A strong form of β - \mathcal{I} -continuous functions

Jeyaraman Bhuvaneswari¹ and Neelamegarajan Rajesh^{2,*}

¹ Department of Computer Applications, Rajalakshmi Engineering College, Thandalam, Chennai-602 105, Tamil Nadu, India

² Department of Mathematics, Kongu Engineering College, Perundurai, Erode-638052, Tamil Nadu, India

Received September 11, 2008; accepted October 17, 2008

Abstract. In this paper, β - \mathcal{I} -open sets are used to define and investigate a new class of functions called stongly β - \mathcal{I} -continuous functions in ideal topological spaces.

AMS subject classifications: 54C08

Key words: ideal topological spaces, β - \mathcal{I} -open sets, strongly β - \mathcal{I} -continuous functions

1. Introduction

The subject of ideals in topological spaces has been introduced and studied by Kuratowski [5] and Vaidyanathasamy [6]. An ideal \mathcal{I} on a topological space (X, τ) is a nonempty collection of subsets of X which satisfies (i) $A \in \mathcal{I}$ and $B \subset A$ implies $B \in \mathcal{I}$ and (ii) $A \in \mathcal{I}$ and $B \in I$ implies $A \cup B \in \mathcal{I}$. Given a topological space (X, τ) with an ideal \mathcal{I} on X and if $\mathcal{P}(X)$ is the set of all subsets of X, a set operator (.)*: $\mathcal{P}(X) \to \mathcal{P}(X)$, called the local function [6] of A with respect to τ and \mathcal{I} , is defined as follows: for $A \subset X$, $A^*(\tau, \mathcal{I}) = \{x \in X | U \cap A \notin \mathcal{I} \text{ for every } U \in \tau(x)\}$ where $\tau(x) = \{U \in \tau | x \in U\}$. A Kuratowski closure operator Cl^{*}(.) for a topology $\tau^*(\tau, \mathcal{I})$ called the *-topology, which is finer than τ is defined by Cl^{*}(A) = $A \cup A^*(\tau, \mathcal{I})$, When there is no chance of confusion, $A^*(\mathcal{I})$ is denoted by A^* . If \mathcal{I} is an ideal on X, then (X, τ, \mathcal{I}) is called an ideal topological space. By a space, we always mean a topological space (X, τ) with no separation properties assumed. If $A \subset X$, Cl(A) and Int(A) will denote the closure and interior of A in (X, τ) , repectively.

A point $x \in X$ is called a θ -cluster point of A if $\operatorname{Cl}(V) \cap A \neq \emptyset$ for every open set V of X containing x. The set of all θ -cluster points of A is said to be the θ -closure of A [7] and is denoted by $\operatorname{Cl}_{\theta}(A)$. If $A = \operatorname{Cl}_{\theta}(A)$, then the set A is said to be θ -closed [7]. The complement of a θ -closed set is said to be θ -open [7]. The union of all θ -open sets contained in a subset A is called the θ -interior of A and is denoted by $\operatorname{Int}_{\theta}(A)$. It follows from [7] that the collection of θ -open sets in a topological space (X, τ) forms a topology τ_{θ} on X. In this paper, the concept of stongly β - \mathcal{I} -continuous functions is introduced and studied. Some of their characteristic properties are investigated.

http://www.mathos.hr/mc

©2009 Department of Mathematics, University of Osijek

^{*}Corresponding author. *Email addresses:* sai_jbhuvana@yahoo.co.in (J. Bhuvaneswari), nrajesh_topology@yahoo.co.in (N. Rajesh)

