DENDRITES AND SYMMETRIC PRODUCTS

GERARDO ACOSTA, RODRIGO HERNÁNDEZ-GUTIÉRREZ AND VERÓNICA MARTÍNEZ-DE-LA-VEGA

Universidad Nacional Autónoma de México, Mexico

ABSTRACT. For a given continuum X and a natural number n, we consider the hyperspace $F_n(X)$ of all nonempty subsets of X with at most n points, metrized by the Hausdorff metric. In this paper we show that if X is a dendrite whose set of end points is closed, $n \in \mathbb{N}$ and Y is a continuum such that the hyperspaces $F_n(X)$ and $F_n(Y)$ are homeomorphic, then Y is a dendrite whose set of end points is closed.

1. Introduction

A continuum is a nondegenerate, compact, connected metric space. Let \mathbb{N} represent the set of positive integers. For a given continuum X and $n \in \mathbb{N}$, we consider the following hyperspaces of X:

$$F_n(X) = \{A \subset X : A \text{ is nonempty and has at most } n \text{ points}\}\$$

and

 $C_n(X) = \{A \subset X : A \text{ is closed, nonempty and has at most } n \text{ components}\}.$

We call $C_n(X)$ the *n-fold hyperspace of* X and $F_n(X)$ the *n-th symmetric product of* X. Both $F_n(X)$ and $C_n(X)$ are metrized by the Hausdorff metric H ([17, Definition 2.1]).

If two continua X and Y are homeomorphic, we write $X \approx Y$. Note that if X and Y are continua, then $X \approx Y$ if and only if $F_1(X) \approx F_1(Y)$. Let \mathcal{G} be a class of continua, $n \in \mathbb{N}$ and $X \in \mathcal{G}$. We say that X has unique hyperspace $F_n(X)$ in \mathcal{G} if whenever $Y \in \mathcal{G}$ is such that $F_n(X) \approx F_n(Y)$, it follows that $X \approx Y$. Similarly, X has unique hyperspace $C_n(X)$ in \mathcal{G} if whenever $Y \in \mathcal{G}$ is

 $^{2000\} Mathematics\ Subject\ Classification.\ 54B20,\ 54C15,\ 54F15,\ 54F50.$

 $[\]it Key\ words\ and\ phrases.$ Continuum, contractibility, dendrite, finite graph, unique hyperspace.

such that $C_n(X) \approx C_n(Y)$, we have $X \approx Y$. If \mathcal{G} is the class of all continua, we simply say that X has unique hyperspace $F_n(X)$ or unique hyperspace $C_n(X)$, respectively. Note that each continuum X has unique hyperspace $F_1(X)$.

A dendrite is a locally connected continuum that contains no simple closed curves. Throughout this paper we denote by \mathcal{D} the class of dendrites whose set of end points is closed. In [11, Theorem 10] it is shown that if $X \in \mathcal{D}$ is not an arc, then X has unique hyperspace $C_1(X)$. In [16, Theorem 3] that every $X \in \mathcal{D}$ has unique hyperspace $C_2(X)$, and in [12, Theorem 5.7] that each $X \in \mathcal{D}$ has also unique hyperspace $C_n(X)$, for $n \geq 3$. In [2, Theorem 5.1] it is proved that if the set of end points of the dendrite Y is not closed, then Y does not have unique hyperspace $C_1(Y)$ in the class of dendrites. This result is not known for $n \geq 2$. By [1, Lemma 11] an arc Y has unique hyperspace $C_1(Y)$ in the class of dendrites, but not in the class of all continua.

In the First Workshop in Hyperspaces and Continuum Theory, celebrated in the city of Puebla, Mexico, July 2-13, 2007, the problem to determine if every element $X \in \mathcal{D}$ has unique hyperspace $F_n(X)$ was asked by A. Illanes. During the workshop, the three authors of this paper showed that if $X \in \mathcal{D}$, $n \in \mathbb{N}$ and Y is a continuum such that $F_n(X) \approx F_n(Y)$, then $Y \in \mathcal{D}$. This is the main result of this paper. In the same workshop, D. Herrera-Carrasco, M. de J. López and F. Macías-Romero proved that every element $X \in \mathcal{D}$ has unique hyperspace $F_n(X)$ in \mathcal{D} ([13, Theorem 3.5]). Combining these results it follows that every element $X \in \mathcal{D}$ has unique hyperspace $F_n(X)$. This is a partial positive answer to the following problem, which remains open.

QUESTION 1.1. Let X be a dendrite and $n \in \mathbb{N} - \{1\}$. Does X have unique hyperspace $F_n(X)$?

2. General Notions and Facts

All spaces considered in this paper are assumed to be metric. For a space X, a point $x \in X$ and a positive number ε , we denote by $B_X(x,\varepsilon)$ the open ball in X centered at x and having radius ε . If A is a subset of the space X, we use the symbols $\operatorname{cl}_X(A)$, $\operatorname{int}_X(A)$ and $\operatorname{bd}_X(A)$ to denote the closure, the interior and the boundary of A in X, respectively. We denote the diameter of A by $\operatorname{diam}(A)$, and the cardinality of A by |A|. The letter I stands for the unit interval [0,1] in the real line \mathbb{R} .

A *finite graph* is a continuum that can be written as the union of finitely many arcs, each two of which intersect in a finite set. A *tree* is a finite graph that contains no simple closed curves.

If X is a continuum, $U_1, U_2, \ldots, U_m \subset X$ and $n \in \mathbb{N}$ we define:

$$\langle U_1, U_2, \dots, U_m \rangle_n = \left\{ A \in F_n(X) \colon A \subset \bigcup_{i=1}^m U_i \text{ and } A \cap U_i \neq \emptyset \text{ for each } i \right\}.$$

It is known that the sets of the form $\langle U_1, U_2, \ldots, U_m \rangle_n$, where $m \in \mathbb{N}$ and U_1, U_2, \ldots, U_m are open in X, form a basis of the topology of $F_n(X)$, i.e., a basis for the topology induced by the Hausdorff metric H on $F_n(X)$ ([17, Theorems 1.2 and 3.1]).

If $n \in \mathbb{N}$, then an n-cell is a space homeomorphic to the Cartesian product I^n .

THEOREM 2.1. Let X be a continuum and $n \in \mathbb{N}$. Given $i \in \{1, 2, ..., n\}$ let J_i be an arc in X with end points a_i and b_i . If the sets $J_1, J_2, ..., J_n$ are pairwise disjoint, then $\langle J_1, J_2, ..., J_n \rangle_n$ is an n-cell in $F_n(X)$ whose manifold interior is the set $\langle J_1 - \{a_1, b_1\}, ..., J_n - \{a_n, b_n\} \rangle_n$.

PROOF. Given $(x_1, x_2, \ldots, x_n) \in J_1 \times J_2 \times \cdots \times J_n$, let $g(x_1, x_2, \ldots, x_n) = \{x_1, x_2, \ldots, x_n\}$. It is easy to see that $g \colon J_1 \times J_2 \times \cdots \times J_n \to \langle J_1, J_2, \ldots, J_n \rangle_n$ is a homeomorphism whose restriction to $\prod_{i=1}^n (J_i - \{a_i, b_i\})$ is a homeomorphism from $\prod_{i=1}^n (J_i - \{a_i, b_i\})$ onto $\langle J_1 - \{a_1, b_1\}, \ldots, J_n - \{a_n, b_n\} \rangle_n$.

From now on, in this section, the letter X represents a dendrite. For properties of dendrites we refer the reader to [21, Chapter 10]. If $p \in X$ then by the order of p in X, denoted by $\operatorname{ord}_p X$, we mean the Menger-Urysohn order (see [21, Definition 9.3] and [23, (1.1), (iv), p. 88]). We say that $p \in X$ is an end point of X if $\operatorname{ord}_p X = 1$. The set of all such points is denoted by E(X). Let

$$E_a(X) = \{ p \in E(X) : \text{ there is a sequence in } E(X) - \{ p \}$$

that converges to $p \}.$

If $p \in E(X) - E_a(X)$ we call p an isolated end point of X. If $\operatorname{ord}_p X = 2$ we say that p is an ordinary point of X. The set of all such points is denoted by O(X). By [18, Theorem 8, p. 302], O(X) is dense in X. If $\operatorname{ord}_p X \geq 3$, we say that p is a ramification point of X. The set of all such points is denoted by R(X).

