Generalization of absolute Cesàro summability factors

Santosh Kumar Saxena ${ }^{1, *}$
${ }^{1}$ Department of Mathematics, Teerthanker Mahaveer University, Moradabad, U.P., India

Received March 24, 2008; accepted August 1, 2008

Abstract

In the present paper, a general theorem concerning $\varphi-|C, 1|_{k}$ summability factors of infinite series under weaker conditions, has been proved. AMS subject classifications: 40F05, 40D15, 40D25 Key words: absolute Cesàro summability, infinite series, summability factors

1. Introduction

Let $\left(\varphi_{n}\right)$ be a sequence of positive real numbers and let $\sum a_{n}$ be a given infinite series with the sequence of partial sums $\left(s_{n}\right)$. By $\left(t_{n}\right)$ we denote the n-th $(C, 1)$ means of the sequence $\left(n a_{n}\right)$. The series $\sum a_{n}$ is said to be summable $|C, 1|_{k}, k \geq 1$, if (see [2])

$$
\begin{equation*}
\sum_{n=1}^{\infty} \frac{1}{n}\left|t_{n}\right|^{k}<\infty \tag{1}
\end{equation*}
$$

and it is said to be summable $\varphi-|C, 1|_{k}, k \geq 1$, if (see [4])

$$
\begin{equation*}
\sum_{n=1}^{\infty} \frac{\varphi_{n}^{k-1}}{n^{k}}\left|t_{n}\right|^{k}<\infty \tag{2}
\end{equation*}
$$

If we take $\varphi=n$, then $\varphi-|C, 1|_{k}$ summability reduces to $|C, 1|_{k}$ summability.
Mazhar [3] proved the following theorem for $|C, 1|_{k}$ summability.
Theorem 1. If

$$
\begin{align*}
& \lambda_{m}=O(1), \text { as } m \rightarrow \infty, \tag{3}\\
& \sum_{n=1}^{m} n \log n\left|\Delta^{2} \lambda_{n}\right|=O(1), \tag{4}\\
& \sum_{\nu=1}^{m} \frac{\left|t_{\nu}\right|^{k}}{\nu}=O(\log m) \text {, as } m \rightarrow \infty, \tag{5}
\end{align*}
$$

then the series $\sum a_{n} \lambda_{n}$ is summable $|C, 1|_{k}, k \geq 1$.

[^0]Quite recently Özarslan [5] generalized the above Theorem 1 for $\varphi-|C, 1|_{k}$ summability in the following form.

Theorem 2. Let $\left(\varphi_{n}\right)$ be a sequence of positive real numbers and conditions (3) and (4) of Theorem 1 are satisfied. If

$$
\begin{align*}
\sum_{\nu=1}^{m} \frac{\varphi_{\nu}^{k-1}}{\nu^{k}}\left|t_{\nu}\right|^{k} & =O(\log m), \text { as } m \rightarrow \infty \tag{6}\\
\sum_{n=\nu}^{m} \frac{\varphi_{n}^{k-1}}{n^{k+1}} & =O\left(\frac{\varphi_{\nu}^{k-1}}{\nu^{k}}\right) \tag{7}
\end{align*}
$$

then the series $\sum a_{n} \lambda_{n}$ is summable $\varphi-|C, 1|_{k}, k \geq 1$.
It should be noted that if we take $\varphi_{n}=n$ in Theorem 2, then condition (6) reduces to condition (5) and condition (7) reduces to

$$
\begin{equation*}
\sum_{n=\nu}^{m} \frac{1}{n^{2}}=O\left(\frac{1}{\nu}\right) \tag{8}
\end{equation*}
$$

which always holds.

2. The main result

The aim of this paper is to generalize Theorem 2 under weaker conditions. Now we shall prove the following theorem.

Theorem 3. Let $\left(\varphi_{n}\right)$ be a sequence of positive real numbers and condition (3) of Theorem 1 and condition (7) of Theorem 2 are satisfied. Let $\left(X_{n}\right)$ be a positive non-decreasing sequence and $\left(\lambda_{n}\right)$ a sequence such that

$$
\begin{align*}
& \left|\lambda_{n}\right| X_{n}=O(1), \text { as } n \rightarrow \infty \tag{9}\\
& \sum_{n=1}^{m} n\left|\Delta^{2} \lambda_{n}\right| X_{n}=O(1) \tag{10}\\
& \sum_{\nu=1}^{m} \frac{\varphi_{\nu}^{k-1}}{\nu^{k}}\left|t_{\nu}\right|^{k}=O\left(X_{m} \mu_{m}\right), \text { as } m \rightarrow \infty \tag{11}
\end{align*}
$$

