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1. Introduction

This paper is concerned with the existence of mild solutions for nonlinear functional
integrodifferential evolution equations with nonlocal conditions. More precisely, we
consider the following nonlocal Cauchy problem on a general Banach space X :

x′(t) = A(t)x(t) + F

(
t, x(σ1(t)), ..., x(σn(t)),

∫ t

0

h(t, s, x(σn+1(t)))ds
)
, t ∈ J,

x(0) + g(x) = x0, (1)

where J = [0, b], the family {A(t) : 0 ≤ t ≤ b} of an unbounded linear operator
generates linear evolution systems. Nonlinear operators F : J × Xn+1 → X, h :
J × J ×X, g : C(J,X)→ X, σi : J → J, i = 1, ..., n+ 1, are given functions.

The study of abstract nonlocal Cauchy problem was motivated by the paper
of Byszewski and Lakshmikantham [4, 5]. In [5], the author has considered the
existence and uniqueness of mild, strong, and classical solutions of the nonlocal
Cauchy problem, where the operator A(t) = A generates a strongly continuous
semigroup. Subsequently, many papers have been interested in the nonlocal Cauchy
problem and that stems mainly from the observation that nonlocal conditions are
more realistic than the usual ones in treating physical problems, e.g. Byszewski and
Akca [6], Ntouyas and Tsamatos [15], Lin and Liu [14], Ezzinbi and Fu [9], Liang et
al. [13], Benchohra et al. [3], Ezzinbi and Liu [8], Aizicovici and Mckibben [1].

The fundamental tools used in the existence proofs of all above-mentioned works
are essentially fixed-point arguments; Schauder,s fixed point theorem [6], Leray-
Schauder Alternative [15], the Sadovskii fixed point theorem [12], Schaefer, fixed
point theorem [2].
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In this paper, we shall investigate the existence of mild solutions of a nonlocal
Cauchy problem (1) in Banach spaces, by means of a different method, that is, by
using the theory of evolution families, Banach,s contraction principle and Leray-
Schauder Alternative.

This paper will be organized as follows. In Section 2, we will briefly recall some
preliminary facts which will be used in the paper. Section 3 is devoted to the
existence of mild solutions of problem (1). Finally, a concrete example is presented
in Section 4 to show the application of our main results.

2. Preliminaries

Throughout this section, for the family {A(t) : 0 ≤ t ≤ b} of linear operators, we
need the following assumptions (see [11]).

(I) The domain D(A) of {A(t) : 0 ≤ t ≤ b} is dense in the Banach space X and
independent of t, A(t) is a closed linear operator.

(II) For each t ∈ J, the resolvent R(λ,A(t)) exists for all λ with Reλ ≥ 0 and
there exists K > 0 such that

‖ R(λ,A(t)) ‖≤ K

(|λ|+ 1)
.

(III) For any t, s, τ ∈ J, there exists a 0 < δ < 1 and K > 0 such that

‖ (A(t)−A(τ))A−1(s) ‖≤ K|t− τ |δ,

and for each t ∈ J and some λ ∈ ρ(A(t)), the resolvent R(λ,A(t)) set of A(t) is a
compact operator.

Definition 1 (see [16]). A family of linear operators {U(t, s) : 0 ≤ s ≤ t ≤ b} on X
is called an evolution system if the following two conditions are satisfied:

(a) U(t, s) ∈ L(X) the space of bounded linear transformations on X whenever
0 ≤ s ≤ t ≤ b and for each x ∈ X the mapping (t, s)→ U(t, s)x is continuous;

(b) U(t, s)U(s, τ) = U(t, τ) whenever 0 ≤ τ ≤ s ≤ t ≤ b.

Definition 2. A continuous function x(·) : J → X is said to be a mild solution to
problem (1) if for all x0 ∈ X, it satisfies the following integral equation

x(t) = U(t, 0)[x0 − g(x)]

+
∫ t

0

U(t, s)F
(
s, x(σ1(s)), ..., x(σn(s)),

∫ s

0

h(s, τ, x(σn+1(τ)))dτ
)
ds. (2)

Lemma 1 (see [10]). If conditions (I)-(III) are satisfied, then the family {A(t) :
0 ≤ t ≤ b} generates a unique linear evolution system {U(t, s) : 0 ≤ s ≤ t ≤ b} is a
compact linear operator on X whenever t− s > 0(0 ≤ s < t ≤ b).