The following result is easy to prove.

THEOREM 2.2. Let X be a dendrite and $n \in \mathbb{N}$. Assume that $A \in F_n(X)$ and that \mathcal{U} is a neighborhood of A in $F_n(X)$. Then, for each $k \in \mathbb{N}$ with $|A| \leq k \leq n$, there is $C \subset O(X)$ such that |C| = k and $C \in \mathcal{U}$.

If $p, q \in X$ and $p \neq q$, then there is only one arc in X joining p and q. We denote such arc by [p,q]. We also consider the sets $(p,q) = [p,q] - \{p,q\}$, $[p,q) = [p,q] - \{q\}$ and $(p,q] = [p,q] - \{p\}$. Let [p,q] be an arc in X such that $(p,q) \subset O(X)$. We say that [p,q] is:

- a) internal if $p, q \in R(X)$;
- b) external if one end point of [p,q] is an end point of X, and the other end point of [p,q] is a ramification point of X.

Note that if [p,q] is an internal arc in X, then $\operatorname{int}_X([p,q])=(p,q)$. If [p,q] is an external arc in X and $p\in E(X)$, then $\operatorname{int}_X([p,q])=[p,q)$.

Given $n \in \mathbb{N}$, we consider the following subsets of $F_n(X)$:

$$EA_n(X) = \{ A \in F_n(X) \colon A \cap E_a(X) \neq \emptyset \},$$

$$R_n(X) = \{ A \in F_n(X) \colon A \cap R(X) \neq \emptyset \}$$

and

$$\Lambda_n(X) = F_n(X) - (R_n(X) \cup EA_n(X)).$$

Note that $A \in \Lambda_n(X)$ if and only if $A \in F_n(X)$ and A is contained in $O(X) \cup (E(X) - E_a(X))$.

3. The class \mathcal{D}

Recall that \mathcal{D} is the class of all dendrites whose set of end points is closed. Let $X \in \mathcal{D}$. By [3, Theorem 3.3] the order of every point of X is finite. Let us assume that $s \in X$ is the limit of a sequence $(s_n)_n$ of distinct ramification points of X and that $s \neq s_1$. By [3, Proposition 3.4] s is both the limit of a sequence of ramification points of X, all in the arc $[s, s_1]$, and the limit of a sequence of end points, all different than s. Now assume that $e \in X$ is the limit of a sequence $(e_n)_n$ of distinct end points of X and that $e \neq e_1$. Then e is also the limit of a sequence of ramification points of X, all in the arc $[e, e_1]$. Hence $e \in E_a(X)$ if and only if e is the limit of a sequence of ramification points of X.

THEOREM 3.1. Let $X \in \mathcal{D}$ and $n \in \mathbb{N}$. If $A \in F_n(X) - EA_n(X)$, then there exists a tree T in X such that:

(*)
$$A \subset \operatorname{int}_X(T) \text{ and } T \cap E_a(X) = \emptyset.$$

PROOF. Let $A \in F_n(X) - EA_n(X)$. We proceed by induction over |A|. If |A| = 1, then $A = \{x\}$. Let $k = \operatorname{ord}_x X$. Since $X \in \mathcal{D}$, k is finite, so $X - \{x\}$ has exactly k components C_1, C_2, \ldots, C_k . Since $x \notin E_a(X)$, for each $i = \{1, 2, \ldots, k\}$, there is $p_i \in O(X) \cap C_i$ such that if $T = \bigcup_{i=1}^k [p_i, x]$, then $T - \{x\} \subset O(X)$. Hence T is a tree in X that satisfies (*).

Now suppose that if $B \in F_n(X) - EA_n(X)$ contains i points, with i < n, then there is a tree G in X that satisfies (*), replacing A by B and T by G, respectively. Assume that |A| = i + 1 and let $A = \{x_1, x_2, \ldots, x_{i+1}\}$. Let T_1 be a tree in X such that $A - \{x_{i+1}\} \subset \operatorname{int}_X(T_1)$ and $T_1 \cap E_a(X) = \emptyset$. By the first part of this proof, there exists a tree T_2 in X such that $x_{i+1} \in \operatorname{int}_X(T_2)$ and $T_2 \cap E_a(X) = \emptyset$. Thus $T = T_1 \cup T_2 \cup [x_i, x_{i+1}]$ is a tree in X that satisfies (*).

THEOREM 3.2. Let $X \in \mathcal{D}$ and $m, n \in \mathbb{N}$ so that $m \leq n$. Let $\mathcal{U} = \langle U_1, U_2, \dots, U_m \rangle_n$ be an open subset of $F_n(X)$ such that:

1) U_i is an open connected subset of X, for each $i \in \{1, 2, ..., m\}$;

2) $U_i \cap U_j = \emptyset$ if $i, j \in \{1, 2, \dots, m\}$ and $i \neq j$.

For each $i \in \{1, 2, ..., m\}$, let $\{J_{\alpha}^i : \alpha \in \mathcal{A}_i\}$ be the set of components of $U_i \cap [O(X) \cup (E(X) - E_a(X))]$. Then the components of $\mathcal{U} \cap \Lambda_n(X)$ are the nonempty sets of the form:

$$\langle J_{\alpha_1}^{r_1}, J_{\alpha_2}^{r_2}, \dots, J_{\alpha_k}^{r_k} \rangle_n$$

where $\{r_1, r_2, \ldots, r_k\} = \{1, 2, \ldots, m\}$, the sets $J_{\alpha_1}^{r_1}, J_{\alpha_2}^{r_2}, \ldots, J_{\alpha_k}^{r_k}$ are pairwise different and $\alpha_t \in \mathcal{A}_{r_t}$, for every $t \in \{1, 2, \ldots, k\}$.

PROOF. It is easy to see that for each $i \in \{1, 2, ..., m\}$ and every $\alpha \in \mathcal{A}_i$, J^i_{α} is an open connected subset of X. Let $J^{r_1}_{\alpha_1}, J^{r_2}_{\alpha_2}, ..., J^{r_k}_{\alpha_k}$ be a finite collection of pairwise different sets such that $\{r_1, r_2, ..., r_k\} = \{1, 2, ..., m\}$ and $\alpha_t \in \mathcal{A}_{r_t}$, for every $t \in \{1, 2, ..., k\}$. Since the sets $J^{r_1}_{\alpha_1}, J^{r_2}_{\alpha_2}, ..., J^{r_k}_{\alpha_k}$ are open and connected, by [19, Lemma 1],

$$\langle J_{\alpha_1}^{r_1}, J_{\alpha_2}^{r_2}, \dots, J_{\alpha_k}^{r_k} \rangle_n$$

is an open connected subset of $F_n(X)$. Let $J^{s_1}_{\epsilon_1}, J^{s_2}_{\epsilon_2}, \ldots, J^{s_l}_{\epsilon_l}$ be a finite collection of pairwise different sets such that: $\{s_1, s_2, \ldots, s_l\} = \{1, 2, \ldots, m\}, \epsilon_v \in \mathcal{A}_{s_v}$, for every $v \in \{1, 2, \ldots, l\}$, and

$$\{J_{\alpha_1}^{r_1}, J_{\alpha_2}^{r_2}, \dots, J_{\alpha_k}^{r_k}\} \neq \{J_{\epsilon_1}^{s_1}, J_{\epsilon_2}^{s_2}, \dots, J_{\epsilon_l}^{s_l}\}.$$

It is not difficult to see that:

$$\left\langle J_{\alpha_1}^{r_1}, J_{\alpha_2}^{r_2}, \dots, J_{\alpha_k}^{r_k} \right\rangle_n \cap \left\langle J_{\epsilon_1}^{s_1}, J_{\epsilon_2}^{s_2}, \dots, J_{\epsilon_l}^{s_l} \right\rangle_n = \emptyset.$$

Now assume that \mathcal{C} is a component of $\mathcal{U} \cap \Lambda_n(X)$. Note that, for every $A \in \mathcal{C}$, there is a unique finite collection

$$J_{\sigma_1}^{s_1}, J_{\sigma_2}^{s_2}, \dots, J_{\sigma_m}^{s_m}$$

of pairwise different sets such that: $\{s_1, s_2, \ldots, s_w\} = \{1, 2, \ldots, m\}, \sigma_j \in \mathcal{A}_{s_j}$, for each $j \in \{1, 2, \ldots, w\}$, and

$$A \in \mathcal{V}_A = \left\langle J_{\sigma_1}^{s_1}, J_{\sigma_2}^{s_2}, \dots, J_{\sigma_w}^{s_w} \right\rangle_n$$
.