2. Preliminaries

A subset S of an ideal topological space (X, τ, \mathcal{I}) is said to be $\beta \mathcal{I}$ -open [4] (resp. α -*I*-open [4]) if $S \subset Cl(Int(Cl^*(S)))$ (resp. $S \subset Int(Cl^*(Int(S))))$). The complement of a β - \mathcal{I} -open set is called β - \mathcal{I} -closed [4]. The intersection of all β - \mathcal{I} -closed sets containing S is called the β - \mathcal{I} -closure of S and is denoted by $_{\beta\mathcal{I}}$ Cl(S). The β - \mathcal{I} -interior of S is defined by the union of all β - \mathcal{I} -open sets contained in S and is denoted by $_{\beta\mathcal{I}}$ Int(S). A subset S of an ideal topological space (X, τ, \mathcal{I}) is said to be β - \mathcal{I} -regular [8] if it is both β - \mathcal{I} -open and β - \mathcal{I} -closed. The family of all β - \mathcal{I} -regular (resp. β - \mathcal{I} -open, β - \mathcal{I} -closed, α - \mathcal{I} -open) sets of (X, τ, \mathcal{I}) is denoted by $\beta \mathcal{I}R(X)$ (resp. $\beta \mathcal{IO}(X), \beta \mathcal{IC}(X), \alpha \mathcal{IO}(X)).$ The family of all $\beta \mathcal{I}$ -regular (resp. $\beta \mathcal{I}$ -open, $\beta \mathcal{I}$ closed) sets of (X, τ, \mathcal{I}) containing a point $x \in X$ is denoted by $\beta \mathcal{I}R(X, x)$ (resp. $\beta \mathcal{I}O(X,x), \beta \mathcal{I}C(X,x))$. A point $x \in X$ is called the $\beta \mathcal{I}-\theta$ -cluster point of S if $_{\beta\mathcal{I}}\operatorname{Cl}(U)\cap S\neq\emptyset$ for every β - \mathcal{I} -open set U of (X,τ,\mathcal{I}) containing x. The set of all $\beta - \mathcal{I} - \theta$ -cluster points of S is called the $\beta - \mathcal{I}$ -closure of S and is denoted by $\beta \mathcal{I} Cl_{\theta}(S)$. A subset S is said to be $\beta \mathcal{I} - \theta$ -open if its complement is $\beta \mathcal{I} - \theta$ -closed. A point $x \in X$ is called the β - \mathcal{I} - θ -interior point of S if there exists a β - \mathcal{I} -regular set U of X containing x such that $x \in U \subset S$. The set of all β - \mathcal{I} - θ -interior points of S and is denoted by $_{\beta \mathcal{I}} \operatorname{Int}_{\theta}(S)$.

Definition 1. A function $f : (X, \tau, \mathcal{I}) \to (Y, \sigma)$ is said to be β - \mathcal{I} -continuous (see [4]) if $f^{-1}(V) \in \beta \mathcal{I}O(X)$ for every $V \in \sigma$, or equivalently, $f^{-1}(V) \in \beta \mathcal{I}C(X)$ for every closed set V of Y.

Theorem 1 (see [4]). A function $f : (X, \tau, \mathcal{I}) \to (Y, \sigma)$ is β - \mathcal{I} -continuous if and only if for each $x \in X$ and each open set V of Y containing f(x) there exists $U \in \beta \mathcal{IO}(X, x)$ such that $f(U) \subset V$.

3. Strongly β - \mathcal{I} -continuous functions

We have introduced the following definition

Definition 2. A function $f : (X, \tau, \mathcal{I}) \to (Y, \sigma)$ is said to be strongly β - \mathcal{I} -continuous if for each $x \in X$ and each open set V of Y containing f(x), there exists $U \in \beta \mathcal{IO}(X, x)$ such that $f(_{\beta \mathcal{I}} Cl(U)) \subset Cl(V)$.

Theorem 2. Every β - \mathcal{I} -continuous function is strongly β - \mathcal{I} -continuous.

Proof. Suppose that $x \in X$ and V is any open set of Y containing f(x). Since f is β - \mathcal{I} -continuous and $\operatorname{Cl}(V)$ is closed in Y, $f^{-1}(V)$ is β - \mathcal{I} -open and $f^{-1}(\operatorname{Cl}(V))$ is β - \mathcal{I} -closed in X. Now, put $U = f^{-1}(V)$. Then we have $U \in \beta \mathcal{IO}(X, x)$ and $\beta \mathcal{I}$ $\operatorname{Cl}(U) \subset f^{-1}(\operatorname{Cl}(V))$. Therefore, we obtain $f(\beta \mathcal{I} \operatorname{Cl}(U)) \subset \operatorname{Cl}(V)$. This shows that f is strongly β - \mathcal{I} -continuous.

The converse of Theorem 2 is not true as it can been seen from the following example.

