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Abstract. The concept of a (δ, β)-irresolute function in topological spaces is introduced
and studied. Some of their characteristic properties are considered. We also investigate
the relationships between these classes of functions and other classes of non-continuous
functions.
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1. Introduction and preliminaries

Levine [10] defined semiopen sets which are weaker than open sets in topological
spaces. Since the advent of Levine’s semiopen sets, many researchers offered dif-
ferent and interesting new modifications of open sets which showed to be fruitful.
In 1968, Velic̆ko [17] introduced δ-open sets, which are stronger than open sets, in
order to investigate the characterizations of H-closed spaces. In 1997, Park et al.
[16] introduced the notion of δ-semiopen sets which are stronger than semiopen sets
but weaker than δ-open sets and investigated the relationships between several types
of these open sets. Recently, Caldas et al. [7] and [8] investigated this class of sets
further and also studied some of its applications.
The purpose of the present paper is to introduce and investigate a new class of
functions, namely (δ, β)-irresolute functions and give several of their characteriza-
tions and properties. Relations between this class of functions and other classes of
functions are obtained.

In what follows (X, τ) and (Y, σ) (or X and Y ) denote topological spaces. Let
A be a subset of X. We denote the interior, the closure and the complement of a set
A by Int(A), Cl(A) and X\A, respectively.
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A subset A of a topological space X is said to be a semiopen [10](resp. preopen
[12], α-open [15], β-open [1]) set if A ⊂ Cl(Int(A)) (resp. A ⊂ Int(Cl(A)), A ⊂
Int(Cl(Int(A))), A ⊂ Cl(Int(Cl(A)))). A point x ∈ X is called the δ-cluster point
of A if A ∩ Int(Cl(U)) 6= ∅ for every open set U of X containing x. The set of all
δ-cluster points of A is called the δ-closure of A and denoted by Clδ(A). A subset
A of X is called δ-closed if A = Clδ(A). The complement of a δ-closed set is called
δ-open. A subset A is said to be a δ-semiopen [16] if there exists a δ-open set U of
X such that U ⊂ A ⊂ Cl(U). The complement of a δ-semiopen (resp. semiopen,
preopen, α-open, β-open ) set is called a δ-semiclosed (resp. semiclosed, preclosed,
α-closed, β-closed). A point x ∈ X is called the δ-semicluster point of A if A∩U 6= ∅
for every δ-semiopen set U of X containing x. The set of all δ-semicluster points of
A is called the δ-semiclosure of A, denoted by δClS(A). Recall that the β-closure
of A [3] is the intersection of all β-closed sets containing A and will be denoted by
Clβ(A). We denote the collection of all δ-semiopen (resp. β-open, δ-open) sets by
δSO(X) (resp. βO(X), δO(X)). We set δSO(X,x) = {U : x ∈ U ∈ δSO(X)},
βO(X,x) = {U : x ∈ U ∈ βO(X)} and δO(X,x) = {U : x ∈ U ∈ δO(X)}.

Lemma 1 (Park et al. [16]). The intersection (resp. union) of an arbitrary col-
lection of δ-semiclosed (resp. δ-semiopen) sets in (X, τ) is δ-semiclosed (resp. δ-
semiopen). And A ⊂ X is δ-semiclosed if and only A = δClS(A).

Definition 1. A function f : X → Y is said to be:
(i) β-continuous if f−1(V ) is β-open in X for each open set V of Y (see [1]).
(ii) β-irresolute if f−1(V ) is β-open in X for each β-open set V of Y (see [11]).
(iii) strongly β-irresolute if f−1(V ) is open in X for each β-open set V of Y
(see [13]).
(iv) strongly M-precontinuous if f−1(V ) is open in X for each preopen set V of Y
(see [4]).
(v) almost α-irresolute if f−1(V ) is β-open in X for each α-open set V of Y (see [6]).
(vi) semi α-irresolute if f−1(V ) is semiopen in X for each α-open set V of Y
(see [5]).