Lemma 2 (Leray-Schauder Nonlinear Alternative [7] ). Let X be a Banach space
with Ω ⊂ X convex. Assume V is a relatively open subset of Ω with 0 ∈ V and
G : V → Ω is a compact map. Then either
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(I) G has a fixed point in V, or
(II) there exists a point v ∈ ∂V such that v ∈ λG(v) for some λ ∈ (0, 1).

Further we assume the following hypotheses:

(H1) U(t, s) is a compact linear operator on X whenever t − s > 0 and there
exists a constant M > 0, such that ‖ U(t, s) ‖≤M, 0 ≤ s < t ≤ b.

(H2) The function F : J × Xn+1 → X is continuous and there exist constants
L > 0, L1 ≥ 0, such that for all xi, yi ∈ X, i = 1, ...n+ 1, we have

‖ F (t, x1, x2, ..., xn+1)− F (t, y1, y2, ..., yn+1) ‖≤ L
[ n+1∑
i=1

‖ xi − yi ‖
]
,

and
L1 = max

t∈J
‖ F (t, 0, ..., 0) ‖ .

(H3) The function h : J × J × X → X is continuous and there exist constants
N > 0, N1 ≥ 0, such that for all x, y ∈ X,

‖ h(t, s, x)− h(t, s, y) ‖≤ N ‖ x− y ‖,

and
N1 = max

0≤s≤t≤b
‖ h(t, s, 0) ‖ .

(H4) σi : J → J, i = 1, ..., n+ 1, are continuous functions such that σi(t) ≤ t, i =
1, ..., n+ 1.

(H5) (i)The function g(·) : C(J,X) → X is continuous and there exists a δ ∈
(0, b) such that g(φ) = g(ψ) for any φ, ψ ∈ C := C(J,X) with φ = ψ on [δ, b].

(ii) There is a continuous nondecreasing function Λ : [0,∞)→ (0,∞) such that

‖ g(φ) ‖≤ Λ(‖ φ ‖), φ ∈ C.

(H6) There exists a constant M∗ > 0 such that

M∗

[M(‖ x0 ‖ +Λ(M∗)) +Mb(LbN1 + L1)]K0
> 1,

where K0 = eML(n+Nb)b.

3. Main result

Theorem 1. Suppose that assumptions (H1)-(H6) are satisfied. Then the nonlocal
Cauchy problem (1) has at least one mild solution on J .

Proof. Consider the space C := C(J,X) the Banach space of all continuous func-
tions from J to X endowed with sup norm.

Let L0 := 2ML(n + Nb) and we introduce in the space C the equivalent norm
defined as

‖ φ ‖V := sup
t∈J

e−L0t ‖ φ(t) ‖ .
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Then, it is easy to see that V := (C(J,X), ‖ · ‖V ) is a Banach space. Fix v ∈ C and
for t ∈ J, φ ∈ V, we now define an operator

(Qvφ)(t) = U(t, 0)[x0 − g(v)]

+
∫ t

0

U(t, s)F
(
s, φ(σ1(s)), ..., φ(σn(s)),

∫ s

0

h(s, τ, φ(σn+1(τ)))dτ
)
ds. (3)

Since U(·, 0)(x0 − g(v)) ∈ C(J,X), so it follows from (H1)-(H4) that (Qvφ)(t) ∈ V
for all φ ∈ V. Let φ, ψ ∈ V, we have

e−L0t ‖ (Qvφ)(t)− (Qvψ)(t) ‖

≤ e−L0t

∫ t

0

wwwwU(t, s)
[
F

(
s, φ(σ1(s)), ..., φ(σn(s)),

∫ s

0

h(s, τ, φ(σn+1(τ)))dτ
)