Example 1. Let $X = \{a, b, c\}, \tau = \{\emptyset, \{a\}, X\}$ and $\sigma = \{\emptyset, \{b\}, X\}$ and $\mathcal{I} = \{\emptyset, \{a\}\}$. Then the identity function $f : (X, \tau, \mathcal{I}) \to (X, \sigma)$ is strongly β - \mathcal{I} -continuous but not β - \mathcal{I} -continuous.

Theorem 3. For a function $f : (X, \tau, \mathcal{I}) \to (Y, \sigma)$ the following properties are equivalent:

- (i) f is strongly β - \mathcal{I} -continuous;
- (*ii*) $_{\beta \mathcal{I}} \operatorname{Cl}_{\theta}(f^{-1}(B)) \subset f^{-1}(\operatorname{Cl}_{\theta}(B))$ for every subset B of Y;
- (iii) $f(_{\beta \mathcal{I}} Cl_{\theta}(A)) \subset Cl_{\theta}(f(A))$ for every subset A of X.

Proof. (i) \Rightarrow (iii): Let *B* be any subset of *Y*. Suppose that $x \notin f^{-1}(\operatorname{Cl}_{\theta}(B))$. Then $f(x) \notin \operatorname{Cl}_{\theta}(B)$ and there exists an open set *V* of *Y* containing f(x) such that $\operatorname{Cl}(V) \cap B = \emptyset$. Since *f* is strongly $\beta - \mathcal{I}$ -continuous, there exists $U \in \beta \mathcal{I}O(X, x)$ such that $f(_{\beta \mathcal{I}}\operatorname{Cl}(U)) \subset \operatorname{Cl}(V)$. Therefore, we have $f(_{\beta \mathcal{I}}\operatorname{Cl}(U)) \cap B = \emptyset$ and $_{\beta \mathcal{I}}\operatorname{Cl}(U) \cap f^{-1}(B) = \emptyset$. This shows that $x \notin_{\beta \mathcal{I}} \operatorname{Cl}_{\theta}(f^{-1}(B))$. Hence, we obtain $_{\beta \mathcal{I}}\operatorname{Cl}_{\theta}(f^{-1}(B)) \subset f^{-1}(\operatorname{Cl}_{\theta}(B))$.

(ii) \Rightarrow (iii): Let A be any subset of X. Then we have

$$_{\beta \mathcal{I}} \operatorname{Cl}_{\theta}(A) \subset_{\beta \mathcal{I}} \operatorname{Cl}_{\theta}(f^{-1}(f(A))) \subset f^{-1}(\operatorname{Cl}_{\theta}(f(A)))$$

and hence $f(_{\beta \mathcal{I}} \operatorname{Cl}_{\theta}(A)) \subset \operatorname{Cl}_{\theta}(f(A))$.

(iii) \Rightarrow (ii): Let *B* be a subset of *Y*. We have $f(_{\beta\mathcal{I}}\operatorname{Cl}_{\theta}(f^{-1}(B))) \subset \operatorname{Cl}_{\theta}(f(f^{-1}(B))) \subset \operatorname{Cl}_{\theta}(B)$ and hence $_{\beta\mathcal{I}}\operatorname{Cl}_{\theta}(f^{-1}(B)) \subset f^{-1}(\operatorname{Cl}_{\theta}(B))$. (ii) \Rightarrow (i): Let $x \in X$ and *V* be an open set of *Y* containing f(x). Then we have

(ii) \Rightarrow (i): Let $x \in X$ and V be an open set of Y containing f(x). Then we have $\operatorname{Cl}(V) \cap (Y - \operatorname{Cl}(V)) = \emptyset$ and $f(x) \notin \operatorname{Cl}_{\theta}(Y - \operatorname{Cl}(V))$. Hence, $x \notin f^{-1}(\operatorname{Cl}_{\theta}(Y - \operatorname{Cl}(V)))$ and $x \notin_{\beta mathcal I} \operatorname{Cl}_{\theta}(f^{-1}(Y - \operatorname{Cl}(V)))$. There exists $U \in \beta \mathcal{I}O(X, x)$ such that $\beta_{\mathcal{I}} \operatorname{Cl}(U) \cap f^{-1}(Y - \operatorname{Cl}(V)) = \emptyset$ and hence $f(\beta_{\mathcal{I}} \operatorname{Cl}(U)) \subset \operatorname{Cl}(V)$. This shows that f is strongly $\beta - \mathcal{I}$ -continuous.