Hence $C = \bigcup_{A \in \mathcal{C}} \mathcal{V}_A$, which expresses the open connected set \mathcal{C} as a union of nonempty pairwise disjoint open connected sets. Thus \mathcal{C} is of the form $\langle J_{\alpha_1}^{r_1}, J_{\alpha_2}^{r_2}, \dots, J_{\alpha_k}^{r_k} \rangle_n$ where $\{r_1, r_2, \dots, r_k\} = \{1, 2, \dots, m\}$, the sets $J_{\alpha_1}^{r_1}, J_{\alpha_2}^{r_2}, \dots, J_{\alpha_k}^{r_k}$ are pairwise different and $\alpha_t \in \mathcal{A}_{r_t}$, for every $t \in \{1, 2, \dots, k\}$.

Assume that $X \in \mathcal{D}$. It is not difficult to see that $\Lambda_n(X)$ is an open subset of $F_n(X)$. As a particular case of Theorem 3.2 we obtain the following result, which is the equivalent version of [7, Lemma 4.1] for elements of \mathcal{D} .

THEOREM 3.3. Let $X \in \mathcal{D}$ such that X is not an arc and $n \in \mathbb{N}$. Then the components of $\Lambda_n(X)$ are exactly the sets of the form:

$$\langle \operatorname{int}_X(I_1), \operatorname{int}_X(I_2), \dots, \operatorname{int}_X(I_m) \rangle_n$$

where $m \leq n$, I_j is either an internal or an external arc in X for every $j \in \{1, 2, ..., m\}$, and the sets $\operatorname{int}_X(I_1)$, $\operatorname{int}_X(I_2)$, ..., $\operatorname{int}_X(I_m)$ are pairwise disjoint.

The following result is the equivalent version of [7, Lemma 4.3], for elements of \mathcal{D} .

THEOREM 3.4. Let $X \in \mathcal{D}$ and $n \geq 4$. If $A \in F_{n-1}(X)$, then no neighborhood of A in $F_n(X)$ can be embedded in \mathbb{R}^n .

PROOF. We show first that:

(*) if $C \in F_{n-1}(X) - EA_n(X)$, then no neighborhood of C in $F_n(X)$ can be embedded in \mathbb{R}^n .

To show (*) let $C \in F_{n-1}(X) - EA_n(X)$ and assume that there is a neighborhood \mathcal{V} of C in $F_n(X)$ that can be embedded in \mathbb{R}^n . By Theorem 3.1, there is a tree T in X such that $C \subset \operatorname{int}_X(T)$ and $T \cap E_a(X) = \emptyset$. Then $\mathcal{V} \cap F_n(T)$ is a neighborhood of C in $F_n(T)$ that can be embedded in \mathbb{R}^n . Since this contradicts [7, Lemma 4.3], claim (*) holds.

To show the theorem let $A \in F_{n-1}(X)$. Assume that there is a neighborhood \mathcal{U} of A in $F_n(X)$ that can be embedded in \mathbb{R}^n . By Theorem 2.2, there is $C \subset O(X)$ such that |C| = |A| and $C \in \operatorname{int}_{F_n(X)}(\mathcal{U})$. Since $A \in F_{n-1}(X)$ it follows that $C \in F_{n-1}(X) - EA_n(X)$. Then, by (*), no neighborhood of C in $F_n(X)$ can be embedded in \mathbb{R}^n . However, since $C \in \operatorname{int}_{F_n(X)}(\mathcal{U})$, the set \mathcal{U} is a neighborhood of C in $F_n(X)$ that can be embedded in \mathbb{R}^n . This contradiction completes the proof of the theorem.

4. The set
$$\mathcal{E}_n(X)$$

Given a continuum X and a natural number n, we consider the following set:

 $\mathcal{E}_n(X) = \{A \in F_n(X) : A \text{ has a neighborhood in } F_n(X) \text{ which is an } n\text{-cell}\}.$ In this section we prove some properties of $\mathcal{E}_n(X)$.

THEOREM 4.1. Let X and Y be continua and $n \in \mathbb{N}$. If $h: F_n(X) \to F_n(Y)$ is a homeomorphism, then $h(\mathcal{E}_n(X)) = \mathcal{E}_n(Y)$.

A simple triod is a continuum G that can be written as the union of three arcs I_1, I_2 and I_3 such that: $I_1 \cap I_2 \cap I_3 = \{p\}$, p is an end point of each arc I_i and $(I_i - \{p\}) \cap (I_j - \{p\}) = \emptyset$, if $i \neq j$. The point p is called the *core of* G. Given a continuum X let:

$$T(X) = \{ p \in X : p \text{ is the core of a simple triod in } X \}.$$

Let X be a locally connected continuum and $A \in \mathcal{E}_n(X)$. In [7, Lemma 3.1] it is shown that $A \cap T(X) = \emptyset$. A straightforward modification can be applied to obtain the following result.

THEOREM 4.2. Let X be a locally connected continuum and $n \in \mathbb{N}$. If $A \in \mathcal{E}_n(X)$, then $A \cap \operatorname{cl}_X(T(X)) = \emptyset$.

THEOREM 4.3. Let $X \in \mathcal{D}$ and $n \in \mathbb{N}$. Then $\Lambda_n(X) - F_{n-1}(X) \subset \mathcal{E}_n(X)$.

PROOF. Take $A \in \Lambda_n(X) - F_{n-1}(X)$. Then |A| = n, so we can write $A = \{x_1, x_2, \dots, x_n\}$.

Since $A \in \Lambda_n(X)$, we have $A \subset O(X) \cup (E(X) - E_a(X))$. Then there exist n pairwise disjoint arcs J_1, J_2, \ldots, J_n in X such that $x_i \in \text{int}_X(J_i)$, for each $i \in \{1, 2, \ldots, n\}$, and

$$J_1 \cup J_2 \cup \cdots \cup J_n \subset O(X) \cup (E(X) - E_a(X)).$$

Note that $\langle J_1, J_2, \dots, J_n \rangle_n$ is a neighborhood of A in $F_n(X)$ which is an n-cell, by Theorem 2.1. Then $A \in \mathcal{E}_n(X)$.

THEOREM 4.4. Let $X \in \mathcal{D}$ and $n \in \mathbb{N}$. Then $\mathcal{E}_n(X)$ is dense in $F_n(X)$.

PROOF. Let \mathcal{U} be a nonempty open subset of $F_n(X)$. By Theorem 2.2 there is $D \subset O(X)$ such that |D| = n and $D \in \mathcal{U}$. Note that $D \in \Lambda_n(X) - F_{n-1}(X)$ so, by Theorem 4.3, $D \in \mathcal{E}_n(X)$. This shows that $\mathcal{E}_n(X)$ is dense in $F_n(X)$.

Theorem 4.5. Let $X \in \mathcal{D}$ and $n \in \mathbb{N}$. Then

- a) $\mathcal{E}_n(X) \subset \Lambda_n(X)$;
- b) if $n \in \{2,3\}$, then $\mathcal{E}_n(X) = \Lambda_n(X)$;
- c) if $n \geq 4$, then $\mathcal{E}_n(X) = \Lambda_n(X) F_{n-1}(X)$.

