On weighted Ostrowski type inequalities in $L_1(a,b)$ spaces

Arif Rafiq^{1,*}and Farooq Ahmad²

Received January 10, 2007; accepted December 10, 2008

Abstract. The main aim of this paper is to establish weighted Ostrowski type inequalities for the product of two continuous functions whose derivatives are in $L_1(a, b)$ spaces. Our results also provide new weighted estimates on these inequalities.

AMS subject classifications: Primary 26D10; Secondary 26D15

Key words: weighted Ostrowski type inequalities, estimates, Grüss type inequality, Čebyšev inequality

1. Introduction

In 1938, Ostrowski proved the following inequality ([7], see also [6, page 468]):

Theorem 1. Let $f: I \subseteq \mathbb{R} \to \mathbb{R}$ be a differentiable mapping on $\overset{0}{I}$ (interior of I), and let $a,b\in \overset{0}{I}$ with a < b. If $f':(a,b)\to \mathbb{R}$ is bounded on (a,b), i.e., $\|f'\|_{\infty}:=\sup_{t\in(a,b)}|f'(t)|<\infty$, then we have:

$$\left| f(x) - \frac{1}{b-a} \int_{a}^{b} f(t) dt \right| \le \left[\frac{1}{4} + \frac{\left(x - \frac{a+b}{2}\right)^{2}}{\left(b-a\right)^{2}} \right] (b-a) \|f'\|_{\infty}, \tag{1}$$

for all $x \in [a, b]$. The constant $\frac{1}{4}$ is sharp in the sense that it cannot be replaced by a smaller one.

In 2005, Pachpatte [9] established a new inequality of the type (1) involving two functions and their derivatives as given in the following theorem:

 $^{^1}$ Mathematics Department, COMSATS Institute of Information Technology, Plot # 30, Sector H-8/1, Islamabad 44 000, Pakistan

² Centre for Advanced Studies in Pure and Applied Mathematics, Bahauddin Zakariya University, Multan 60 800, Pakistan

^{*}Corresponding author. Email addresses: arafiq@comsats.edu.pk (A. Rafiq), farooqgujar@gmail.com (F. Ahmad)

Theorem 2. Let $f,g:[a,b] \to \mathbb{R}$ be continuous functions on [a,b] and differentiable on (a,b), whose derivatives $f',g':(a,b) \to \mathbb{R}$ are bounded on (a,b), i.e., $\|f'\|_{\infty} := \sup_{t \in (a,b)} |f'(t)| < \infty$, $\|g'\|_{\infty} := \sup_{t \in (a,b)} |g'(t)| < \infty$, then

$$\left| f(x) g(x) - \frac{1}{2(b-a)} \left(g(x) \int_{a}^{b} f(y) dy + f(x) \int_{a}^{b} g(y) dy \right) \right|$$

$$\leq \frac{1}{2} \left(|g(x)| \|f'\|_{\infty} + |f(x)| \|g'\|_{\infty} \right) \left[\frac{1}{4} + \frac{\left(x - \frac{a+b}{2}\right)^{2}}{\left(b-a\right)^{2}} \right] (b-a) ,$$
(2)

for all $x \in [a, b]$.

In [3], Dragomir and Wang established another Ostrowski like inequality for $\|.\|_1$ –norm as given in the following theorem:

Theorem 3. Let $f:[a,b] \longrightarrow \mathbb{R}$ be a differentiable mapping on (a,b), whose derivative $f':[a,b] \longrightarrow \mathbb{R}$ belongs to $\mathbf{L}_1(a,b)$. Then, we have the inequality:

$$\left| f(x) - \frac{1}{b-a} \int_{a}^{b} f(t)dt \right| \le \left(\frac{1}{2} + \frac{\left| x - \frac{a+b}{2} \right|}{b-a} \right) \|f'\|_{1}, \tag{3}$$

for all $x \in [a, b]$.

Mir and Arif obtained the inequality for $L_1(a, b)$ spaces [4], given in the form of the following theorem:

Theorem 4. Let $f, g: [a,b] \to \mathbb{R}$ be continuous mappings on [a,b] and differentiable on (a,b), whose derivatives $f',g': (a,b) \to \mathbb{R}$ belong to $\mathbf{L}_1(a,b)$, i.e., $\|f'\|_1 = \int\limits_a^b |f(t)| \, dt < \infty, \ \|g'\|_1 = \int\limits_a^b |g(t)| \, dt < \infty, \ then$

$$\left| f(x) g(x) - \frac{1}{2(b-a)} \left(g(x) \int_{a}^{b} f(y) dy + f(x) \int_{a}^{b} g(y) dy \right) \right|$$

$$\leq \frac{1}{2} (|g(x)| \|f'\|_{1} + |f(x)| \|g'\|_{1}) \left(\frac{1}{2} + \frac{|x - \frac{a+b}{2}|}{b-a} \right),$$
(4)

for all $x, y \in [a, b]$.