where $\left(\mu_{m}\right)$ is a positive non-decreasing sequence such that

$$
\begin{equation*}
n X_{n} \mu_{n} \Delta\left(\frac{1}{\mu_{n}}\right)=O(1), \text { as } n \rightarrow \infty \tag{12}
\end{equation*}
$$

then the series $\sum \frac{a_{n} \lambda_{n}}{\mu_{n}}$ is summable $\varphi-|C, 1|_{k}, k \geq 1$.
If we take $X_{n}=\log n$ and $\mu_{n}=1$, in Theorem 3, we get Theorem 2 and additionally if we also take $\varphi_{n}=n$, then we get Theorem 1 .
We need the following lemma for the proof of our theorem.

Lemma 1 (see [1]). Under the conditions on $\left(X_{n}\right)$ and $\left(\lambda_{n}\right)$, as taken in the statement on Theorem 3, the following conditions hold,

$$
\begin{align*}
& n X_{n} \Delta \lambda_{n}=O(1), \text { as } n \rightarrow \infty \tag{13}\\
& \sum_{n=1}^{\infty}\left|\Delta \lambda_{n}\right| X_{n}<\infty \tag{14}
\end{align*}
$$

3. Proof of Theorem 3

Let T_{n} be the n-th $(C, 1)$ means of the sequence $\left(\frac{n a_{n} \lambda_{n}}{\mu_{n}}\right)$, then by definition, we have

$$
T_{n}=\frac{1}{n+1} \sum_{\nu=1}^{n} \frac{\nu a_{\nu} \lambda_{\nu}}{\mu_{\nu}}
$$

Applying Abel's transformation, we get

$$
\begin{aligned}
T_{n}= & \frac{1}{n+1} \sum_{\nu=1}^{n-1} \Delta\left(\frac{\lambda_{\nu}}{\mu_{\nu}}\right) \sum_{r=0}^{\nu} r a_{r}+\frac{1}{n+1} \frac{\lambda_{n}}{\mu_{n}} \sum_{r=0}^{n} r a_{r}-\frac{a_{0} \lambda_{1}}{(n+1) \mu_{1}} \\
= & \frac{1}{n+1} \sum_{\nu=1}^{n-1} \Delta\left(\frac{\lambda_{\nu}}{\mu_{\nu}}\right)(\nu+1) t_{\nu}+\frac{\lambda_{n} t_{n}}{\mu_{n}}-\frac{a_{0} \lambda_{1}}{(n+1) \mu_{1}} \\
= & \frac{1}{n+1} \sum_{\nu=1}^{n-1}\left\{\Delta \lambda_{\nu}\left(\frac{1}{\mu_{\nu}}\right)+\lambda_{\nu+1} \Delta\left(\frac{1}{\mu_{\nu}}\right)\right\}(\nu+1) t_{\nu}+\frac{\lambda_{n} t_{n}}{\mu_{n}}-\frac{a_{0} \lambda_{1}}{(n+1) \mu_{1}} \\
= & \frac{1}{n+1} \sum_{\nu=1}^{n-1} \Delta \lambda_{\nu}\left(\frac{1}{\mu_{\nu}}\right)(\nu+1) t_{\nu}+\frac{1}{n+1} \sum_{\nu=1}^{n-1} \lambda_{\nu+1} \Delta\left(\frac{1}{\mu_{\nu}}\right)(\nu+1) t_{\nu} \\
& +\frac{\lambda_{n} t_{n}}{\mu_{n}}-\frac{a_{0} \lambda_{1}}{(n+1) \mu_{1}} \\
= & T_{n, 1}+T_{n, 2}+T_{n, 3}+T_{n, 4}, \text { say. }
\end{aligned}
$$

Since $\left|T_{n, 1}+T_{n, 2}+T_{n, 3}+T_{n, 4}\right|^{k} \leq 4^{k}\left(\left|T_{n, 1}\right|^{k}+\left|T_{n, 2}\right|^{k}+\left|T_{n, 3}\right|^{k}+\left|T_{n, 4}\right|^{k}\right)$, to complete the proof of Theorem 3, it is sufficient to show that

$$
\sum_{n=1}^{\infty} \frac{\varphi_{n}^{k-1}}{n^{k}}\left|T_{n, r}\right|^{k}<\infty, \text { for } r=1,2,3,4
$$