PROOF. To show a) let $A \in \mathcal{E}_n(X)$. By Theorem 4.2, $A \cap \operatorname{cl}_X(T(X)) = \emptyset$. Since $X \in \mathcal{D}$, this implies that $A \cap (R(X) \cup E_a(X)) = \emptyset$. Thus $A \in \Lambda_n(X)$, so a) holds. Assertion b) follows from a) and the proof of [7, Lemma 5.1]. To show c) assume that $n \geq 4$. Take $A \in \mathcal{E}_n(X)$. By a), $A \in \Lambda_n(X)$. Let \mathcal{U} be a neighborhood of A in $F_n(X)$ which is an n-cell. Then \mathcal{U} can be embedded in \mathbb{R}^n so, by Theorem 3.4, $A \notin F_{n-1}(X)$. This shows that $\mathcal{E}_n(X) \subset \Lambda_n(X) - F_{n-1}(X)$. The other inclusion holds by Theorem 4.3.

THEOREM 4.6. Let $X \in \mathcal{D}$ and $A \in F_n(X)$. If $A \cap E_a(X) = \emptyset$, then there exists a basis \mathfrak{B} of open neighborhoods of A in $F_n(X)$ such that for each $\mathcal{V} \in \mathfrak{B}$, the set $\mathcal{V} \cap \mathcal{E}_n(X)$ is nonempty and has a finite number of components.

PROOF. Since $A \cap E_a(X) = \emptyset$, we have $A \in F_n(X) - EA_n(X)$. Thus, by Theorem 3.1, there is a tree T in X such that $A \subset \operatorname{int}_X(T)$ and $T \cap E_a(X) = \emptyset$. Let $A = \{x_1, x_2, \ldots, x_m\}$ and consider that A has exactly m points. Let $\varepsilon > 0$. Choose a finite collection U_1, U_2, \ldots, U_m of pairwise disjoint open connected subsets of X with the following properties:

- 1) $x_i \in U_i \subset \operatorname{int}_X(T) \cap B_X(x_i, \varepsilon)$, for each $i \in \{1, 2, \dots, m\}$;
- 2) $U_i \{x_i\} \subset O(X)$, for each $i \in \{1, 2, ..., m\}$.

Let $\mathcal{V}_{\varepsilon} = \langle U_1, U_2, \dots, U_m \rangle_n$. By 1) we have $\mathcal{V}_{\varepsilon} \subset B_{F_n(X)}(A, \varepsilon)$ and, by Theorem 4.4, $\mathcal{V}_{\varepsilon} \cap \mathcal{E}_n(X) \neq \emptyset$. Given $i \in \{1, 2, \dots, m\}$, since $X \in \mathcal{D}$, the order of x_i in X is finite. From this and 2), the set

$$U_i \cap [O(X) \cup (E(X) - E_a(X))]$$

has a finite number of components. Let $\{J_1^i, J_2^i, \ldots, J_{l_i}^i\}$ be the set of components of $U_i \cap [O(X) \cup (E(X) - E_a(X))]$. By Theorem 3.2 the components of $\mathcal{V}_{\varepsilon} \cap \Lambda_n(X)$ are the nonempty sets of the form:

$$(4.1) \langle J_{s_1}^{r_1}, J_{s_2}^{r_2}, \dots, J_{s_k}^{r_k} \rangle_n$$

where $\{r_1, r_2, \ldots, r_k\} = \{1, 2, \ldots, m\}$, the sets $J_{s_1}^{r_1}, J_{s_2}^{r_2}, \ldots, J_{s_k}^{r_k}$ are pairwise different and $s_t \in \{1, 2, \ldots, l_{r_t}\}$, for every $t \in \{1, 2, \ldots, k\}$. Since we have a finite number of elements of the form $J_{s_t}^{r_i}$, the number of nonempty sets of the form (4.1) is finite.

If $n \in \{2,3\}$ then, by part b) of Theorem 4.5, the nonempty sets of the form (4.1) are the components of $\mathcal{V}_{\varepsilon} \cap \mathcal{E}_n(X)$. Assume then that $n \geq 4$. Then, by part c) of Theorem 4.5, $\mathcal{E}_n(X) = \Lambda_n(X) - F_{n-1}(X)$. Given a component $\mathcal{C} = \langle J_{s_1}^{r_1}, J_{s_2}^{r_2}, \dots, J_{s_k}^{r_k} \rangle_n$ of $\mathcal{V}_{\varepsilon} \cap \Lambda_n(X)$ and $(q_1, q_2, \dots, q_k) \in \mathbb{N}^k$ such that $q_1 + q_2 + \dots + q_k = n$ let:

$$C(q_1, q_2, \dots, q_k) = \{ C \in \mathcal{C} : |C \cap J_{s_t}^{r_t}| = q_t \text{ for each } t \in \{1, 2, \dots, k\} \}.$$

Note that $\mathcal{C}(q_1, q_2, \dots, q_k) \subset \mathcal{V}_{\varepsilon} \cap \mathcal{E}_n(X)$. It is not difficult to see that $\mathcal{C}(q_1, q_2, \dots, q_k)$ is homeomorphic to

$$(F_{q_1}(J_{s_1}^{r_1}) - F_{q_1-1}(J_{s_1}^{r_1})) \times \cdots \times (F_{q_k}(J_{s_k}^{r_k}) - F_{q_k-1}(J_{s_k}^{r_k})),$$

where we agree that $F_0(R) = \emptyset$ for each continuum R. Since the sets

$$F_{q_1}\left(J_{s_1}^{r_1}\right) - F_{q_1-1}\left(J_{s_1}^{r_1}\right), \dots, F_{q_k}\left(J_{s_k}^{r_k}\right) - F_{q_k-1}\left(J_{s_k}^{r_k}\right)$$

are connected, $C(q_1, q_2, \dots, q_k)$ is a connected subset of $\mathcal{V}_{\varepsilon} \cap \mathcal{E}_n(X)$. Moreover

$$C \cap \mathcal{E}_n(X) = \bigcup \{C(q_1, \dots, q_k) : (q_1, \dots, q_k) \in \mathbb{N}^k \text{ and } q_1 + \dots + q_k = n\}.$$

This implies that $\mathcal{C} \cap \mathcal{E}_n(X)$ has a finite number of components. Since each component of $\mathcal{C} \cap \mathcal{E}_n(X)$ is a component of $\mathcal{V}_{\varepsilon} \cap \mathcal{E}_n(X)$ and $\mathcal{V}_{\varepsilon} \cap \Lambda_n(X)$ has a finite number of components, the set $\mathcal{V}_{\varepsilon} \cap \mathcal{E}_n(X)$ has a finite number of components as well.

To finish the proof note that $\mathfrak{B} = \{\mathcal{V}_{\varepsilon} \colon \varepsilon > 0\}$ is a basis of open neighborhoods of A in $F_n(X)$.

In [4] and [20] it is proved that locally connected continua admit a convex metric d. This means that every two points $x, y \in X$ can be joined by an arc J in X, in such a way that J is isometric to the closed interval [0, d(x, y)].

THEOREM 4.7. Let $X \in \mathcal{D}$ and $A \in F_n(X)$. Assume that $A \cap E(X) \neq \emptyset$. Then there exists a basis \mathfrak{B} of open neighborhoods of A in $F_n(X)$ such that, for each $\mathcal{V} \in \mathfrak{B}$, the set $\mathcal{V} - \{A\}$ is contractible. Moreover if $A \cap E_a(X) \neq \emptyset$ we can choose \mathfrak{B} with the additional property that, for each $\mathcal{V} \in \mathfrak{B}$, the set $\mathcal{V} \cap \mathcal{E}_n(X)$ has infinitely many components.