In the last few years, the study of such inequalities has been the focus of many mathematicians and a number of research papers have appeared which deal with various generalizations, extensions and variants (see for example [2, 4, 6, 8] and references therein). Inspired and motivated by the research work going on related to inequalities (1-4), we establish here new weighted Ostrowski type inequalities for the product of two continuous functions whose derivatives are in $\mathbf{L}_1(a,b)$. Our proofs are of independent interest and provide new estimates on these types of inequalities.

2. Main results

Let the weight $w:[a,b]\to [0,\infty)$ be non-negative, integrable and

$$\int_{a}^{b} w(t) dt < \infty.$$

The domain of w may be finite or infinite. We denote the zero moment as

$$m(a,b) = \int_{a}^{b} w(t)dt.$$

For any function $\phi \in L_1[a,b]$, we define $\|\phi\|_{w,1} = \int_a^b w(t) |\phi(t)| dt$ and $\|\phi\|_{w,1,[y,x]} = \int_a^b w(t) |\phi(t)| dt$ $\int\limits_{y}^{x}w\left(t\right) \left\vert \phi(t)\right\vert dt\text{ for all }y,x\in\left[a,b\right] \text{ and }y< x.$ Our main result is given in the following theorem:

Theorem 5. Let $f, g : [a, b] \to \mathbb{R}$ be continuous mappings on [a, b] and differentiable on (a,b) such that f' and g' belong to $\mathbf{L}_1(a,b)$. Let F and G be continuous mappings where $F(x) = \int_{a}^{x} w(t) f'(t) dt$ and $G(x) = \int_{a}^{x} w(t) g'(t) dt$. Then

$$\left| F(x)G(x) - \frac{1}{2m(a,b)} \left(G(x) \int_{a}^{b} w(y) F(y) dy + F(x) \int_{a}^{b} w(y) G(y) dy \right) \right| \\
\leq \frac{1}{2m(a,b)} \left[|G(x)| \int_{a}^{b} w(y) \|f'\|_{w,1,[y,x]} dy + |F(x)| \int_{a}^{b} w(y) \|g'\|_{w,1,[y,x]} dy \right] \\
\leq \frac{\max\{|F(x)|, |G(x)|\}}{2m(a,b)} \int_{a}^{b} w(y) \left(\|f'\|_{w,1,[y,x]} + \|g'\|_{w,1,[y,x]} \right) dy, \tag{5}$$

for all $x, y \in [a, b]$ and y < x.

Proof. For any $x \in [a, b]$, let $F(x) = \int_{-\infty}^{x} w(t) f'(t) dt$ and $G(x) = \int_{-\infty}^{x} w(t) g'(t) dt$, then we have the following identities

$$F(x) - F(y) = \int_{a}^{x} w(t) f'(t)dt - \int_{a}^{y} w(t) f'(t)dt = \int_{y}^{x} w(t) f'(t)dt.$$
 (6)

Similarly,

$$G(x) - G(y) = \int_{y}^{x} w(t) g'(t) dt.$$

$$(7)$$

Multiplying both sides of (6) and (7) by w(y)G(x) and w(y)F(x) respectively and then adding, we get

$$2F(x)G(x)w(y) - [G(x)w(y)F(y) + F(x)w(y)G(y)]$$

$$= G(x)w(y)\int_{y}^{x} w(t)f'(t)dt + F(x)w(y)\int_{y}^{x} w(t)g'(t)dt.$$
(8)

Integrating both sides of (8) with respect to y over [a, b] and rewriting, we have:

$$F(x)G(x) - \frac{1}{2m(a,b)} \left(G(x) \int_{a}^{b} w(y) F(y) dy + F(x) \int_{a}^{b} w(y) G(y) dy \right)$$

$$= \frac{1}{2m(a,b)} \left[G(x) \int_{a}^{b} w(y) \left(\int_{y}^{x} w(t) f'(t) dt \right) dy + F(x) \int_{a}^{b} w(y) \left(\int_{y}^{x} w(t) g'(t) dt \right) dy \right], \tag{9}$$

which implies

$$\left| F(x)G(x) - \frac{1}{2m(a,b)} \left(G(x) \int_{a}^{b} w(y) F(y) dy + F(x) \int_{a}^{b} w(y) G(y) dy \right) \right|$$

$$\leq \frac{1}{2m(a,b)} \left[|G(x)| \int_{a}^{b} w(y) \left| \int_{y}^{x} w(t) f'(t) dt \right| dy + |F(x)| \int_{a}^{b} w(y) \left| \int_{y}^{x} w(t) g'(t) dt \right| dy \right]$$

$$\leq \frac{1}{2m(a,b)} \left[|G(x)| \int_{a}^{b} w(y) ||f'||_{w,1,[y,x]} dy + |F(x)| \int_{a}^{b} w(y) ||g'||_{w,1,[y,x]} dy \right].$$