Now, when $k>1$, applying Hölder's inequality with indices k and k^{\prime}, where $\frac{1}{k}+\frac{1}{k^{\prime}}=1$, we get

$$
\begin{aligned}
\sum_{n=2}^{m} \frac{\varphi_{n}^{k-1}}{n^{k}}\left|T_{n, 1}\right|^{k} & =\sum_{n=2}^{m} \frac{\varphi_{n}^{k-1}}{n^{k}}\left|\frac{1}{n+1} \sum_{\nu=1}^{n-1} \Delta \lambda_{\nu}\left(\frac{1}{\mu_{\nu}}\right)(\nu+1) t_{\nu}\right|^{k} \\
& =O(1) \sum_{n=2}^{m} \frac{\varphi_{n}^{k-1}}{n^{2 k}}\left(\sum_{\nu=1}^{n-1} \frac{\nu\left|\Delta \lambda_{\nu}\right|}{\mu_{\nu}}\left|t_{\nu}\right|\right)^{k}
\end{aligned}
$$

$$
\begin{aligned}
= & O(1) \sum_{n=2}^{m} \frac{\varphi_{n}^{k-1}}{n^{2 k}}\left(\sum_{\nu=1}^{n-1} \frac{\nu\left|\Delta \lambda_{\nu}\right|}{\mu_{\nu}}\left|t_{\nu}\right|^{k}\right)\left(\sum_{\nu=1}^{n-1} \frac{\nu\left|\Delta \lambda_{\nu}\right|}{\mu_{\nu}}\right)^{k-1} \\
= & O(1) \sum_{n=2}^{m} \frac{\varphi_{n}^{k-1}}{n^{k+1}}\left(\sum_{\nu=1}^{n-1} \frac{\nu\left|\Delta \lambda_{\nu}\right|}{\mu_{\nu}}\left|t_{\nu}\right|^{k}\right) \\
= & O(1) \sum_{\nu=1}^{m} \frac{\nu\left|\Delta \lambda_{\nu}\right|}{\mu_{\nu}}\left|t_{\nu}\right|^{k}\left(\sum_{n=\nu}^{m} \frac{\varphi_{n}^{k-1}}{n^{k+1}}\right) \\
= & O(1) \sum_{\nu=1}^{m} \frac{\nu\left|\Delta \lambda_{\nu}\right|}{\mu_{\nu}}\left|t_{\nu}\right|^{k} \frac{\varphi_{\nu}^{k-1}}{\nu^{k}} \\
= & O(1) \sum_{\nu=1}^{m-1} \Delta\left(\frac{\nu\left|\Delta \lambda_{\nu}\right|}{\mu_{\nu}}\right) \sum_{r=1}^{\nu} \frac{\varphi_{r}^{k-1}}{r^{k}}\left|t_{r}\right|^{k} \\
& +O(1) \frac{m\left|\lambda_{m}\right|}{\mu_{m}} \sum_{r=1}^{m} \frac{\varphi_{r}^{k-1}}{r^{k}}\left|t_{r}\right|^{k} \\
= & O(1) \sum_{\nu=1}^{m-1}\left\{\frac{\left|\Delta \lambda_{\nu}\right|}{\mu_{\nu}}+\frac{(\nu+1)\left|\Delta^{2} \lambda_{\nu}\right|}{\mu_{\nu}}\right. \\
& \left.+(\nu+1) \Delta \lambda_{\nu+1} \Delta\left(\frac{1}{\mu_{\nu}}\right)\right\} X_{\nu} \mu_{\nu}+O(1) \frac{m\left|\Delta \lambda_{m}\right|}{\mu_{m}} X_{m} \mu_{m} \\
= & O(1) \sum_{\nu=1}^{m-1}\left|\Delta \lambda_{\nu}\right| X_{\nu}+O(1) \sum_{\nu=1}^{m-1} \nu\left|\Delta^{2} \lambda_{\nu}\right| X_{\nu} \\
& +O(1) \sum_{\nu=1}^{m-1} \nu\left|\Delta \lambda_{\nu}\right| X_{\nu} \mu_{\nu} \Delta\left(\frac{1}{\mu_{\nu}}\right)+O(1) m\left|\Delta \lambda_{m}\right| X_{m} \\
= & O(1), \text { as } m \rightarrow \infty,
\end{aligned}
$$