−F
(
s, ψ(σ1(s)), ..., ψ(σn(s)),

∫ s

0

h(s, τ, ψ(σn+1(τ)))dτ
)]wwwwds

≤ML

∫ t

0

e−L0t

[
‖ φ(σ1(s))− ψ(σ1(s)) ‖ + · · ·+ ‖ φ(σn(s))− ψ(σn(s)) ‖

+
wwww∫ s

0

h(s, τ, φ(σn+1(τ)))dτ −
∫ s

0

h(s, τ, ψ(σn+1(τ)))dτ
wwww]ds

≤ML

∫ t

0

e−L0t

[
‖ φ(s)− ψ(s) ‖ + · · ·+ ‖ φ(s)− ψ(s) ‖

+N
∫ s

0

‖ φ(σn+1(τ))− ψ(σn+1(τ)) ‖ dτ
]
ds

≤ML

∫ t

0

e−L0t

[
n ‖ φ(s)− ψ(s) ‖ +Nb ‖ φ(s)− ψ(s) ‖

]
ds

≤ML

∫ t

0

eL0((s−t)
[
ne−L0s ‖ φ(s)− ψ(s) ‖ +Nb sup

s∈J
e−L0s ‖ φ(s)− ψ(s) ‖

]
ds

≤ML(n+Nb)
∫ t

0

eL0(s−t)ds ‖ φ− ψ ‖V

≤ ML(n+Nb)
L0

‖ φ− ψ ‖V , t ∈ J,

which implies that

e−L0t ‖ (Qvφ)(t)− (Qvψ)(t) ‖≤ 1
2
‖ φ− ψ ‖V , t ∈ J.

Thus
‖ Qvφ−Qvψ ‖V≤

1
2
‖ φ− ψ ‖V , φ, ψ ∈ V.

Therefore, Qv is a strict contraction. By Banach,s contraction principle we con-
clude that Qv has a unique fixed point φv ∈ V and equation (3) has a unique mild
solution on [0, b]. Set

ṽ(t) :=
{
v(t) if t ∈ (δ, b],
v(δ) if t ∈ [0, δ].
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From (3), we have

φṽ(t) = U(t, 0)[x0 − g(ṽ)] (4)

+
∫ t

0

U(t, s)F
(
s, φṽ(σ1(s)), ..., φṽ(σn(s)),

∫ s

0

h(s, τ, φṽ(σn+1(τ))dτ
)
ds.

Consider the map, P : Cδ = C([δ, b], X)→ Cδ defined by

(Pv)(t) = φṽ(t), t ∈ [δ, b]. (5)

We shall show that P satisfy all conditions of Lemma 2. The proof will be given in
several steps.

Step 1. P maps bounded sets into bounded sets in Cδ.

Indeed, it is enough to show that there exists a positive constant L such that for
each v ∈ Cr(δ) := {φ ∈ Cδ; sup

δ≤t≤b
‖ φ(t) ‖≤ r} one has ‖ Pv ‖≤ L.

Let v ∈ Cr(δ), then for t ∈ (0, b], we have

‖ φṽ(t) ‖ ≤‖ U(t, 0)[x0 − g(ṽ)] ‖

+
∫ t

0

wwwwU(t, s)F
(
s, φṽ(σ1(s)), ..., φṽ(σn(s)),

∫ s

0

h(s, τ, φṽ(σn+1(τ))dτ
)wwwwds

≤M [‖ x0 + g(ṽ) ‖]

+M
∫ t

0

[wwwwF(s, φṽ(σ1(s)), ..., φṽ(σn(s)),
∫ s

0

h(s, τ, φṽ(σn+1(τ))dτ
)

−F (s, 0, ..., 0)
wwww+ ‖ F (s, 0, ..., 0) ‖

]
ds

≤M [‖ x0 ‖ + ‖ g(ṽ) ‖] +M

∫ t

0

{
L

[
‖ φṽ(s) ‖ + · · ·+ ‖ φṽ(s) ‖

+
∫ s

0

[‖ h(s, τ, φṽ(σn+1(τ))− h(s, τ, 0) ‖ + ‖ h(s, τ, 0) ‖]dτ
]

+ L1

}
ds

≤M [‖ x0 ‖+Λ(r)] +M

∫ t

0

{
L

[
n ‖ φṽ(s) ‖ +b(N ‖ φṽ(s) ‖ +N1)

]
+L1

}
ds

≤M [‖ x0 ‖+Λ(r)] +Mb(LbN1 + L1)+ML(n+Nb)
∫ t

0

sup
s∈(0,b]

‖ φṽ(s) ‖ ds.

Thus

‖ Pv ‖≤M [‖ x0 ‖ +Λ(r)] +Mb(LbN1 + L1) +ML(n+Nb)rb = L.