PROOF. Let d be a convex metric on X. Assume that |A| = m. Let $A = \{x_1, x_2, \ldots, x_m\}$ and assume that $x_1 \in E(X)$. Let $\varepsilon > 0$. Choose a finite collection U_1, U_2, \ldots, U_m of pairwise disjoint open connected subsets of X such that $x_i \in U_i \subset B_X(x_i, \varepsilon)$, for each $i \in \{1, 2, \ldots, m\}$. Let $\mathcal{V}_{\varepsilon} = \langle U_1, U_2, \ldots, U_m \rangle_n$. Clearly $A \in \mathcal{V}_{\varepsilon} \subset B_{F_n(X)}(A, \varepsilon)$. Assume that diam $(U_i) < 1$, for each $i \in \{1, 2, \ldots, m\}$. Fix $B = \{b_1, b_2, \ldots, b_m\}$ so that $b_1 \in U_1 - \{x_1\}$ and $b_i \in U_i$ for each $i \in \{2, 3, \ldots, m\}$. Note that $B \in \mathcal{V}_{\varepsilon} - \{A\}$. Given $i \in \{1, 2, \ldots, m\}$ and $(x, t) \in U_i \times I$, by [21, Theorem 8.26], $[x, b_i] \subset U_i$. We also have that $[x, b_i]$ is isometric to the closed interval $[0, d(x, b_i)]$. Hence if $d(x, b_i) \geq t$ there is a unique point $y_x \in [x, b_i]$ such that $d(x, y_x) = t$. We can then define a function $g_i : U_i \times I \to U_i$ by:

$$g_i(x,t) = \begin{cases} b_i, & \text{if } d(x,b_i) \le t; \\ y_x, & \text{if } d(x,b_i) \ge t. \end{cases}$$

It is not difficult to prove that g_i is a continuous function. Note that $g_i(x,0) = x$ and $g_i(x,1) = b_i$, for all $x \in U_i$. If $x \in U_1 - \{x_1\}$ then $[x,b_1] \subset U_1 - \{x_1\}$ so, by the definition of g_1 , we have $g_1(x,t) \in U_1 - \{x_1\}$ for every $t \in I$.

Define $G: (\mathcal{V}_{\varepsilon} - \{A\}) \times I \to \mathcal{V}_{\varepsilon} - \{A\}$ so that if $(D, t) \in (\mathcal{V}_{\varepsilon} - \{A\}) \times I$, then:

$$G(D,t) = \bigcup_{i=1}^{m} g_i \left((D \cap U_i) \times \{t\} \right).$$

It is not difficult to see that G is well defined and continuous. Since $G(D,0) = \bigcup_{i=1}^{m} (D \cap U_i) = D$ and G(D,1) = B, for each $D \in \mathcal{V}_{\varepsilon} - \{A\}$, the set $\mathcal{V}_{\varepsilon} - \{A\}$ is contractible.

Let us assume now that $x_1 \in E_a(X)$. Since $X \in \mathcal{D}$, each element of $E_a(X)$ is the limit of a sequence of distinct ramification points of X, all in the same arc. We also have, since $X \in \mathcal{D}$, that R(X) is discrete ([3, Corollary 3.6]). Then we can find a sequence $(r_k)_k$ in $R(X) \cap U_1$ such that:

- 1) $(r_k)_k$ converges to x_1 ;
- 2) (r_{k+1}, r_k) is an internal arc in X, for every $k \in \mathbb{N}$;
- 3) $r_{k+1} \in (r_{k+2}, r_k) \subset U_1$, for each $k \in \mathbb{N}$.

Given $i \in \{2, 3, ..., m\}$ fix an arc I_i in $\operatorname{cl}_X(U_i)$ which is either external or internal in $\operatorname{cl}_X(U_i)$. Let $J_i = \operatorname{int}_{U_i}(I_i \cap U_i)$. By Theorems 3.2 and 4.5, for every $k \in \mathbb{N}$, the set:

$$\mathcal{W}_k = \langle J_2, J_3, \dots, J_m, (r_{k+1}, r_k), (r_{k+2}, r_{k+1}), \dots, (r_{k+n-m+1}, r_{k+n-m}) \rangle_n$$

is a component of $\mathcal{V}_{\varepsilon} \cap \mathcal{E}_n(X)$. Since $\mathcal{W}_k \cap \mathcal{W}_l = \emptyset$, if $k \neq l$, the set $\mathcal{V}_{\varepsilon} \cap \mathcal{E}_n(X)$ has infinitely many components.

To finish the proof, note that $\mathfrak{B} = \{\mathcal{V}_{\varepsilon} : \varepsilon > 0\}$ is a basis of open neighborhoods of A in $F_n(X)$ as required.

THEOREM 4.8. Let X be a locally connected continuum and Z be a non-degenerate subcontinuum of X such that $\operatorname{cl}_X(T(X) \cap Z) = Z$. Assume that there is a point $p \in Z$ such that $p \in \operatorname{int}_X(Z)$. Then there exists a basis \mathfrak{B} of open neighborhoods of $\{p\}$ in $F_n(X)$ such that, for each $\mathcal{V} \in \mathfrak{B}$, the set $\mathcal{V} \cap \mathcal{E}_n(X)$ is empty.

PROOF. Take $\varepsilon > 0$ such that $B_X(p,\varepsilon) \subset \operatorname{int}_X(Z)$. Let

$$\mathfrak{B} = \left\{ B_{F_n(X)}(\{p\}, \delta) \colon \delta < \varepsilon \right\},\,$$

 $\mathcal{V} \in \mathfrak{B}$ and $A \in \mathcal{V} \cap F_n(Z)$. Since $\operatorname{cl}_X(T(X) \cap Z) = Z$, we have $A \cap \operatorname{cl}_X(T(X)) \neq \emptyset$. Thus, by Theorem 4.2, $A \notin \mathcal{E}_n(X)$. This implies that $\mathcal{V} \cap \mathcal{E}_n(X) = \emptyset$.

Let X be a continuum and A be an arc in X with end points p and q. We say that A is a *free arc of* X if $A - \{p, q\}$ is an open subset of X.

THEOREM 4.9. Let X be a locally connected continuum and $n \in \mathbb{N}$ such that $\mathcal{E}_n(X)$ is dense in $F_n(X)$. Then, for each nonempty open subset U of X, there is a free arc of X contained in U.

PROOF. Assume, to the contrary, that U contains no free arcs. Let V be a nonempty open connected subset of X such that $\operatorname{cl}_X(V) \subset U$. Define $Z = \operatorname{cl}_X(V)$. We prove that $Z = \operatorname{cl}_X(T(X) \cap Z)$. Let $y \in Z$ and W be an open subset of X such that $y \in W$. Let $p \in W \cap V$ and A be an arc such that $p \in A \subset V \cap W$. Since U has no free arcs and open subsets of X are locally arcwise connected (see [21, Definition 8.24 and Theorem 8.25]) it can be shown that there is $a \in A \cap T(X) \cap W$. Thus $W \cap T(X) \cap Z \neq \emptyset$. This shows that $Z \subset \operatorname{cl}_X(T(X) \cap Z)$ and, since the other inclusion also holds, we have $\operatorname{cl}_X(T(X) \cap Z) = Z$. Since the interior of Z is nonempty, by Theorem 4.8, there is an open set V in $F_n(X)$ such that $V \cap \mathcal{E}_n(X) = \emptyset$. This contradicts the fact that $\mathcal{E}_n(X)$ is dense in $F_n(X)$. Therefore U contains a free arc.

5. The Main Theorem

We start this section by showing the following result, which is a positive answer to [15, Question 2]. In its proof we will use the fact that a continuum Z is locally connected if and only if $F_n(Z)$ is locally connected ([9, Theorem 6.3]), and also that if Z is a one-dimensional continuum, then $\dim(F_n(Z)) = n$. This follows from [6, Theorem 3] and [10, Proof of Lemma 3.1].

THEOREM 5.1. Let X be a dendrite and $n \in \mathbb{N}$. If Y is a continuum such that $F_n(X) \approx F_n(Y)$, then Y is a dendrite.

PROOF. Since X is locally connected, Y is also locally connected. By [8, Theorem 1.1(19)], $\dim(X) = 1$. Thus $\dim(F_n(Y)) = \dim(F_n(X)) = n$. Assume that $\dim(Y) > 1$. Then there exist $q \in Y$ and a compact neighborhood B of q such that $\dim(B) \geq 2$. Such B can be chosen so that there is a finite

collection $A_1, A_2, \ldots, A_{n-1}$ of pairwise disjoint arcs in Y such that $B \cap A_i = \emptyset$, for all $i \in \{1, 2, \ldots, n-1\}$. Then $\mathcal{B} = \langle B, A_1, A_2, \ldots, A_{n-1} \rangle_n$ is a subset of $F_n(Y)$ which is homeomorphic to $B \times A_1 \times A_2 \times \cdots \times A_{n-1}$. Since B is compact and $\dim(A_i) = 1$ for every $i \in \{1, 2, \ldots, n-1\}$, by [14, Remark, p. 34], $\dim(\mathcal{B}) = \dim(B \times A_1 \times A_2 \times \cdots \times A_{n-1}) = \dim(B) + n - 1 \geq n + 1$. Hence $\dim(F_n(Y)) \geq n + 1$. Since this is a contradiction, $\dim(Y) = 1$.