This completes the proof of the first part of inequality (5). Also

$$\begin{split} &\frac{1}{2m(a,b)}\left[|G(x)|\int\limits_{a}^{b}w\left(y\right)\|f'\|_{w,1,[y,x]}\,dy + |F(x)|\int\limits_{a}^{b}w\left(y\right)\|g'\|_{w,1,[y,x]}\,dy\right] \\ &\leq \frac{\max\left\{\left|F(x)\right|,\left|G(x)\right|\right\}}{2m(a,b)}\int\limits_{a}^{b}w\left(y\right)\left(\|f'\|_{w,1,[y,x]} + \|g'\|_{w,1,[y,x]}\right)dy, \end{split}$$

which is the second inequality in (5).

Remark 1. Multiplying both sides of (9) by w(x), then integrating with respect to x over [a,b] and applying the properties of the modulus, we obtain the following

weighted Grüss type inequality:

$$\left| \frac{1}{m(a,b)} \int_{a}^{b} F(x)G(x)w(x)dx - \left(\frac{1}{m(a,b)} \int_{a}^{b} G(x)w(x)dx \right) \left(\frac{1}{m(a,b)} \int_{a}^{b} F(x)w(x)dx \right) \right|
\leq \frac{1}{2m^{2}(a,b)} \int_{a}^{b} w(x) \max \{|F(x)|, |G(x)|\}
\times \left(\int_{a}^{b} w(y) \left(||f'||_{w,1,[y,x]} + ||g'||_{w,1,[y,x]} \right) dy \right) dx.$$
(10)

A slight variant of Theorem 5 is embodied in the following theorem.

Theorem 6. Under the assumptions of theorem 5, we have the inequality:

$$\left| F(x) G(x) - \frac{1}{m(a,b)} F(x) \int_{a}^{b} G(y) w(y) dy - \frac{1}{m(a,b)} G(x) \int_{a}^{b} F(y) w(y) dy \right|
+ \frac{1}{m(a,b)} \int_{a}^{b} F(y) G(y) w(y) dy \right|
\leq \frac{1}{m(a,b)} \int_{a}^{b} w(y) \|f'\|_{w,1,[y,x]} \|g'\|_{w,1,[y,x]} dy.$$
(11)

for all $x, y \in [a, b]$ and y < x.

Proof. From the hypothesis, identities (6) and (7) hold. Multiplying the left and right-hand sides of (6) and (7), we get

$$F(x) G(x) - F(x) G(y) - F(y) G(x) + F(y) G(y)$$

$$= \int_{y}^{x} w(t) f'(t) dt \int_{y}^{x} w(t) g'(t) dt.$$
(12)

Multiplying (12) by w(y) and integrating the resultant with respect to y over [a, b]

and rewriting we have

$$F(x)G(x) - \frac{1}{m(a,b)}F(x) \int_{a}^{b} G(y)w(y)dy - \frac{1}{m(a,b)}G(x) \int_{a}^{b} F(y)w(y)dy + \frac{1}{m(a,b)} \int_{a}^{b} F(y)G(y)w(y)dy$$

$$= \frac{1}{m(a,b)} \int_{a}^{b} w(y) \left(\int_{y}^{x} w(t)f'(t)dt \right) \left(\int_{y}^{x} w(t)g'(t)dt \right) dy, \tag{13}$$

which implies

$$\begin{split} & \left| F\left(x\right)G(x) - \frac{1}{m(a,b)}F\left(x\right) \int_{a}^{b} G(y)w(y)dy - \frac{1}{m(a,b)}G(x) \int_{a}^{b} F\left(y\right)w(y)dy \right. \\ & + \left. \frac{1}{m(a,b)} \int_{a}^{b} F\left(y\right)G(y)w(y)dy \right| \\ & \leq \frac{1}{m(a,b)} \int_{a}^{b} w(y) \left(\int_{y}^{x} w(t) \left| f'(t) \right| dt \right) \left(\int_{y}^{x} w(t) \left| g'(t) \right| dt \right) dy \\ & = \frac{1}{m(a,b)} \int_{a}^{b} w(y) \left\| f' \right\|_{w,1,[y,x]} \left\| g' \right\|_{w,1,[y,x]} dy. \end{split}$$

This completes the proof.