Step 2. P maps bounded sets into equicontinuous sets of Cδ.
Let δ ≤ t1 < t2 ≤ b, and Cr(δ) a bounded set as in Step 1. Let v ∈ Cr(δ), we
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have

‖ Pv(t2)− Pv(t1) ‖
≤‖ [U(t2, 0)− U(t1, 0)][x0 − g(ṽ)] ‖

+
∫ t2

0

wwww[U(t2, s)F
(
s, φṽ(σ1(s)), ..., φṽ(σn(s)),

∫ s

0

h(s, τ, φṽ(σn+1(τ)))dτ
)wwwwds

−
∫ t1

0

wwww[U(t1, s)F
(
s, φṽσ1(s)), ..., φṽσn(s)),

∫ s

0

h(s, τ, φṽ(σn+1(τ)))dτ
)wwwwds

≤‖ U(t2, 0)− U(t1, 0) ‖ [‖ x0 ‖ +Λ(r)] +
∫ t1

0

‖ U(t2, s)− U(t1, s) ‖wwwwF(s, φṽ(σ1(s)), ..., φṽ(σn(s)),
∫ s

0

h(s, τ, φṽ(σn+1(τ)))dτ
)wwwwds

+M
∫ t2

t1

wwwwF(s, φṽ(σ1(s)), ..., φṽ(σn(s)),
∫ s

0

h(s, τ, φṽ2(σn+1(τ)))dτ
)wwwwds.

Noting that

wwwwF(s, φṽ(σ1(s)), ..., φṽ(σn(s)),
∫ s

0

h(s, τ, φṽ(σn+1(τ)))dτ
)wwww

≤
wwwwF(s, φṽ(σ1(s)), ..., φṽ(σn(s)),

∫ s

0

h(s, τ, φṽ(σn+1(τ)))dτ
)

−F (s, 0, ..., 0)
wwww+ ‖ F (s, 0, ..., 0) ‖

≤ L
[
‖ φṽ(σ1(s)) ‖ + · · ·+ ‖ φṽ(σn(s)) ‖ +

wwww∫ s

0

h(s, τ, φṽ(σn+1(τ)))dτ
wwww]+ L1

≤ L
[
‖ φṽ(s) ‖ + · · ·+ ‖ φṽ(s) ‖ +

∫ s

0

[‖ h(s, τ, φṽ(τ))− h(s, τ, 0) ‖

+ ‖ h(s, τ, 0) ‖]dτ
]

+ L1

≤ L
[
n ‖ φṽ(s) ‖ +b[N sup

s∈[δ,b]

‖ φṽ(s) ‖ +N1]
]

+ L1

≤ L
[
(n+Nb) sup

s∈[δ,b]

‖ φṽ(s) ‖ +bN1

]
+ L1 ≤ L[(n+Nb)r + bN1] + L1.

We see that ‖ Pv(t2)−Pv(t1) ‖ tend to zero independently of v ∈ Cr(δ) as t2−t1 → 0,
since the compactness of U(t, s) for t− s > 0 implies the continuity in the uniform
operator topology. Thus the family of functions {(Pv) : v ∈ Cr(δ)} is equicontinuous
on [δ, b].

Step 3. The set {P (v)(t) : v ∈ Cr(δ)} is relatively compact in Cδ.

Let δ < t ≤ s ≤ b be fixed and ε a real number satisfying 0 < ε < t, for v ∈ Cr(δ),
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we define

(Pεv)(t) = U(t, 0)[x0 − g(ṽ)]

+
∫ t−ε

0

U(t, s)F
(
s, φṽσ1(s)), ..., φṽσn(s)),

∫ s

0

h(s, τ, φṽ(σn+1(τ)))dτ
)
ds

= U(t, 0)[x0 − g(ṽ)] + U(t, t− ε)

×
∫ t−ε

0

U(t− ε, s)F
(
s, φṽσ1(s)), ..., φṽσn(s)),

∫ s

0

h(s, τ, φṽ(σn+1(τ)))dτ
)
ds.

Using the compactness of U(t, s) for t−s > 0, we obtain the set {(Pεv)(t) : v ∈ Cr(δ)}
is precompact v ∈ Cr(δ) for every ε, 0 < ε < t. Moreover, for every v ∈ Cr(δ) we
have

‖ (Pv)(t)− (Pεv)(t) ‖

≤
∫ t

t−ε

wwwwU(t, s)F
(
s, φṽ(σ1(s)), ..., φṽ(σn(s)),

∫ s

0

h(s, τ, φṽ(σn+1(τ)))dτ
)wwwwds

≤M
∫ t

t−ε

[wwwwF(s, φṽ(σ1(s)), ..., φṽ(σn(s)),
∫ s

0

h(s, τ, φṽ(σn+1(τ)))dτ
)wwww]ds

≤M
∫ t

t−ε

[
L(n+Nb) sup

s∈[δ,b]

‖ φṽ(s) ‖ +LbN1 + L1

]
ds

≤M
∫ t

t−ε
[L(n+Nb)r + LbN1 + L1]ds.