Assume that Y contains a simple closed curve S^1 . Since $\dim(Y) = 1$, by [22, 18.8, p. 104], there is a retraction $r: Y \to S^1$. Consider the function $R: F_n(Y) \to F_n(S^1)$ defined, for $A \in F_n(Y)$, by R(A) = r(A). It is not difficult to see that R is a well defined retraction. Since X is contractible ([8, Theorem 1.2(21)]), $F_n(X)$ is contractible. Thus $F_n(S^1)$ is a retract of the contractible space $F_n(Y)$, so $F_n(S^1)$ is contractible as well ([5, Theorem 13.2]). However, in [24] it is shown that there is no $n \in \mathbb{N}$ so that $F_n(S^1)$ is contractible. This contradiction shows that Y does not contain a simple closed curve. We conclude that Y is a dendrite.

Let X be a dendrite and K be a subcontinuum of X. Define $r: X \to K$ as follows: r(x) = x if $x \in K$ and, otherwise, r(x) is the unique point in K such that r(x) is a point of every arc in X from x to any point of K (see [21, Lemma 10.24]). In [21, Lemma 10.25] it is shown that r is a retraction. Such function is called the *first point map for* K. We use this function in the proof of the following result.

THEOREM 5.2. Let $X \in \mathcal{D}$ and $n \in \mathbb{N}$. If Y is a continuum such that $F_n(X) \approx F_n(Y)$, then $Y \in \mathcal{D}$.

PROOF. Since $X \approx F_1(X)$, the result is true for n = 1, so we consider that $n \geq 2$. By Theorem 5.1, Y is a dendrite. Let us assume that the metric d for Y is convex. If $p, q \in \mathbb{R}^2$, we denote by [p, q] the straight line segment in \mathbb{R}^2 joining p and q. We consider that $(p, q) = [p, q] - \{p, q\}$.

Assume, to the contrary, that $Y \notin \mathcal{D}$. Then, by [3, Theorem 3.3], Y contains either a copy of

$$F_{\omega} = [(-1,0),(1,0)] \cup \left(\bigcup_{m=1}^{\infty} \left[(0,0), \left(\frac{1}{m}, \frac{1}{m^2}\right) \right] \right)$$

or of

$$W = [(-1,0),(1,0)] \cup \left(\bigcup_{m=1}^{\infty} \left[\left(-\frac{1}{m}, 0 \right), \left(-\frac{1}{m}, \frac{1}{m} \right) \right] \right).$$

To simplify notation let us assume that either $F_{\omega} \subset Y$ or $W \subset Y$. Note that $(0,0) \in \operatorname{cl}_Y(E(Y)) - E(Y)$. Let $x_1 = (0,0)$. Since O(Y) is dense in Y, we can take n-1 points x_2, x_3, \ldots, x_n in $O(Y) \cap ((0,0),(1,0))$. Let

$$B = \{x_1, x_2, \dots, x_n\}.$$

Let $h: F_n(X) \to F_n(Y)$ be a homeomorphism. We will proceed as follows: after proving Claim 1, we consider the cases $h^{-1}(B) \cap E_a(X) = \emptyset$ and $h^{-1}(B) \cap E_a(X) \neq \emptyset$. In both situations we will find a contradiction. Thus the assumption $Y \notin \mathcal{D}$ is not correct and, in this way, the proof of the theorem will be complete.

By Theorems 4.1 and 4.4, $h(\mathcal{E}_n(X)) = \mathcal{E}_n(Y)$ and $\mathcal{E}_n(Y)$ is dense in $F_n(Y)$. Take $\delta > 0$ such that $B_Y(x_i, \delta) \cap B_Y(x_j, \delta) = \emptyset$ for each $i, j \in \{1, 2, ..., n\}$ with $i \neq j$.

CLAIM 1. For each open neighborhood V of B in $F_n(Y)$ with $V \subset B_{F_n(Y)}(B, \delta)$, the set $V \cap \mathcal{E}_n(Y)$ has infinitely many components.

To show Claim 1, let \mathcal{V} be an open neighborhood of B in $F_n(Y)$ such that $\mathcal{V} \subset B_{F_n(Y)}(B, \delta)$. Let $0 < \varepsilon < \delta$ be such that the sets $B_Y(x_1, \varepsilon)$, $B_Y(x_2, \varepsilon), \ldots, B_Y(x_n, \varepsilon)$ are pairwise disjoint and

$$\langle B_Y(x_1,\varepsilon), B_Y(x_2,\varepsilon), \dots, B_Y(x_n,\varepsilon) \rangle_n \subset \mathcal{V}.$$

Since $x_1 \in B_Y(x_1, \varepsilon)$ and either $F_\omega \subset Y$ or $W \subset Y$, there exists $N \in \mathbb{N}$ such that either

(5.1)
$$\bigcup_{m=N}^{\infty} \left[(0,0), \left(\frac{1}{m}, \frac{1}{m^2} \right) \right] \subset B_Y \left(x_1, \varepsilon \right)$$

or

(5.2)
$$\bigcup_{m=N}^{\infty} \left[\left(-\frac{1}{m}, 0 \right), \left(-\frac{1}{m}, \frac{1}{m} \right) \right] \subset B_Y \left(x_1, \varepsilon \right).$$

Also, since Y is a dendrite, $x_1 \in \operatorname{cl}_Y(E(Y)) - E(Y)$ and, according the case, the sequences $\left(\left(\frac{1}{m}, \frac{1}{m^2}\right)\right)_m$ or $\left(\left(-\frac{1}{m}, 0\right)\right)_m$ and $\left(\left(-\frac{1}{m}, \frac{1}{m}\right)\right)_m$ converge to x_1 , we can take N so that, for every $m \geq N$, if (5.1) holds then the component of $B_Y(x_1, \varepsilon) - \{x_1\}$ that contains $\left(\frac{1}{m}, \frac{1}{m^2}\right)$ coincides with the component of $Y - \{x_1\}$ that contains $\left(\frac{1}{m}, \frac{1}{m^2}\right)$; and if (5.2) holds, then the component of $B_Y(x_1, \varepsilon) - \left\{\left(-\frac{1}{m}, 0\right)\right\}$ that contains $\left(-\frac{1}{m}, \frac{1}{m}\right)$ coincides with the component of $Y - \left\{\left(-\frac{1}{m}, 0\right)\right\}$ that contains $\left(-\frac{1}{m}, \frac{1}{m}\right)$.

Given $m \geq N$ we define Z_m as follows: if (5.1) holds, then Z_m is the

Given $m \geq N$ we define Z_m as follows: if (5.1) holds, then Z_m is the component of $Y - \{x_1\}$ that contains $(\frac{1}{m}, \frac{1}{m^2})$ and, if (5.2) holds, then Z_m is the component of $Y - \{(-\frac{1}{m}, 0)\}$ that contains $(-\frac{1}{m}, \frac{1}{m})$. Since each Z_m is open in Y and $\mathcal{E}_n(Y)$ is dense in $F_n(Y)$, by Theorem 4.9, there is a free arc A_m of Y contained in Z_m . Note that $\{\inf_Y (A_m) : m \geq N\}$ is a sequence of pairwise disjoint open connected subsets of $B_Y(x_1, \varepsilon)$.

Given $i \in \{2, 3, ..., n\}$, since $B_Y(x_i, \varepsilon)$ is open in Y and $\mathcal{E}_n(Y)$ is dense in $F_n(Y)$, by Theorem 4.9, there is a free arc J_i of Y contained in $B_Y(x_i, \varepsilon)$. Note that $\operatorname{int}_Y(J_2), ..., \operatorname{int}_Y(J_n)$ is a finite sequence of pairwise disjoint open connected subsets of Y.