by virtue of the hypotheses of Theorem 3 and Lemma 1 .
Again

$$
\begin{aligned}
\sum_{n=2}^{m} \frac{\varphi_{n}^{k-1}}{n^{k}}\left|T_{n, 2}\right|^{k} & =\sum_{n=2}^{m} \frac{\varphi_{n}^{k-1}}{n^{k}}\left|\frac{1}{n+1} \sum_{\nu=1}^{n-1} \lambda_{\nu} \Delta\left(\frac{1}{\mu_{\nu}}\right) \nu t_{\nu}\right|^{k} \\
& =O(1) \sum_{n=2}^{m} \frac{\varphi_{n}^{k-1}}{n^{2 k}}\left\{\sum_{\nu=1}^{n-1} \nu\left|\lambda_{\nu}\right| \Delta\left(\frac{1}{\mu_{\nu}}\right)\left|t_{\nu}\right|^{k}\right\}\left\{\sum_{\nu=1}^{n-1} \nu\left|\lambda_{\nu}\right| \Delta\left(\frac{1}{\mu_{\nu}}\right)\right\}^{k-1} \\
& =O(1) \sum_{n=1}^{m} \frac{\varphi_{n}^{k-1}}{n^{k+1}} \sum_{\nu=1}^{n-1} \nu\left|\lambda_{\nu}\right| \Delta\left(\frac{1}{\mu_{\nu}}\right)\left|t_{\nu}\right|^{k} \\
& =O(1) \sum_{\nu=1}^{m} \nu\left|\lambda_{\nu}\right| \Delta\left(\frac{1}{\mu_{\nu}}\right)\left|t_{n}\right|^{k} \sum_{n=1}^{\nu} \frac{\varphi_{n}^{k-1}}{n^{k+1}} \\
& =O(1) \sum_{\nu=1}^{m} \nu\left|\lambda_{\nu}\right| \Delta\left(\frac{1}{\mu_{\nu}}\right)\left|t_{n}\right|^{k} \frac{\varphi_{\nu}^{k-1}}{\nu^{k}}
\end{aligned}
$$

$$
\begin{aligned}
= & O(1) \sum_{\nu=1}^{m} \Delta\left(\nu\left|\lambda_{\nu}\right|\right) \Delta\left(\frac{1}{\mu_{\nu}}\right) \sum_{n=1}^{\nu} \frac{\varphi_{n}^{k-1}}{n^{k}}\left|t_{n}\right|^{k} \\
& +O(1) m\left|\lambda_{m}\right| \Delta\left(\frac{1}{\mu_{m}}\right) \sum_{r=1}^{m} \frac{\varphi_{r}^{k-1}}{r^{k}}\left|t_{r}\right|^{k} \\
= & O(1) \sum_{\nu=1}^{m-1}\left\{\left|\lambda_{\nu}\right| \Delta\left(\frac{1}{\mu_{\nu}}\right)+(\nu+1)\left|\Delta \lambda_{\nu}\right| \Delta\left(\frac{1}{\mu_{\nu}}\right)\right\} X_{\nu} \mu_{\nu} \\
& +O(1) \sum_{\nu=1}^{m-1}\left\{(\nu+1)\left|\lambda_{\nu+1}\right| \Delta^{2}\left(\frac{1}{\mu_{\nu}}\right)\right\} X_{\nu} \mu_{\nu} \\
& +O(1) m\left|\lambda_{m}\right| \Delta\left(\frac{1}{\mu_{m}}\right) X_{m} \mu_{m} \\
= & O(1) \sum_{\nu=1}^{m-1}\left|\lambda_{\nu}\right| \Delta\left(\frac{1}{\mu_{\nu}}\right) X_{\nu} \mu_{\nu}+O(1) \sum_{\nu=1}^{m-1} \nu\left|\Delta \lambda_{\nu}\right| \Delta\left(\frac{1}{\mu_{\nu}}\right) X_{\nu} \mu_{\nu} \\
& +O(1) \sum_{\nu=1}^{m-1}(\nu+1)\left|\lambda_{\nu+1}\right| \Delta^{2}\left(\frac{1}{\mu_{\nu}}\right) X_{\nu} \mu_{\nu}+O(1) m\left|\lambda_{m}\right| \Delta\left(\frac{1}{\mu_{m}}\right) X_{m} \mu_{m} \\
= & O(1) \sum_{\nu=1}^{m-1} \frac{\left|\lambda_{\nu}\right|}{\nu}+O(1) \sum_{\nu=1}^{m-1}\left|\Delta \lambda_{\nu}\right|+O(1) \sum_{\nu=1}^{m-1}\left|\lambda_{\nu}\right| \\
& +O(1) m\left|\lambda_{m}\right| \Delta\left(\frac{1}{\mu_{m}}\right) X_{m} \mu_{m} \\
= & O(1), \text { as } m \rightarrow \infty,
\end{aligned}
$$