Theorem 4. For a function $f : (X, \tau, \mathcal{I}) \to (Y, \sigma)$ the following properties are equivalent:

- (i) f is strongly β - \mathcal{I} -continuous;
- (ii) $f^{-1}(V) \subset_{\beta \mathcal{I}} \operatorname{Int}_{\theta}(f^{-1}(\operatorname{Cl}(V)))$ for every open set V of Y;
- (iii) $_{\beta \mathcal{I}} \operatorname{Cl}_{\theta}(f^{-1}(V)) \subset f^{-1}(\operatorname{Cl}(V))$ for every open set V of Y.

Proof. (i) \Rightarrow (ii): Suppose that V is any open set of Y and $x \in f^{-1}(V)$. Then $f(x) \in V$ and there exists $U \in \beta \mathcal{I}O(X, x)$ such that $f(_{\beta \mathcal{I}}\operatorname{Cl}(U)) \subset \operatorname{Cl}(U)$. Therefore, $x \in U \subset_{\beta \mathcal{I}}\operatorname{Cl}(U) \subset f^{-1}(\operatorname{Cl}(V))$. This shows that $x \in_{\beta \mathcal{I}}\operatorname{Int}_{\theta}(f^{-1}(\operatorname{Cl}(V)))$ for any open set V of Y. In consequence, $f^{-1}(V) \subset_{\beta \mathcal{I}}\operatorname{Int}_{\theta}(f^{-1}(\operatorname{Cl}(V)))$.

(ii) \Rightarrow (iii): Suppose that V is any open set of Y and $x \notin f^{-1}(\operatorname{Cl}(V))$. Then $f(x) \notin \operatorname{Cl}(V)$. It follows that there exists an open set U of Y such that $U \cap V = \emptyset$ and hence $\operatorname{Cl}(U) \cap V = \emptyset$. Therefore, we have $f^{-1}(\operatorname{Cl}(U)) \cap f^{-1}(V) = \emptyset$. Since $x \in f^{-1}(U)$, by (ii), $x \in {}_{\beta\mathcal{I}}\operatorname{Int}_{\theta}(f^{-1}(\operatorname{Cl}(U)))$. In consequence, there exists $W \in \beta\mathcal{I}O(X, x)$ such that ${}_{\beta\mathcal{I}}\operatorname{Cl}(W) \subset f^{-1}(\operatorname{Cl}(U))$. Thus, we have ${}_{\beta\mathcal{I}}\operatorname{Cl}(W) \cap f^{-1}(V) = \emptyset$ and hence $x \notin_{\beta\mathcal{I}}\operatorname{Cl}_{\theta}(f^{-1}(V))$. This shows that ${}_{\beta\mathcal{I}}\operatorname{Cl}_{\theta}(f^{-1}(\operatorname{Cl}(V))$.

(iii) \Rightarrow (i): Suppose that $x \in X$ and V is any open set of Y containing f(x). Then, $V \cap (Y - \operatorname{Cl}(V)) = \emptyset$ and $f(x) \notin \operatorname{Cl}(Y - \operatorname{Cl}(V))$. Therefore, $x \notin f^{-1}(\operatorname{Cl}(Y - \operatorname{Cl}(V)))$ and by (iii), $x \notin_{\beta \mathcal{I}} \operatorname{Cl}_{\theta}(f^{-1}(Y - \operatorname{Cl}(V)))$. In consequence, there exists $U \in \beta \mathcal{I}O(X, x)$ such that $_{\beta \mathcal{I}} \operatorname{Cl}(U) \cap f^{-1}(Y - \operatorname{Cl}(V)) = \emptyset$. Therefore, we obtain $f(_{\beta \mathcal{I}}\operatorname{Cl}(U)) \subset \operatorname{Cl}(V)$. This shows that f is strongly $\beta \cdot \mathcal{I}$ -continuous. **Definition 3.** A function $f : (X, \tau, \mathcal{I}) \to (Y, \sigma)$ is said to be strongly θ - β - \mathcal{I} continuous (see [9]) if for each point $x \in X$ and any open set V of Y containing f(x), there exists $U \in \beta \mathcal{I}O(X, x)$ such that $f(_{\beta \mathcal{I}}Cl(U)) \subset V$.