For $m \geq N$ define

$$\mathcal{A}_m = \langle \operatorname{int}_Y(A_m), \operatorname{int}_Y(J_2), \dots, \operatorname{int}_Y(J_n) \rangle_n$$

Since $\operatorname{int}_Y(A_m)$, $\operatorname{int}_Y(J_2)$,..., $\operatorname{int}_Y(J_n)$ are open connected subsets of Y, by Theorem 2.1, \mathcal{A}_m is an open connected subset of $F_n(Y)$. Since $\operatorname{int}_Y(A_m) \cap \operatorname{int}_Y(A_k) = \emptyset$ if $m \neq k$, we have $\mathcal{A}_m \cap \mathcal{A}_k = \emptyset$. Given $C \in \mathcal{A}_m$, by Theorem 2.1, the set $\langle A_m, J_2, \ldots, J_n \rangle_n$ is an n-cell in $F_n(Y)$ that contains C in its interior. Thus $C \in \mathcal{E}_n(Y)$, so $\mathcal{A}_m \subset \mathcal{E}_n(Y)$. Moreover, we have

$$\mathcal{A}_m \subset \langle B_Y(x_1, \varepsilon), B_Y(x_2, \varepsilon), \dots, B_Y(x_n, \varepsilon) \rangle_n \subset \mathcal{V},$$

so $\mathcal{A}_m \subset \mathcal{V} \cap \mathcal{E}_n(Y)$.

Let \mathcal{B}_m be the component of $\mathcal{V} \cap \mathcal{E}_n(Y)$ that contains \mathcal{A}_m . We claim that $\mathcal{B}_m \cap \mathcal{B}_k = \emptyset$ for different $m, k \geq N$. Assume, to the contrary, that $\mathcal{B}_m = \mathcal{B}_k$. Let $D_1 \in \mathcal{A}_m$ and $D_2 \in \mathcal{A}_k$. Since $F_n(Y)$ is locally connected and \mathcal{B}_m is a component of the open subset $\mathcal{V} \cap \mathcal{E}_n(Y)$ of $F_n(Y)$, the set \mathcal{B}_m is arcwise connected. Then there is an arc $\alpha \colon [0,1] \to \mathcal{B}_m$ such that $\alpha(0) = D_1$ and $\alpha(1) = D_2$. Let

$$K = \bigcup \{ \alpha(t) \colon t \in [0, 1] \}.$$

Given $j \in \{1, 2, ..., n\}$, let $K_j = K \cap B_Y(x_j, \delta)$. Since $\alpha([0, 1])$ is connected in $F_n(Y)$, the subset K of Y has at most n components ([9, Lemma 6.1]). Since $D_1, D_2 \subset K$, the sets $B_Y(x_1, \delta), B_Y(x_2, \delta), ..., B_Y(x_n, \delta)$ are pairwise disjoint and $D_i \cap B_Y(x_j, \delta) \neq \emptyset$, for each $i \in \{1, 2\}$ and every $j \in \{1, 2, ..., n\}$, it follows that $K_1, K_2, ..., K_n$ are the components of K. Note that $K_1 \cap A_m \neq \emptyset$ and $K_1 \cap A_k \neq \emptyset$ so, if (5.1) holds, then $x_1 \in K_1$ and, if (5.2) holds, then $\left(-\frac{1}{m}, 0\right) \in K_1$. This implies that $K \cap R(Y) \neq \emptyset$, so one element of \mathcal{B}_m contains a ramification point of Y. This contradicts Theorem 4.2. Hence $\mathcal{B}_m \cap \mathcal{B}_k = \emptyset$.

Therefore $\mathcal{V} \cap \mathcal{E}_n(Y)$ has infinitely many components. This completes the proof of Claim 1.

Let us assume that $h^{-1}(B) \cap E_a(X) = \emptyset$. Then, by Theorem 4.6, there exists a basis \mathfrak{B}_X of open neighborhoods of $h^{-1}(B)$ in $F_n(X)$ such that, for each $\mathcal{U} \in \mathfrak{B}_X$, the set $\mathcal{U} \cap \mathcal{E}_n(X)$ is nonempty and has a finite number of components. Let $\mathfrak{B}_Y = \{h(\mathcal{U}) \colon \mathcal{U} \in \mathfrak{B}_X\}$. Then \mathfrak{B}_Y is a basis of open neighborhoods of B in $F_n(Y)$ such that, for each $\mathcal{V} \in \mathfrak{B}_Y$, the set $\mathcal{V} \cap \mathcal{E}_n(Y)$ is nonempty and has a finite number of components. Let $\mathcal{V} \in \mathfrak{B}_Y$ such that $\mathcal{V} \subset B_{F_n(Y)}(B, \delta)$. By Claim 1. the set $\mathcal{V} \cap \mathcal{E}_n(Y)$ has infinitely many components. This is a contradiction.

Let us assume now that $h^{-1}(B) \cap E_a(X) \neq \emptyset$. Then, by Theorem 4.7, there is a basis \mathfrak{B} of open neighborhoods of $h^{-1}(B)$ in $F_n(X)$ such that, for each $\mathcal{U} \in \mathfrak{B}$, the set $\mathcal{U} - \{h^{-1}(B)\}$ is contractible. Let $\mathfrak{C} = \{h(\mathcal{U}) : \mathcal{U} \in \mathfrak{B}\}$. Then \mathfrak{C} is a basis of open neighborhoods of B in $F_n(Y)$ such that, for each $\mathcal{V} \in \mathfrak{C}$, the set $\mathcal{V} - \{B\}$ is contractible.

Let A = [(-1,0),(1,0)]. Note that A is an arc in Y such that $x_1 = (0,0) \in ((-1,0),(1,0))$.

CLAIM 2. There is a retraction $r: Y \to A$ such that $r^{-1}(x_i) = \{x_i\}$, for each $i \in \{1, 2, ..., n\}$.

To show Claim 2, let $r_1 \colon Y \to A$ be the first point map for A. By [21, Lemma 10.25], r_1 is a retraction. Given $i \in \{2, 3, \ldots, n\}$, since $x_i \in O(Y)$, we have $r_1^{-1}(x_i) = \{x_i\}$. If $x_1 \in O(Y)$, then $r_1^{-1}(x_1) = \{x_1\}$ and r_1 has the required properties. If $x_1 \notin O(Y)$, then $r_1^{-1}(x_1) = \{y \in Y \colon [y, x_1] \cap A = \{x_1\}\}$. Let $A_0 = [(-1, 0), (0, 0)]$. Given $y \in r_1^{-1}(x_1)$, if $d(x_1, y) \leq d(x_1, (-1, 0))$, there is a unique $z_y \in A_0$ such that $d(x_1, z_y) = d(x_1, y)$. Then we can define a function $r_2 \colon r_1^{-1}(x_1) \to A_0$ so that:

$$r_2(y) = \begin{cases} z_y, & \text{if } d(x_1, y) \le d(x_1, (-1, 0)); \\ (-1, 0), & \text{if } d(x_1, y) \ge d(x_1, (-1, 0)). \end{cases}$$

It is not difficult to see that r_2 is a well defined continuous function such that $r_2^{-1}(x_1) = x_1$. Now define $r: Y \to A$ so that, if $y \in Y$, then:

$$r(y) = \begin{cases} r_1(y), & \text{if } y \notin r_1^{-1}(x_1); \\ r_2(y), & \text{if } y \in r_1^{-1}(x_1). \end{cases}$$

Then r is a retraction such that $r^{-1}(y) = \{x_i\}$, for each $i \in \{1, 2, ..., n\}$. This proves Claim 2.

Let $r: Y \to A$ as in Claim 2. Define $R: F_n(Y) \to F_n(A)$, at $D \in F_n(Y)$, by R(D) = r(D). Then R is a retraction such that $R^{-1}(B) = \{B\}$. For each $\varepsilon > 0$ with $\varepsilon < \delta$, let $U_i^{\varepsilon} = B_Y(x_i, \varepsilon)$ for $i \in \{1, 2, ..., n\}$ and $\mathcal{U}^{\varepsilon} = \langle U_1^{\varepsilon}, U_2^{\varepsilon}, ..., U_n^{\varepsilon} \rangle_n$.