Therefore, there are precompact sets arbitrarily close to the set {(Pv) : v ∈ Cr(δ)}.
Hence the set {(Pv) : v ∈ Cr(δ)} is a precompact in Cδ.

Step 4. P : Cδ → Cδ is continuous.

From (4) and (H1)-(H5), we deduce that for v1, v2 ∈ Cr(δ), t ∈ (0, b],

‖ φṽ1(t)− φṽ2(t) ‖
≤‖ U(t, 0)[g(ṽ1)− g(ṽ2)] ‖

+
∫ t

0

wwwwU(t, s)
[
F

(
s, φṽ1(σ1(s)), ..., φṽ1(σn(s)),

∫ s

0

h(s, τ, φṽ1(σn+1(τ)))dτ
)

−F
(
s, φṽ2(σ1(s)), ..., φṽ2(σn(s)),

∫ s

0

h(s, τ, φṽ2(σn+1(τ)))
)]wwwwds

≤M ‖ g(ṽ1)− g(ṽ2) ‖

+M
∫ t

0

L

[
‖ φṽ1(σ1(s))− φṽ2(σ1(s)) ‖ + · · ·+ ‖ φṽ1(σn(s))− φṽ2(σn(s)) ‖

+
wwww∫ s

0

h(s, τ, φṽ1(σn+1(τ)))dτ))−
∫ s

0

h(s, τ, φṽ2(σn+1(τ)))dτ
wwww]ds
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≤M ‖ g(ṽ1)− g(ṽ2) ‖

+ML

∫ t

0

[
‖ φṽ1(s)− φṽ2(s) ‖ + · · ·+ ‖ φṽ1(s)− φṽ2(s) ‖

+N
∫ s

0

[‖ φṽ1(σn+1(s))− φṽ2(σn+1(s)) ‖
]
ds

≤M ‖ g(ṽ1)− g(ṽ2) ‖ +ML

∫ t

0

[
n ‖ φṽ1(s)− φṽ2(s) ‖

+Nb ‖ φṽ1(s)− φṽ2(s) ‖
]
ds

≤M ‖ g(ṽ1)− g(ṽ2) ‖ +ML(n+Nb)
∫ t

0

sup
s∈(0,b]

‖ φṽ1(s)− φṽ2(s) ‖ ds.

Using again the Gronwall,s inequality, that for t, v1, v2 as above

sup
t∈(0,b]

‖ φṽ1(t)− φṽ2(t) ‖≤MeML(n+Nb)b ‖ g(ṽ1)− g(ṽ2) ‖,

for all t ∈ [0, b], which implies that

‖ Pv1 − Pv2 ‖≤Me[ML(n+Nb)+β]b ‖ g(ṽ1)− g(ṽ2) ‖ .

for all t ∈ [δ, b], v1, v2 ∈ Cr(δ). Therefore, P is continuous.
Step 5. We now show that there exists an open set V ∗ ⊆ Cδ with v /∈ λPv for

λ ∈ (0, 1) and v ∈ ∂V ∗. Let λ ∈ (0, 1) and let v ∈ Cδ be a possible solution of
v = λP (v) for some 0 < λ < 1. Thus, for each t ∈ (0, b],

v(t) = λφṽ(t) = λU(t, 0)[x0 − g(ṽ)] (6)

+λ
∫ t

0

U(t, s)F
(
s, φṽ(σ1(s)), ..., φṽ(σn(s)),

∫ s

0

h(s, τ, φṽ(σn+1(τ))dτ
)
ds.

This implies by (H1)-(H5) that for each t ∈ J we have ‖ v(t) ‖≤‖ φṽ(t) ‖ and

‖ φṽ(t) ‖ ≤M [‖ x0 ‖ +g(ṽ) ‖]

+M
∫ t

0

[wwwwF(s, φṽ(σ1(s)), ..., φṽ(σn(s)),
∫ s

0

h(s, τ, φṽ(σn+1(τ))dτ
)wwww]ds

≤M [‖ x0 ‖ +Λ(‖ ṽ ‖)] +Mb(LbN1 + L1)

+ML(n+Nb)
∫ t

0

sup
s∈(0,b]

‖ φṽ(s) ‖ ds.

Making use of the Gronwall,s inequality, such that

sup
t∈(0,b]

‖ φṽ(t) ‖ ≤
[
M(‖ x0 ‖ +Λ(‖ ṽ ‖)) +Mb(LbN1 + L1)

]
eML(n+Nb)b,

and the previous inequality holds. Consequently,

‖ v ‖ ≤
[
M(‖ x0 ‖ +Λ(‖ ṽ ‖)) +Mb(LbN1 + L1)

]
eML(n+Nb)b,
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and therefore

‖ v ‖
[M(‖ x0 ‖ +Λ(‖ ṽ ‖)) +Mb(LbN1 + L1)]K0

≤ 1.