Theorem 5. Let Y be a regular space. Then for a function $f : (X, \tau, \mathcal{I}) \to (Y, \sigma)$ the following properties are equivalent:

- (i) f is strongly θ - β - \mathcal{I} -continuous;
- (ii) f is β - \mathcal{I} -continuous;
- (iii) f is strongly β - \mathcal{I} -continuous.

Proof. (i) \Rightarrow (ii): This is obvious.

(ii) \Rightarrow (iii): Follows from Theorem 2.

(iii) \Rightarrow (i): Suppose that $x \in X$ and V is any open set of Y containing f(x). Since Y is regular, there exists an open set W of Y such that $f(x) \in W \subset \operatorname{Cl}(W) \subset V$. Since f is strongly β - \mathcal{I} -continuous, there exists $U \in \beta \mathcal{I}O(X, x)$ such that $f(_{\beta \mathcal{I}}\operatorname{Cl}(U)) \subset \operatorname{Cl}(W) \subset V$. This shows that f is strongly θ - β - \mathcal{I} -continuous. \Box

Definition 4 (see [3]). Let A and X_0 be subsets of an ideal topological space (X, τ, \mathcal{I}) such that $A \subset X_0 \subset X$. Then $(X_0, \tau_{|_{X_0}}, \mathcal{I}_{|_{X_0}})$ is an ideal topological space with an ideal $\mathcal{I}_{|_{X_0}} = \{\mathcal{I} \in \mathcal{I} | \mathcal{I} \subset X_0\} = \{\mathcal{I} \cap X_0 | \mathcal{I} \in \mathcal{I}\}.$

Lemma 1 (see [9]). Let A and X_0 be subsets of an ideal topological space (X, τ, \mathcal{I}) . Then the following properties hold:

- (i) If $A \in \beta \mathcal{I}O(X)$ and $X_0 \in \alpha \mathcal{I}O(X)$, then $A \cap X_0 \in \beta \mathcal{I}O(X_0)$;
- (ii) If $A \in \beta \mathcal{I}O(X_0)$ and $X_0 \in \alpha \mathcal{I}O(X)$, then $A \in \beta \mathcal{I}O(X)$.

Lemma 2 (see [9]). Let A and X_0 be subsets of an ideal topological space (X, τ, \mathcal{I}) such that $A \subset X_0 \subset X$. Let $_{\beta \mathcal{I}} \operatorname{Cl}_{X_0}(A)$ denote the β - \mathcal{I} -closure of A with respect to the subspace X_0 . Then

- (i) If X_0 is α - \mathcal{I} -open in X, then $_{\beta \mathcal{I}} \operatorname{Cl}_{X_0}(A) \subset _{\beta \mathcal{I}} \operatorname{Cl}(A)$;
- (ii) If $A \in \beta \mathcal{I}O(X_0)$ and $X_0 \in \alpha \mathcal{I}O(X)$, then $_{\beta \mathcal{I}} \operatorname{Cl}(A) \subset _{\beta \mathcal{I}} \operatorname{Cl}_{X_0}(A)$.

Theorem 6. If $f : (X, \tau, \mathcal{I}) \to (Y, \sigma)$ is strongly β - \mathcal{I} -continuous and X_0 is an α - \mathcal{I} -open subset of X, then the restriction $f_{|_{X_0}} : (X_0, \tau_{|_{X_0}}, \mathcal{I}_{|_{X_0}}) \to (Y, \sigma)$ is strongly β - $\mathcal{I}_{|_{X_0}}$ -continuous.

Proof. For any $x \in X_0$ and any open set V of Y containing f(x), there exists $U \in \beta \mathcal{I}O(X, x)$ such that $f(_{\beta \mathcal{I}}Cl(U)) \subset Cl(V)$ since f is strongly β - \mathcal{I} -continuous. Let $U_0 = U \cap X_0$, then by Lemmas 1 and 2, $U_0 \in \beta \mathcal{I}O(X_0, x)$ and $_{\beta \mathcal{I}} Cl_{X_0}(U_0) \subset _{\beta \mathcal{I}} Cl(U_0)$. Therefore, we obtain

$$(f_{|_{X_0}})(_{\beta\mathcal{I}}\mathrm{Cl}_{X_0}(U_0)) = f(_{\beta\mathcal{I}}\mathrm{Cl}_{X_0}(U_0)) \subset f(_{\beta\mathcal{I}}\mathrm{Cl}(U_0)) \subset f(_{\beta\mathcal{I}}\mathrm{Cl}(U)) \subset \mathrm{Cl}(V).$$

This shows that $f_{|_{X_0}}$ is strongly $\beta - \mathcal{I}_{|_{X_0}}$ -continuous.

