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Generalization of absolute Cesaro summability factors
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Abstract. In the present paper, a general theorem concerning ¢ — |C, 1|, summability
factors of infinite series under weaker conditions, has been proved.
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1. Introduction

Let () be a sequence of positive real numbers and let > a,, be a given infinite series
with the sequence of partial sums (s,). By (¢,) we denote the n-th (C,1) means of
the sequence (na,). The series ) a, is said to be summable |C, 1|, , k > 1, if (see

2])

oo

1, &
7tn < ) 1
S il < oo 1)

n=1
and it is said to be summable ¢ — |C, 1|, , k > 1, if (see [4])
o k-1

Pn k
n=1

If we take ¢ = n, then ¢ — |C, 1], summability reduces to |C, 1|, summability.
Mazhar [3] proved the following theorem for |C, 1|, summability.

Theorem 1. If

A =0(1), as m — oo, (3)

anogn|A2)\n’ =0(1), (4)
n=1

m k
ly
E ] = O (logm), as m — oo, (5)
v
v=1
then the series ) anpXy, is summable |C, 1|, , k > 1.
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Quite recently Ozarslan [5] generalized the above Theorem 1 for ¢ — |C,1|,
summability in the following form.

Theorem 2. Let (¢,,) be a sequence of positive real numbers and conditions (3) and
(4) of Theorem 1 are satisfied. If

kTl
Z ;k [tu]” = O (logm), as m — oo, (6)
v=1
™o k-1 k—1
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nk+1 _O( vk )’ (7)
n=v

then the series ) apXy is summable ¢ — |C, 1|, , k > 1.

It should be noted that if we take ¢, = m in Theorem 2, then condition (6)
reduces to condition (5) and condition (7) reduces to

i;:O(D, (8)

which always holds.

2. The main result

The aim of this paper is to generalize Theorem 2 under weaker conditions. Now we
shall prove the following theorem.

Theorem 3. Let (¢,) be a sequence of positive real numbers and condition (3) of
Theorem 1 and condition (7) of Theorem 2 are satisfied. Let (X,) be a positive
non-decreasing sequence and (\,) a sequence such that

[Anl X, =0 (1), as n — oo, (9)
> n A\ X, =0(1), (10)
n=1

ot

> L [t = O (Xompim), as m — oo, (11)
v=1

where () s a positive non-decreasing sequence such that

nX, A (1> =0(1), as n — oo, (12)

n
then the series Y “Z—)‘" is summable ¢ — |C, 1], , k > 1.

If we take X,, = logn and p, = 1, in Theorem 3, we get Theorem 2 and addi-
tionally if we also take @, = n, then we get Theorem 1.
We need the following lemma for the proof of our theorem.
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Lemma 1 (see [1]). Under the conditions on (X,) and (\,), as taken in the state-
ment on Theorem 3, the following conditions hold,

nXpAX, =0 (1), as n — oo, (13)
D AN Xy < 0. (14)
n=1

3. Proof of Theorem 3

Let T, be the n-th (C,1) means of the sequence ("‘1:7’\“), then by definition, we

T, = 1 zn: I/CLV/\V.
n+ 1 v=1 K

have

Applying Abel’s transformation, we get
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= 1in,1 + Tn,Z + Tn,3 + Tn,4> say.

Since | Ty + To + Ts + Toal* < 4% (|Tn,1|’“ F | Tal® + | Thsl* + \Tn74|k), to com-
plete the proof of Theorem 3, it is sufficient to show that

oo

Now, when k& > 1, applying Holder’s inequality with indices k and k', where
% + % =1, we get

-1
|T,.|" < 00, for r=1,2,3,4.
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by virtue of the hypotheses of Theorem 3 and Lemma 1.
Again
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by virtue of the hypotheses of Theorem 3 and Lemma 1.
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by virtue of the hypotheses of Theorem 3 and Lemma 1.

Finally,
k—1 k—1 k k—1
©n K ©n aoA1 ©n
T, = <A
Z nk T4 k| n+ D | = Z 2k S

by virtue of the hypotheses of Theorem 3 and Lemma 1.
Therefore, we get

— ph! k
> T, " =0 (1), a8 m — oo, for r=1,2,3,4.
n
n=1
This completes the proof of Theorem 3.
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