CONSTRUCTING NEAR-EMBEDDINGS OF CODIMENSION ONE MANIFOLDS WITH COUNTABLE DENSE SINGULAR SETS

D. Repovš, W. Rosicki, A. Zastrow and M. Željko
University of Ljubljana, Slovenia and Gdansk University, Poland

Abstract

We present, for all $n \geq 3$, very simple examples of continuous maps $f: M^{n-1} \rightarrow M^{n}$ from closed ($n-1$)-manifolds M^{n-1} into closed n-manifolds M^{n} such that even though the singular set $S(f)$ of f is countable and dense, the map f can nevertheless be approximated by an embedding, i.e. f is a near-embedding. In dimension 3 one can get even a piecewise-linear approximation by an embedding.

1. Introduction

Denote the singular set of an arbitrary continuous mapping $f: X \rightarrow Y$ between topological spaces by $S(f)=\left\{x \in X \mid f^{-1}(f(x)) \neq x\right\}$. A manifold which is connected, compact and has no boundary is said to be closed. The following conjecture was proposed by the first author in the mid 1980's:

Conjecture 1.1. Let $f: M^{n-1} \rightarrow M^{n}$ be any continuous (possibly surjective) map from a closed ($n-1$)-manifold M^{n-1} into a closed n-manifold $M^{n}, n \geq 3$, such that $\operatorname{dim} S(f)=0$. Then f is a near-embedding, i.e., for every $\varepsilon>0$ there exists an embedding $g: M^{n-1} \rightarrow M^{n}$ such that for every $x \in M^{n-1}, d(f(x), g(x))<\varepsilon$.

For $n=3$ it has since been shown to be equivalent to the Bing Conjecture from the 1950's (cf. [3]) and it is closely related to the 3-dimensional Recognition Problem, one of the central problems of geometric topology (cf. [8]). In particular, it is closely related to the general position of 3-manifolds, called the

2000 Mathematics Subject Classification. 57Q55, 57N35, 54B15, 57N60.
Key words and phrases. Near-embedding, singular set, Bing conjecture, recognition problem, space filling map, cellular decomposition, shrinkability.
light map separation property LMSP*, introduced by Daverman and Repovš (cf. [7, Conjecture 5.4]).

In the case when $n=3$, a very special case of Conjecture 1.1 was verified by Anderson ([1]) in 1965. Then in 1992 Brahm ([4]) proved Conjecture 1.1 for the case when $n=3$ and the closure of the singular set is 0 -dimensional, $\operatorname{dim}(\mathrm{ClS}(f))=0$. However, in general the second property needs not be satisfied - it was shown in [5] that for $n=3$ it can happen that $\operatorname{dim}(\mathrm{Cl} S(f))=$ $n-1$.

Since the construction in [5] is very technical, there has been for a long time an open question if there is an elementary example of a continuous map $f: M^{2} \rightarrow M^{3}$ such that $\operatorname{dim} S(f)=0$ whereas $0<\operatorname{dimCl}(S(f)) \leq 3$. The purpose of this note is to present such an example - it has a very simple construction and the verification of all asserted properties is straightforward. Moreover, unlike [5], our methods evidently generalize in a direct manner to yield continuous maps $f: M^{n-1} \rightarrow M^{n}$ of closed codimension one manifolds into closed n-manifolds, with properties analogous to (i) and (ii) below, for every $n \geq 3$.

Theorem 1.2. For every $n \geq 3$, there exists a continuous map $f: S^{n-1} \rightarrow$ S^{n} such that:
(i) the singular set $S(f)$ of f is countable and dense (hence 0-dimensional and nonclosed); and
(ii) f is a near-embedding.

Remark. A question when a light map is a near-embedding is also interesting in view of the classical Monotone-Light Factorization Theorem (cf. e.g. [9]) which asserts that every continuous mapping $f: X \rightarrow Y$ from any compact space X to any space Y can be factorized as a product $f=l \circ m$ of a monotone map $m: X \rightarrow Z$ (i.e. each point inverse $m^{-1}(z)$ is connected) and a light map $l: Z \rightarrow Y$ (i.e. each point inverse $l^{-1}(y)$ is totally disconnected).

2. Proof of Theorem 1.2

Let $n \geq 3$ and choose a countable basis $\left\{U_{i}\right\}_{i \in N}$ of open sets for S^{n-1} (which is considered as the standardly embedded $(n-1)$-sphere in S^{n}). We shall inductively construct a sequence of pairwise disjoint tame PL arcs α_{i} in S^{n} (i.e. for every $i \geq 1$ there is a homeomorphism $h_{i}: S^{n} \rightarrow S^{n}$ such that $\left.h_{i}\left(\alpha_{i}\right) \subset S^{1} \subset S^{n}\right)$ with the property that:

1. for every $i, \alpha_{i} \cap S^{n-1}=\partial \alpha_{i} \subset U_{i}$;
2. for every $i, \operatorname{diam}\left(\alpha_{i}\right)<\frac{1}{2^{2}}$.