Theorem 7. A function $f : (X, \tau, \mathcal{I}) \to (Y, \sigma)$ is strongly $\beta \cdot \mathcal{I}$ -continuous if for each $x \in X$ there exists $X_0 \in \alpha \mathcal{I}O(X, x)$ such that the restriction $f_{|_{X_0}} : (X_0, \tau_{|_{X_0}}, \mathcal{I}_{|_{X_0}}) \to (Y, \sigma)$ is strongly $\beta \cdot \mathcal{I}_{|_{X_0}}$ -continuous.

Proof. Let $x \in X$ and V be an open set of Y containing f(x). There exists $X_0 \in \alpha \mathcal{I}O(X, x)$ such that $f_{|_{X_0}} \colon (X_0, \tau_{|_{X_0}}, \mathcal{I}_{|_{X_0}}) \to (Y, \sigma)$ is strongly β - \mathcal{I} -continuous. Thus, there exists $U \in \beta \mathcal{I}O(X_0, x)$ such that $(f_{|_{X_0}}) (\beta \mathcal{I}Cl_{X_0}(U)) \subset Cl(V)$. By Lemmas 1 and 2, $U \in \beta \mathcal{I}O(X, x)$ and $\beta \mathcal{I}Cl(U) \subset \beta \mathcal{I}Cl_{X_0}(U)$. Hence, we have $f(\beta \mathcal{I}Cl(U)) = (f_{|_{X_0}}) (\beta \mathcal{I}Cl(U)) \subset (f_{|_{X_0}}) (\beta \mathcal{I}Cl_{X_0}(U)) \subset Cl(V)$. This shows that f is strongly $\beta \mathcal{I}_{|_{X_0}}$ -continuous.

Corollary 1. Let $\{U_{\lambda} : \lambda \in \Omega\}$ be an α - \mathcal{I} -open cover of an ideal topological space (X, τ, \mathcal{I}) . A function $f : (X, \tau, \mathcal{I}) \to (Y, \sigma)$ is strongly β - \mathcal{I} -continuous if and only if the restriction $f_{|_{U_{\lambda}}} : (U_{\lambda}, \tau_{|_{U_{\lambda}}}, \mathcal{I}_{|_{U_{\lambda}}}) \to (Y, \sigma)$ is strongly β - $\mathcal{I}_{|_{X_0}}$ -continuous for each $\lambda \in \Omega$.

Proof. The proof follows from Theorems 6 and 7.

Definition 5. An ideal topological space (X, τ, \mathcal{I}) is said to be:

- (i) β - \mathcal{I} -closed (resp. β - \mathcal{I} -Lindelof) if every cover of X by β - \mathcal{I} -open sets has a finite (resp. countable) subcover whose β - \mathcal{I} -closures cover X;
- (ii) countably β - \mathcal{I} -closed if every countable cover of X by β - \mathcal{I} -open sets has a finite subcover whose β - \mathcal{I} -closures cover X.

Definition 6. A topological space (X, τ) is said to be:

- (i) quasi H-closed (see [7]) (resp. almost Lindelof [2]) if every cover of X by open sets has a finite (resp. countable) subfamily whose closures cover X,
- (ii) lightly compact (see [1]) if every countable cover of X by open sets has a finite subfamily whose closures cover X.

Definition 7. A subset K of an ideal topological space (X, τ, \mathcal{I}) is said to be β - \mathcal{I} closed relative to X if for every cover $\{V_{\lambda} : \lambda \in \Omega\}$ of K by β - \mathcal{I} -open subsets of X, there exists a finite subset Ω_0 of Ω such that $K \subset \bigcup \{\beta_{\mathcal{I}} \operatorname{Cl}(V_{\lambda}) : \lambda \in \Omega_0\}$ (resp. $K \subset \bigcup \{\operatorname{Cl}(V_{\lambda}) : \alpha \in \Omega_0\}$).