by virtue of the hypotheses of Theorem 3 and Lemma 1.
Also

$$
\begin{aligned}
\sum_{n=1}^{m} \frac{\varphi_{n}^{k-1}}{n^{k}}\left|T_{n, 3}\right|^{k}= & \sum_{n=1}^{m} \frac{\varphi_{n}^{k-1}}{n^{k}}\left|\frac{\lambda_{n} t_{n}}{\mu_{n}}\right|^{k} \leq \sum_{n=1}^{m} \frac{\varphi_{n}^{k-1}}{n^{k}}\left|t_{n}\right|^{k} \frac{\left|\lambda_{n}\right|^{k}}{\mu_{n}} \\
= & O(1) \sum_{n=1}^{m} \varphi_{n}^{k-1} \frac{\left|\lambda_{n}\right|}{\mu_{n}} \frac{\left|t_{n}\right|^{k}}{n^{k}} \\
= & O(1) \sum_{n=1}^{m-1} \Delta\left(\frac{\left|\lambda_{n}\right|}{\mu_{n}}\right) \sum_{r=1}^{n} \frac{\varphi_{r}^{k-1}}{r^{k}}\left|t_{r}\right|^{k}+O(1) \frac{\left|\lambda_{m}\right|}{\mu_{m}} \sum_{r=1}^{m} \frac{\varphi_{r}^{k-1}}{r^{k}}\left|t_{r}\right|^{k} \\
= & O(1) \sum_{n=1}^{m-1}\left(\frac{\left|\Delta \lambda_{n}\right|}{\mu_{n}}\right) X_{n} \mu_{n}+O(1) \sum_{n=1}^{m-1}\left|\lambda_{n}\right| \Delta\left(\frac{1}{\mu_{n}}\right) X_{n} \mu_{n} \\
& +O(1) \frac{\left|\lambda_{m}\right|}{\mu_{m}} X_{m} \mu_{m} \\
= & O(1) \sum_{n=1}^{m-1}\left|\Delta \lambda_{n}\right| X_{n}+O(1) \sum_{n=1}^{m-1} \frac{\left|\lambda_{n}\right|}{n}+O(1)\left|\lambda_{m}\right| X_{m} \\
= & O(1), \text { as } m \rightarrow \infty
\end{aligned}
$$

by virtue of the hypotheses of Theorem 3 and Lemma 1.
Finally,

$$
\sum \frac{\varphi_{n}^{k-1}}{n^{k}}\left|T_{n, 4}\right|^{k}=\sum \frac{\varphi_{n}^{k-1}}{n^{k}}\left|\frac{a_{0} \lambda_{1}}{(n+1) \mu_{1}}\right|^{k} \leq A \sum \frac{\varphi_{n}^{k-1}}{n^{2 k}}<\infty
$$

by virtue of the hypotheses of Theorem 3 and Lemma 1.
Therefore, we get

$$
\sum_{n=1}^{\infty} \frac{\varphi_{n}^{k-1}}{n^{k}}\left|T_{n, r}\right|^{k}=O(1), \text { as } m \rightarrow \infty, \text { for } r=1,2,3,4
$$

This completes the proof of Theorem 3.

Acknowledgement

I am very thankful to Dr. Rajiv Sinha for his kind encouragement to prepare this paper.

References

[1] H. Bor, Absolute Nörlund summability factors, Utilitas Math. 40(1991), 231-236.
[2] T. M. Flett, On an extension of absolute summability and some theorems of Littlewood and Paley, Proc. Lond. Math. Soc. 7(1957), 113-141.
[3] S. M. Mazhar, On $|C, 1|_{k}$ summability factors of infinite series, Indian J. Math. 14(1972), 45-48.
[4] H. Seyhan Özarslan, The absolute summability methods, Ph.D. thesis, Kayseri, 1995, 1-57.
[5] H. S. Özarslan, On absolute Cesàro summability factors of infinte series, Communications in Mathematical Analysis 3(2007), 53-56.

[^0]: *Corresponding author. Email address: ssumath@yahoo.co.in (S. K. Saxena)
 http://www.mathos.hr/mc