2. (δ, β)-irresolute functions

Definition 2. A function f : X → Y is said to be (δ, β)-irresolute at x ∈ X if
for each β-open set V of Y containing f(x) there exists a δ-semiopen set U in X
containing x such that f(U) ⊂ V . If f is (δ, β)-irresolute at every point of X, then
it is called (δ, β)-irresolute.

Theorem 1. For a function f : X → Y , the following are equivalent:
(1) f is (δ, β)-irresolute;
(2) f−1(V ) is δ-semiopen in X for each β-open set V of Y ;
(3) f−1(V ) ⊂ Cl(Intδ(f−1(V ))) for every β-open set V of Y ;
(4) f−1(F ) is δ-semiclosed in X for every β-closed set F of Y ;
(5) Int(Clδ(f−1(B))) ⊂ f−1(Clβ(B)) for every subset B of Y ;
(6) f(Int(Clδ(A))) ⊂ Clβ(f(A)) for every subset A of X.
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Proof. (1) ⇒ (2): Let V be an arbitrary β-open set in Y . We are going to prove
that f−1(V ) is δ-semiopen in X. For this purpose, let x be any point in f−1(V ).
Then f(x) ∈ V . Since f is (δ, β)-irresolute, there exists a δ-semiopen set U of X
containing x such that f(U) ⊂ V . This implies x ∈ U ⊂ f−1(V ). By Lemma 1, it
follows that f−1(V ) is a δ-semiopen set in X.
(2)⇒ (1): Let x ∈ X and V be any β-open set of Y containing f(x). By (2), f−1(V )
is δ-semiopen in X and x ∈ f−1(V ). Set U = f−1(V ); then, U is a δ-semiopen set
of X containing x such that f(U) ⊂ V .
(1) ⇒ (3): Let V be any β-open set of Y and x ∈ f−1(V ). By (1), there ex-
ists a δ-semiopen set U of X containing x such that f(U) ⊂ V . Thus we have
x ∈ U ⊂ Cl(Intδ(U)) ⊂ Cl(Intδ(f−1(V ))) and hence f−1(V ) ⊂ Cl(Intδ(f−1(V ))).
(3)⇒ (4): Let F be any β-closed subset of Y . Set V = Y \F , then V is β-open in Y .
By (3), we obtain f−1(V ) ⊂ Cl(Intδ(f−1(V ))) and hence f−1(F ) = X\f−1(Y \F ) =
X\f−1(Y \F ) = X\f−1(V ) is δ-semiclosed in X.
(4) ⇒ (5): Let B be any subset of Y . Since Clβ(B) is a β-closed subset of Y ,
f−1(Clβ(B)) is δ-semiclosed inX and hence Int(Clδ(f−1(Clβ(B)))) ⊂ f−1(Clβ(B)).
Therefore, we obtain Int(Clδ(f−1(B))) ⊂ f−1(Clβ(B)).
(5)⇒ (6): Let A be any subset of X. By (5), we have

Int(Clδ(A)) ⊂ Int(Clδ(f−1(f(A)))) ⊂ f−1(Clβ(f(A)))

and hence f(Int(Clδ(A))) ⊂ Clβ(f(A)).
(6) ⇒ (2): Let V be any β-open subset of Y . Since f−1(Y \V ) = X\f−1(V ) is a
subset of X and by (6), we obtain

f(Int(Clδ(f−1(Y \V )))) ⊂ Clβ(f(f−1(Y \V ))) ⊂ Clβ(Y \V ) = Y \Intβ(V ) = Y \V

and hence

X\Cl(Intδ(f−1(V ))) = Int(Clδ(X\f−1(V ))) = Int(Clδ(f−1(Y \V )))
⊂ f−1(f(Int(Clδ(f−1(Y \V ))))) ⊂ f−1(Y \V ) = X\f−1(V ).

Therefore, we have f−1(V ) ⊂ Cl(Intδ(f−1(V ))) and hence f−1(V ) is δ-semiopen
in X.