Definition 8. A subset K of a topological space (X, τ) is said to be quasi H-closed relative to X (see [7]) if every cover $\{V_{\lambda} : \lambda \in \Omega\}$ of K by open subsets of X, there exists a finite subset Ω_0 of Ω such that $K \subset \bigcup \{\operatorname{Cl}(U_{\lambda}) : \lambda \in \Omega_0\}$.

Theorem 8. If $f : (X, \tau, \mathcal{I}) \to (Y, \sigma)$ is a strongly β - \mathcal{I} -continuous function and K is β - \mathcal{I} -closed relative to X, then f(K) is quasi-H-closed relative to Y.

Proof. Suppose that $f : (X, \tau, \mathcal{I}) \to (Y, \sigma)$ is strongly β - \mathcal{I} -continuous and K is β - \mathcal{I} -closed relative to X. Let $\{V_{\lambda} : \lambda \in \Omega\}$ be a cover of f(K) by open sets of Y. For each point $x \in K$, there exists $\lambda(x) \in \Omega$ such that $f(x) \in V_{\lambda(x)}$. Since f is strongly β - \mathcal{I} -continuous, there exists $U_x \in \beta \mathcal{I}O(X, x)$ such that $f(\beta_{\mathcal{I}}\mathbb{Cl}(U_x)) \subset \mathbb{Cl}(V_{\lambda(x)})$. The family $\{U_x : x \in K\}$ is a cover of K by β - \mathcal{I} -open sets of X and hence there

exists a finite subset K_1 of K such that $K \subset \bigcup_{x \in K_1} \beta_{\mathcal{I}} \operatorname{Cl}(U_x)$. Therefore, we obtain $f(K) \subset \bigcup_{x \in K_1} \operatorname{Cl}(V_{\lambda(x)})$. This shows that f(K) is quasi-H-closed relative to Y. \Box

Remark 1. If we change in the above Theorem the condition of a strongly β - \mathcal{I} -continuous function by a strongly strongly θ - β - \mathcal{I} -continuous function, we obtain that f(K) is a compact subset of Y.

Corollary 2. If $f : (X, \tau, \mathcal{I}) \to (Y, \sigma)$ is a strongly β - \mathcal{I} -continuous surjection, then the following properties hold:

- (i) If X is β - \mathcal{I} -closed, then Y is quasi-H-closed;
- (ii) If X is countably β - \mathcal{I} -closed, then Y is lightly compact;
- (iii) If X is β - \mathcal{I} -Lindelof, then Y is almost Lindelof.

Acknowledgement

The authors are very grateful to the referee for his careful work and suggestions which improved the quality of the paper.

References

- R. W. BAGLEY, E. H. CORNELL, J. D. MCKNIGHT, On properties characterizing pseudo-compact spaces, Proc. Amer. Math. Soc. 9(1958), 500-506.
- [2] K. DLASKA, M. GANSTER, Almost rc-Lindelof spaces, Bull. Malaysian Math. Soc. 2(1957), 51-56.
- [3] J. DONTCHEV, On Hausdorff spaces via topological ideals and *I*-irresolute functions, in: Papers on General Topology and Applications, (S. Andima, Ed.) Annals of the New York Academy of Sciences, 1995, 28-38.
- [4] E. HATIR, T. NOIRI, On decomposition of continuity via idealization, Acta Math. Hungar. 96(2002), 341-349.
- [5] K. KURATOWSKI, Topology, Academic Press, New York, 1966.
- [6] R. VAIDYANATAHSWAMY, The localisation theory in set topology, Proc. Indian Acad. Sci. 20(1945), 51-61.
- [7] N. V. VELICKO, H-closed topological spaces, Amer. Math. Soc. Transl. 2(1968), 103-118.
- [8] S. YUKSEL, A. ACIKGOZ, E. GURSEL, On β-*I*-regular sets, Far. East J. Math. Sci. 25(2007), 353-366.
- S. YUKSEL, A. ACIKGOZ, E. GURSEL, On weakly β-I-irresolute functions, Far. East J. Math. Sci. 25(2007), 129-144.