Begin with a tame PL arc $\alpha_{1} \subset S^{n}$ such that $\partial \alpha_{1} \subset U_{1}$ and $\operatorname{diam}\left(\alpha_{1}\right)<$ $1 / 2$. Assume inductively, that we have already constructed pairwise disjoint tame PL $\operatorname{arcs} \alpha_{1}, \ldots, \alpha_{n-1} \subset S^{n}$ with all required properties. We can then
clearly find a tame PL arc $\alpha_{n} \subset S^{n}$ such that $\partial \alpha_{n} \subset U_{n}$ and α_{n} is disjoint with $\alpha_{1} \cup \ldots \cup \alpha_{n-1}$.

By our construction, $\left\{\alpha_{n}\right\}_{n \in N}$ is a null-sequence, i.e. $\lim _{i \rightarrow \infty} \operatorname{diam} \alpha_{i}=0$. The decomposition $G=\left\{\alpha_{i}\right\}_{n \in N}$ of S^{n} into points and arcs is clearly cellular (i.e., each element of the decomposition G is the intersection of a nested sequence of closed n-cells $\left\{B_{k}^{n}\right\}_{k \in N}$ in S^{n}) (i.e., for ever $k, B_{k+1}^{n} \subset \operatorname{Int} B_{k}^{n}$) and upper semicontinuous (i.e. the quotient map $\pi: S^{n} \rightarrow S^{n} / G$ is closed).

Therefore it follows by [6, Theorem 7, page 56] that the decomposition G is shrinkable (i.e., the map π is approximable by homeomorphisms). In particular, the quotient space S^{n} / G is homeomorphic to S^{n}. The desired mapping $f: S^{n-1} \rightarrow S^{n}$ is now defined as the compositum $f=\pi \circ i$ of the inclusion $i: S^{n-1} \rightarrow S^{n}$ and the decomposition quotient mapping $\pi: S^{n} \rightarrow$ S^{n} / G.

It follows by construction that the singular set $S(f)=\bigcup_{i} \partial \alpha_{i}$ is countable and dense. It is also clear that this map can be approximated arbitrarily closely by embeddings of S^{n-1} into S^{n} (by not shrinking the arcs all the way but only as much as it is necessary to make them sufficiently small).

Acknowledgements.
This research was supported by the Polish-Slovenian grant BI-PL10/20082009. The first and the fourth author were supported by the ARRS program P1-0292-0101-04 and project J1-9643-0101. The second and the third author were partially supported by Polish grant N200100831/0524. We thank the referee for comments and suggestions.

References

[1] E. H. Anderson, Approximations of certain continuous functions of S^{2} into E^{3}, Proc. Amer. Math. Soc. 18 (1967), 889-891.
[2] R. H. Bing, Approximating surfaces with polyhedral ones, Ann. of Math. (2) 65 (1957), 456-483.
[3] M. V. Brahm, The Repovš Conjecture, Doctoral Dissertation, The University of Texas, Austin, 1989.
[4] M. V. Brahm, Approximating maps of 2-manifolds with zero-dimensional nondegeneracy sets, Topology Appl. 45 (1992), 25-38.
[5] M. V. Brahm, A space filling map from I^{2} to I^{3} with a zero-dimensional singular set, Topology Appl. 57 (1994), 41-46.
[6] R. J. Daverman, Decomposition of Manifolds Academic Press, Inc., Orlando, 1986.
[7] R. J. Daverman and D. Repovš, A new 3-dimensional shrinking criterion, Trans. Amer. Math. Soc. 315 (1989), 219-230.
[8] D. Repovš, The recognition problem for topological manifolds: A survey, Kodai Math. J. 17 (1994), 538-548.
[9] G. T. Whyburn, Analytic Topology, American Mathematical Society, Providence, 1963.
D. Repovš

Institute of Mathematics, Physics and Mechanics and
Faculty of Mathematics and Physics
University of Ljubljana
Jadranska 19
Ljubljana 1001
Slovenia
E-mail: dusan.repovs@guest.arnes.si
W. Rosicki

Institute of Mathematics
Gdansk University
ul. Wita Stwosza 57
80-952 Gdańsk
Poland
E-mail: wrosicki@math.univ.gda.pl
A. Zastrow

Institute of Mathematics
Gdansk University
ul. Wita Stwosza 57
80-952 Gdańsk
Poland
E-mail: zastrow@math.univ.gda.pl
M. Željko

Institute of Mathematics, Physics and Mechanics and
Faculty of Mathematics and Physics
University of Ljubljana
Jadranska 19
Ljubljana 1001
Slovenia
E-mail: matjaz.zeljko@fmf.uni-lj.si
Received: 4.4.2008.
Revised: 22.7.2008.