Remark 1. From the above definitions, we have the following diagram:

DIAGRAM

(δ, β)-irresoluteness ⇒ semi α-irresoluteness ⇒ semi continuity

⇓ ⇓ ⇓

β-irresoluteness ⇒ almost α-irresoluteness ⇒ β-continuity

By the following examples, remarks and ([5], [6], [13], [14]), the converse impli-
cations in the above diagram are not true in general:
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1) Semi continuity does not imply (δ, β)-irresoluteness: It follows from the fact that
every strongly M-precontinuous function is semi continuous, every (δ, β)-irresolute
function is β-irresolute (see [6], Example 3.2).
2) β-irresoluteness does not imply (δ, β)-irresoluteness, since β-irresoluteness does
not imply semi continuity (see [6], Example 3.1).
3) continuity and (δ, β)-irresoluteness are independent concepts.

Example 1. By [6, Example 3.3], we have a continuous function which is not almost
α-irresolute hence it is not (δ, β)-irresolute.

Example 2. Let X = {a, b, c} and Y = {a, c} with topologies

τ = {X, ∅, {a}, {b}, {a, b}} and σ = {X, ∅, {a}}.

Let a function f : (X, τ)→ (Y, σ) be defined by f(b) = f(c) = a and f(a) = c. Then
f is not continuous but (δ, β)-irresolute.

Lemma 2 ([2] and [9]). Let {Xi : i ∈ Ω} be any family of nonempty topologi-
cal spaces and Aij a nonempty subset of Xij for each j = 1, 2, ..., n. Then A =∏
i 6=ij Xi ×

∏n
j=1Aij is a nonempty β-open [2] (resp. δ-semiopen [9]) subset of∏

Xi if and only if Aij is β-open (resp. δ-semiopen) in Xij for each j = 1, 2, ..., n.

Theorem 2. Let f : X → Y be a function and g : X → X × Y the graph function,
given by g(x) = (x, f(x)) for every x ∈ X. Then f is (δ, β)-irresolute if g is (δ, β)-
irresolute.

Proof. Let x ∈ X and V be any β-open set of Y containing f(x). Then, by Lemma 2
X × V is a β-open set of X × Y containing g(x). Since g is (δ, β)-irresolute, there
exists a δ-semiopen set U of X containing x such that g(U) ⊂ X × V and hence
f(U) ⊂ V . Thus f is (δ, β)-irresolute.

Theorem 3. Let {Xi : i ∈ Ω} be any family of topological spaces and Pri :
∏
Xi →

Xi . If f : X →
∏
Xi is a (δ, β)-irresolute function, then Pri ◦ f : X → Xi is

(δ, β)-irresolute for each i ∈ Ω, where Pri is the projection of
∏
Xi onto Xi.

Proof. Let Ui be an arbitrary β-open subset of Xi. Since Pri is continuous and
open, it is β-irresolute (see [1, Theorem 2.2]), and hence Pr−1

i (Ui) is β-open in
∏
Xi.

Since f is (δ, β)-irresolute, by definition we have f−1(Pr−1
i (Ui)) = (Pri ◦ f)−1(Ui)

is δ-semiopen in X. Therefore, Pri ◦ f is (δ, β)-irresolute for each i ∈ Ω.

Theorem 4. If the product function f :
∏
Xi →

∏
Yi is (δ, β)-irresolute, then

fi : Xi → Yi is (δ, β)-irresolute for each i ∈ Ω.

Proof. Let i0 ∈ Ω be an arbitrary fixed index and Vi0 any β-open in Yi0 . Then∏
Yj × Vi0 is β-open in

∏
Yi by Lemma 2, where i0 6= j ∈ Ω. Since f is (δ, β)-

irresolute, f−1(
∏
Yj ×Vi0) =

∏
Xj × f−1

i0
(Vi0) is δ-semiopen in

∏
Xi and hence, by

Lemma 2, f−1
i0

(Vi0) is δ-semiopen in Xi0 . This implies that fi0 is (δ, β)-irresolute.