Then, by (H6), there exists M∗ such that ‖ v ‖6= M∗. Set

V ∗ = {v ∈ C([δ, b], X); sup
δ≤t≤b

‖ v(t) ‖< M∗}.

As a consequence of Steps 1-4, together with the Arzela-Ascoli theorem it suffices
to show that P : V ∗ → Cδ is a compact map.

From the choice of V ∗, there is no x ∈ ∂V ∗ such that v ∈ λPv for λ ∈ (0, 1). As
a consequence of Lemma 2, we deduce that P has a fixed point V ∗. Let x = φṽ∗ .
Then, we have

x(t) = U(t, 0)[x0 − g(ṽ∗)] (7)

+
∫ t

0

U(t, s)F
(
s, x(σ1(s)), ..., x(σn(s)),

∫ s

0

k(s, τ)h(τ, x(σn+1(τ)))dτ
)
ds.

Noting that x = φṽ∗ = (P ṽ∗)(t) = ṽ∗, t ∈ [δ, b]. By (H5)(i), we obtain

g(x) = g(ṽ∗).

This implies that x is Q has a fixed point in V ∗ ⊂ C(J,X). Hence, problem (1) has
a mild solution and completes the proof of Theorem 1.

Remark 1. In [6], Byszewski and Akca discussed a related semilinear nonlocal prob-
lem when g is convex and compact on a given ball. In this paper, we consider the
case when g is continuous but without imposing severe compactness conditions and
convexity.

Remark 2. Condition (H5) on g in the above theorem is an extension of the cor-
responding conditions in paper [15], [13].

4. Application

To illustrate the application of the obtained results of this paper, we study the
following example in this section:

zt(t, x) =
∂2

∂x2
a0(t, x)z(t, x)

+a1(t)z(sin t, x) + sin z(t, x) +
1

1 + t2

∫ t

0

a2(s)z(sin s, x)ds,

z(t, 0) = z(t, π) = 0, (8)

z(0, x) +
∫ 1

δ

[z(s, x) + log(1 + |z(s, x)|)]ds = z0(x), 0 ≤ t ≤ 1, 0 ≤ x ≤ π,

where δ > 0, z0(x) ∈ X = L2([0, π]) and z0(0) = z0(π) = 0. Here, the function
a0(t, x) is continuous and uniformly Hölder continuous in t.
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Let X = L2([0, π]) and the operators A(t) be defined by

A(t)w = a0(t, x)w
′′

with the domain D(A) = {w ∈ X : w,w
′′

are absolutely continuous, w
′′ ∈ X,w(0) =

w(1) = 0}, then A(t) generates an evolution system U(t, s) satisfying assumptions
(I)-(III)(see [11]).

We assume that the function ai(·) is continuous on [0, 1], and li = sup
0≤s≤1

|ai(s)| <

1, i = 1, 2.
Define F : [0, 1]×X×X → X,h : [0, 1]× [0, 1]×X → X and g : C([0, 1], X)→ X

by

F

(
t, z,

∫ t

0

h(t, s, z(σ(s)))ds
)

(x) = a1(t)z(sin t, x) + sin z(t, x)

+
1

1 + t2

∫ t

0

a2(s)z(sin s, x)ds,∫ t

0

h(t, s, z(σ(s)))(x)ds =
1

1 + t2

∫ t

0

a2(s)z(sin s, x)ds,

and

g(z)(x) =
∫ 1

δ

[z(s, x) + log(1 + |z(s, x)|)]ds, x ∈ C([0, 1], X).

It is easy to see that with these choices, the assumptions (H1)-(H5) of Theorem 1
are satisfied. In particular, the constants are L = 1 + l1 + l2, N = l2 and L1 =
N1 = 0. If we assume that MeM(1+l1+l2)(1+l2)(1 − δ) < 1

2 and choose the constant
M∗ = max{8M ‖ x0 ‖ eM(1+l1+l2)(1+l2), 1}, then

1 >
M [‖ x0 ‖ +(M∗ + log(1 +M∗))(1− δ)]eM(1+l1+l2)(1+l2)

M∗
.

Now condition (H6) in Section 2 holds and hence by Theorem 1, we deduce that
nonlocal Cauchy problem (8) has a mild solution on [0, 1].
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