Claim 3. For each $\varepsilon > 0$ with $\varepsilon < \delta$, the set $R(\mathcal{U}^{\varepsilon})$ is a connected open subset of $F_n(A)$ homeomorphic to the Euclidean space \mathbb{R}^n .

Considering the sets $U_1^{\varepsilon}, U_2^{\varepsilon}, \dots, U_n^{\varepsilon}$ are pairwise disjoint, it is not difficult to prove that $R(\mathcal{U}^{\varepsilon}) = \langle r(U_1^{\varepsilon}), r(U_2^{\varepsilon}), \dots, r(U_n^{\varepsilon}) \rangle_n$. Since the metric for Y is convex, by the definition of r, $r(U_1^{\varepsilon}), r(U_2^{\varepsilon}), \dots, r(U_n^{\varepsilon})$ are open connected subsets of A. Thus $R(\mathcal{U}^{\varepsilon})$ is an open connected subset of $F_n(A)$. Moreover, since A is an arc, by Theorem 2.1, $R(\mathcal{U}^{\varepsilon})$ is homeomorphic to \mathbb{R}^n . This proves Claim 3

Now we are ready to show the final argument. Fix $\gamma > 0$ with $\gamma < \delta$ and take $\mathcal{V} \in \mathfrak{C}$ such that $B \in \mathcal{V} \subset \mathcal{U}^{\gamma}$. Now let $\sigma > 0$ such that $B \in \mathcal{U}^{\sigma} \subset \mathcal{V} \subset \mathcal{U}^{\gamma}$. Since R is a retraction, $\mathcal{V} - \{B\}$ is contractible and $R(\mathcal{V} - \{B\}) = R(\mathcal{V}) - \{B\}$, we have the set $R(\mathcal{V}) - \{B\}$ is contractible.

Since $B \in \mathcal{U}^{\sigma} \subset \mathcal{V} \subset \mathcal{U}^{\gamma}$, by the definition of R, $B \in R(\mathcal{U}^{\sigma}) \subset R(\mathcal{V}) \subset R(\mathcal{U}^{\gamma})$. Thus, by Claim 3, $R(\mathcal{U}^{\sigma})$ is an open neighborhood of B homeomorphic to \mathbb{R}^n and contained in the set $R(\mathcal{V})$. Then there exists an n-cell G such that $B \in G \subset R(\mathcal{V})$ and $B \notin \partial G$, where ∂G is the manifold boundary of G. By Claim 3, $R(\mathcal{U}^{\gamma})$ is also homeomorphic to \mathbb{R}^n so there is a retraction $S: R(\mathcal{U}^{\gamma}) - \{B\} \to \partial G$. Then $S_{|R(\mathcal{V})-\{B\}}: R(\mathcal{V}) - \{B\} \to \partial G$ is also a retraction. Since

 $R(\mathcal{V}) - \{B\}$ is contractible, the set ∂G is contractible. This is a contradiction to [14, p. 37] that came from the assumption that $h^{-1}(B) \cap E_a(X) \neq \emptyset$.

Since both cases $h^{-1}(B) \cap E_a(X) = \emptyset$ and $h^{-1}(B) \cap E_a(X) \neq \emptyset$ produced a contradiction, the assumtion that $Y \notin \mathcal{D}$ is not correct. Therefore $Y \in \mathcal{D}$.

ACKNOWLEDGEMENTS.

We would like to thank professor Alejandro Illanes for his suggestions for this paper. We would also like to thank the referee for his/her fruitful comments for the improvement of this paper.

References

- G. Acosta, Continua with unique hyperspace, Lecture Notes in Pure and Applied Mathematics 230, Marcel Dekker, Inc., New York, 2002, 33–49.
- [2] G. Acosta and D. Herrera-Carrasco, Dendrites without unique hyperspace, Houston J. Math. 35 (2009), 469–484.
- [3] D. Arévalo, W. J. Charatonik, P. Pellicer-Covarruvias and L. Simón, Dendrites with a closed set of end points, Topology Appl. 115 (2001), 1–17.
- [4] R. H. Bing, Partitioning a set, Bull. Amer. Math. Soc. 55 (1949), 1101-1110.
- [5] K. Borsuk, Theory of Retracts, Monografie Matematyczne 44, Polish Scientific Publishers, Warszawa, Poland, 1967.
- [6] K. Borsuk and S. Ulam, On symmetric products of topological spaces, Bull. Amer. Math. Soc. 37 (1931), 875–882.
- [7] E. Castañeda and A. Illanes, Finite graphs have unique symmetric products, Topology Appl. 153 (2006), 1434–1450.
- [8] J. J. Charatonik and W. J. Charatonik, *Dendrites*, Aportaciones Mat. Comun. 22, Soc. Mat. Mexicana, México (1998), 227–253.
- [9] J.J. Charatonik and A. Illanes, Local connectedness in hyperspaces, Rocky Mountain J. Math. 36 (2006), 811–856.
- [10] D. Curtis and N. T. Nhu, Hyperspaces of finite subsets which are homeomorphic to ℵ₀-dimensional linear metric spaces, Topology Appl. 19 (1985), 251–260.
- [11] D. Herrera-Carrasco, Dendrites with unique hyperspace, Houston J. Math. 33 (2007), 795–805.
- [12] D. Herrera-Carrasco and F. Macías-Romero, Dendrites with unique n-fold hyperspace, Topology Proc. 32 (2008), 321–337.
- [13] D. Herrera-Carrasco, M. de J. López and F. Macías-Romero, *Dendrites with unique symmetric products*, to appear in Topology Proc.
- [14] W. Hurewicz and H. Wallman, Dimension Teory, Princeton University Press, Princeton, 1941.
- [15] A. Illanes, Dendrites with unique hyperspace $F_2(X)$, JP J. Geom. Topol. **2** (2002), 75–96.
- [16] A. Illanes, Dendrites with unique hyperspace C₂(X), II, Topology Proc. 34 (2009), 77–96.
- [17] A. Illanes and S. B. Nadler Jr., Hyperspaces. Fundamentals and recent advances, Pure and Applied Mathematics 216, Marcel Dekker, Inc., New York, 1999.
- [18] K. Kuratowski, Topology, Vol. 2, Academic Press and PWN, New York, London and Warszawa, 1968.

- [19] J. M. Martinez-Montejano, Non-confluence of the natural map of products onto symmetric products, Lecture Notes in Pure and Applied Mathematics 230, Marcel Dekker, Inc., New York, 2002, 229–236.
- [20] E. E. Moise, Grille decomposition and convexification theorems for compact locally connected continua, Bull. Amer. Math. Soc. 55 (1949), 1111-1121.
- [21] S. B. Nadler, Jr., Continuum theory. An introduction, Monographs and Textbooks in Pure and Applied Math. 158, Marcel Dekker, Inc., New York, 1992.
- [22] S. B. Nadler, Jr., Dimension theory: an introduction with exercises, Aportaciones Matemáticas: Textos [Mathematical Contributions: Texts], 18. Sociedad Matemática Mexicana, México, 2002.
- [23] G. T. Whyburn, Analytic topology, American Mathematical Society Colloquium Publications 28, American Mathematical Society, New York, 1942, reprinted with corrections 1971.
- [24] W. Wu, Note sur les produits essentiels symétriques des espaces topologiques, C. R. Acad. Sci. Paris 224 (1947), 1139–1141.

G. Acosta

Instituto de Matemáticas Universidad Nacional Autónoma de México Ciudad Universitaria México D.F., 04510 México

 $E ext{-}mail:$ gacosta@matem.unam.mx

R. Hernández-Gutiérrez Instituto de Matemáticas Universidad Nacional Autónoma de México Ciudad Universitaria México D.F., 04510 México

 $E ext{-}mail: rod@matem.unam.mx}$

V. Martínez-de-la-Vega Instituto de Matemáticas Universidad Nacional Autónoma de México Ciudad Universitaria México D.F., 04510 México

E-mail: vmvm@matem.unam.mx Received: 4.3.2008.

Revised: 25.7.2008. & 15.8.2008.