Remark 2. Multiplying (13) by w(x), then integrating both sides with respect to x over [a, b] and applying the properties of modulus, we get

$$\left| \frac{1}{m(a,b)} \int_{a}^{b} F(x) G(x) w(x) dx - \left(\frac{1}{m(a,b)} \int_{a}^{b} F(x) w(x) dx \right) \left(\frac{1}{m(a,b)} \int_{a}^{b} G(x) w(x) dx \right) \right|$$

$$\leq \frac{1}{2m^{2}(a,b)} \int_{a}^{b} w(x) \left(\int_{a}^{b} w(y) \|f'\|_{w,1,[y,x]} \|g'\|_{w,1,[y,x]} dy \right) dx,$$

$$(14)$$

for all $x, y \in [a, b]$ and y < x. Inequality (14) is a modified Čebyšev inequality (see [5, 297]).

Remark 3. We note that the norms $||f'||_{w,1,[y,x]}$ and $||g'||_{w,1,[y,x]}$ are defined for all $x, y \in [a,b]$ and y < x, therefore we can recapture inequalities (5), (10) and (14) for

the norm over [a,b] as follows:

$$\left| F(x)G(x) - \frac{1}{2m(a,b)} \left(G(x) \int_{a}^{b} F(y)w(y) \, dy + F(x) \int_{a}^{b} G(y)w(y) \, dy \right) \right|$$

$$\leq \frac{1}{2} \left(|G(x)| \, ||f'||_{w,1} + |F(x)| \, ||g'||_{w,1} \right),$$
(15)

$$\left| \frac{1}{m(a,b)} \int_{a}^{b} F(x)G(x)w(x)dx - \left(\frac{1}{m(a,b)} \int_{a}^{b} G(x)w(x)dx \right) \left(\frac{1}{m(a,b)} \int_{a}^{b} F(x)w(x)dx \right) \right|$$

$$\leq \frac{\|f'\|_{w,1} + \|g'\|_{w,1}}{2m(a,b)} \int_{a}^{b} w(x) \max\left\{ |F(x)|, |G(x)| \right\} dx,$$

$$(16)$$

and

$$\left| \frac{1}{m(a,b)} \int_{a}^{b} F(x) G(x) w(x) dx - \left(\frac{1}{m(a,b)} \int_{a}^{b} F(x) w(x) dx \right) \left(\frac{1}{m(a,b)} \int_{a}^{b} G(x) w(x) dx \right) \right| \le \frac{1}{2} \|f'\|_{w,1} \|g'\|_{w,1}.$$
(17)

References

- [1] N. S. BARNETT, P. CERONE, S. S. DRAGOMIR, J. ROUMELIOTIS, A. SOFO, A survey on Ostrowski type inequalities for twice differentiable mappings and applications, Inequality, Theory and Applications 1(2001), 33-86.
- [2] S. S. Dragomir, Th. M. Rassias (Eds.), Ostrowski Type Inequalities and Applications in Numerical Integration, Kluwer Academic Publishers, Dordrecht, 2002.
- [3] S. S. DRAGOMIR, S. WANG, A New Inequality of Ostrowski's Type in L₁-norm and applications to some specific means and to some quadrature rules, Tamkang J. of Math. 28(1997), 239-244.
- [4] N. A. MIR, A. RAFIQ, A note on Ostrowski like inequalities in $L_1(a, b)$, General Mathematics 14(2006), 23-30.
- [5] D. S. MITRINOVIĆ, J. E. PEČARIĆ, A. M. FINK, Classical and New Inequalities in Analysis, Kluwer Academic Publishers, Dordrecht, 1993.
- [6] D. S. MITRINOVIĆ, J. E. PEČARIĆ, A. M. FINK, Inequalities for Functions and their Integrals and Derivatives, Kluwer Academic Publishers, Dordrecht, 1994.
- [7] A. M. OSTROWSKI, Über die Absolutabweichung einer differentiebaren Funktion von ihrem Integralmittelwert, Comment. Math. Helv. 10(1938), 226-227.
- [8] B. G. PACHPATTE, On a new generalization of Ostrowski's inequality, J. Inequal. Pure and Appl. Math. 5(2004), article 36.
- [9] B. G. Pachpatte, A note on Ostrowski like inequalities, J. Inequal. Pure and Appl. Math. 6(2005), article 114.