Lemma 3. Let A and Y be subsets of (X, τ). If A ∈ δSO(X) and Y ∈ δO(X), then
A ∩ Y ∈ δSO(Y ).
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Theorem 5. If f : (X, τ) → (Y, σ) is (δ, β)-irresolute and A is a δ-open subset of
X, then the restriction fA : A→ Y is (δ, β)-irresolute.

Proof. Let V be a β-open set of Y . Since f is (δ, β)-irresolute, f−1(V ) is δ-semiopen
in X. By Lemma 3, (fA)−1(V ) = A ∩ f−1(V ) is δ-semiopen in A and hence fA is
(δ, β)-irresolute.

Lemma 4. Let A and Y be subsets of (X, τ). If A ∈ δSO(Y ) and Y ∈ δO(X), then
A ∈ δSO(X).

Theorem 6. Let f : (X, τ)→ (Y, σ) be a function and {Ai : i ∈ Ω} a cover of X by
δ-open sets of (X, τ). Then f is (δ, β)-irresolute, if fAi

: Ai → Y is (δ, β)-irresolute
for each i ∈ Ω.

Proof. Let V be any β-open set of Y . Since fAi
is (δ, β)-irresolute, (fAi

)−1(V ) =
f−1(V )∩Ai is δ-semiopen in Ai and hence, by Lemma 4, (fAi

)−1(V ) is δ-semiopen
in X for each i ∈ Ω. Therefore, f−1(V ) = X ∩ f−1(V ) = ∪{Ai ∩ f−1(V ) : i ∈ Ω} =
∪{f−1

Ai
(V ) : i ∈ Ω} is δ-semiopen in X. Hence f is (δ, β)-irresolute.

Theorem 7. The following statements hold for functions f : X → Y and g : Y → Z:
(i) If f is (δ, β)-irresolute and g is β-irresolute, then g◦f : X → Z is (δ, β)-irresolute.
(ii) If f is (δ, β)-irresolute and g is (δ, β)-irresolute, then g ◦ f : X → Z is (δ, β)-
irresolute.

Proof. (i) Let W be any β-open subset in Z. Since g is β-irresolute, g−1(W ) is
β-open in Y . Since f is (δ, β)-irresolute, f−1(g−1((V ))) = (g◦f)−1(V ) is δ-semiopen
in X. Therefore, g ◦ f is (δ, β)-irresolute.
(ii) It follows immediately from (i) since every (δ, β)-irresolute function is β-irresolute.

Recall that Lee et al. [9] define the δ-semifrontier of A denoted by δ-sfr(A) as
δ-sfr(A) = δClS(A)\δIntS(A), equivalently δ-sfr(A) = δClS(A) ∩ δClS(X\A).

Theorem 8. The set of all points x ∈ X at which f : (X, τ) → (Y, σ) is not
(δ, β)-irresolute is identical with the union of δ-semifrontiers of the inverse images
of β-open subsets of Y containing f(x).

Proof. Necessity. Suppose that f is not (δ, β)-irresolute at a point x of X. Then,
there exists a β-open set V ⊂ Y containing f(x) such that f(U) is not a sub-
set of V for every U ∈ δSO(X,x). Hence we have U ∩ (X \ f−1(V )) 6= ∅ for
every U ∈ δSO(X,x). It follows that x ∈ δClS(X \ f−1(V )). We also have
x ∈ f−1(V ) ⊂ δClS(f−1(V )). This means that x ∈ δ-sfr(f−1(V )).
Sufficiency. Suppose that x ∈ δ-sfr(f−1(V )) for some V ∈ βO(Y, f(x)) Now, we as-
sume that f is (δ, β)-irresolute at x ∈ X. Then there exists U ∈ δSO(X,x) such that
f(U) ⊂ V . Therefore, we have x ∈ U ⊂ f−1(V ) and hence x ∈ δIntS(f−1(V )) ⊂
X\δ-sfr(f−1(V )) . This is a contradiction. This means that f is not (δ, β)-irresolute
at x.
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Recall that a topological space (X, τ) is called β-T2 [11] (resp. δ-semi T2 [7]) if
for any two distinct points x and y in X there exist U ∈ βO(X,x) and V ∈ βO(X, y)
(resp. U ∈ δSO(X,x) and V ∈ δSO(X, y)) such that U ∩ V = ∅.

