.unam.mx
V. Martínez-de-la-Vega

Instituto de Matemáticas
Universidad Nacional Autónoma de México
Ciudad Universitaria
México D.F., 04510
México
E-mail: vmvm@matem.unam.mx
Received: 4.3.2008.
Revised: 25.7.2008. \& 15.8.2008.

[^0]: 2000 Mathematics Subject Classification. 54B20, 54C15, 54F15, 54F50.