Theorem 9. If f : X → Y is a (δ, β)-irresolute injection and Y is β-T2, then X is
δ-semi T2.

Proof. Suppose that Y is β-T2. Let x and y be distinct points of X. Then f(x) 6=
f(y). Since Y is β-T2, there exist disjoint β-open sets V and W containing f(x) and
f(y), respectively. Since f is (δ, β)-irresolute, there exist δ-semiopen sets G and H
containing x and y, respectively, such that f(G) ⊂ V and f(H) ⊂ W . It follows
that G ∩H = ∅. This shows that X is δ-semi T2.

Lemma 5. If Ai is a δ-semiopen set of Xi (i=1, 2), then A1×A2 is δ-semiopen in
X1 ×X2

Proof. By Theorem 2.25 of [9].

Theorem 10. If f : X → Y is a (δ, β)-irresolute and Y is β-T2, then E = {(x, y) :
f(x) = f(y)} is δ-semiclosed in X ×X.

Proof. Suppose that (x, y) /∈ E. Then f(x) 6= f(y). Since Y is β-T2, there exist
V ∈ βO(Y, f(x)) and W ∈ βO(Y, f(y)) such that V ∩ W = ∅. Since f is (δ, β)-
irresolute, there exist U ∈ δSO(X,x) and G ∈ δSO(X, y) such that f(U) ⊂ V and
f(G) ⊂W . Set D = U ×G. By Lemma 5 (x, y) ∈ D ∈ δSO(X×X) and D∩E = ∅.
This means that δClS(E) ⊂ E and therefore E is δ-semiclosed in X ×X.

Definition 3. For a function f : X → Y , the graph G(f) = {(x, f(x)) : x ∈ X}
is called (δ, β)-closed if for each (x, y) ∈ (X × Y )\G(f), there exist U ∈ δSO(X,x)
and V ∈ βO(Y, y) such that (U × V ) ∩G(f) = ∅.

Lemma 6. A function f : X → Y has a (δ, β)-closed graph G(f) if for each (x, y) ∈
(X×Y )\G(f), there exist U ∈ δSO(X,x) and V ∈ βO(Y, y) such that f(U)∩V = ∅.

Proof. It is an immediate consequence of Definition 3 and the fact that for any
subsets U ⊂ X and V ⊂ Y , (U × V ) ∩G(f) = ∅ if and only if f(U) ∩ V = ∅.

Theorem 11. If f : X → Y is (δ, β)-irresolute and Y is β-T2, then G(f) is (δ, β)-
closed in X × Y.

Proof. Let (x, y) ∈ (X × Y )\G(f). It follows that f(x) 6= y. Since Y is β-T2, there
exist disjoint β-open sets V and W in Y containing f(x) and y, respectively. Since
f is (δ, β)-irresolute, there exists U ∈ δSO(X,x) such that f(U) ⊂ V. Therefore
f(U) ∩W = ∅ and G(f) is (δ, β)-closed in X × Y .

Theorem 12. If f : X → Y is a (δ, β)-irresolute injection with a (δ, β)-closed graph,
then X is δ-semi T2
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Proof. Let x and y be any distinct points of X. Then since f is injective, we have
f(x) 6= f(y). Then we have (x, f(y)) ∈ (X × Y )\G(f). Since G(f) is (δ, β)-closed,
there exist U ∈ δSO(X,x) and V ∈ βO(Y, f(y)) such that f(U) ∩ V = ∅. Since f is
(δ, β)-irresolute, there exists G ∈ δSO(Y, y) such that f(G) ⊂ V. Therefore, we have
f(U) ∩ f(G) = ∅ and hence U ∩G = ∅. This shows that X is δ-semi T2.
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