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Abstract. In this paper we initiate a generalized form of paracompactness via grills. We
shall also define a grill-dependent regularity axiom on a topological space. From our results
in such a generalized perspective, E. Michael’s famous theorem on regular paracompactness
and certain other results like “a T2 paracompact space is regular” will follow as special cases.
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1. Introduction

In 1947, Choquet [3] introduced the concept of grills, which was subsequently found
to be an extremely useful device, like filters and nets, for the investigations of many
topological notions like compactifications, proximity spaces, different types of ex-
tension problems etc. (see [1, 2, 10] for details). In an earlier paper [7], we gave
the formulation of a new topology on a given topological space, constructed from
the existing topology of the space and a given grill. We also studied therein this
topology in some detail specially under some special conditions imposed on the grill,
in question.

Hence in this paper our aim is to introduce a kind of paracompactness-type of
notion in a topological space by means of grills. Such an endeavour gives rise to a
generalized version of paracompactness; a similar attempt towards such a general-
ization under the terminology “I-paracompactness” was undertaken by Hamlett et
al. [5]. In the process we derive a type of regularity in terms of grills of some special
form. All these ultimately facilitate us to achieve a general form of the well known
Michael’s theorem on regular paracompact spaces; the result that a T2 paracompact
space is regular is also obtained as a particular case of our generalized results.

∗The author acknowledges the financial support from C.S.I.R., New Delhi
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2. G-paracompactness

We begin by recalling the definition of a grill, first proposed by Choquet [3].

Definition 1. A collection G of nonempty subsets of a set X is called a grill if
(i)A ∈ G and A ⊆ B ⊆ X ⇒ B ∈ G, and (ii) A ∪ B ∈ G(A,B ⊆ X) ⇒ A ∈ G or
B ∈ G.

In what follows, by a space X we shall mean a topological space (X, τ), and the
notation G will stand for a grill on X. For any subset A of a space (X, τ) intA and
clA will, as usual, denote the interior and closure of A in (X, τ), respectively. We
now define the proposed generalized form of paracompactness.

Definition 2. Let G be a grill on a topological space (X, τ). Then the space X is said
to be paracompact with respect to the grill G or simply G-paracompact if every open
cover U of X has a precise locally finite open refinement U∗ (not necessarily a cover
of X) such that X \∪ U∗ 6∈ G, where the statement “a cover U = {Uα : α ∈ Λ} has a
precise refinement” means as usual, that there exists a collection V = {Vα : α ∈ Λ} of
subsets of X such that Vα ⊆ Uα, for all α ∈ Λ (note that according to the terminology
adopted in this paper, a refinement need not be a cover).

Remark 1.

(a) Every paracompact space X is G-paracompact, for every grill G on X; that
the converse is false will be shown later (see Example 2). However, for the
grill G = P(X)\{∅}, the concepts of paracompactness and G-paracompactness
coincide for any space X, where P(X) denotes the power set of X.

(b) If G1 and G2 are two grills on a space X with G1 ⊆ G2, then G2-paracompactness
of X ⇒ G1-paracompactness of X. However, as will be seen in Example 2,
under the stated condition that G1 ⊆ G2, G1-paracompactness may not im-
ply G2-paracompactness. Moreover, it may so happen that a space X is G1-
paracompact as well as G2-paracompact while the grills G1 and G2 are non-
comparable; this is evident from the simple example as follows.

Example 1. Let X be an uncountable set endowed with the co-countable topology
τ . Consider the grills Gp = {A ⊆ X : p ∈ A} and Gq = {A ⊆ X : q ∈ A} on X for
any two distinct points p and q of X. It is easy to see that (X, τ) is Gp-paracompact
as well as Gq-paracompact, but Gp and Gq are clearly not comparable.

In an earlier paper [7], we considered a new topology τG associated with an
arbitrary grill G on a topological space (X, τ). A brief description of this topology
is as follows:

Let G be an arbitrary grill on a space (X, τ), and let Φ : P(X)→ P(X) (where
P(X) denotes the power set of X) be an operator, given by Φ(A) = {x ∈ X : A∩U ∈
G for all open sets U containing x}. Then Ψ : P(X) → P(X), defined by Ψ(A) =
A ∪ Φ(A), is a Kuratowski closure operator, inducing a topology τG (say) on X,
strictly finer than τ , for which an open base is given by {U \A : U ∈ τ and A 6∈ G}.

In [7] we derived certain interesting features of this topology along with some
interactions of it with the given topology τ on X, especially when the grill satisfies
a kind of ’suitability’ condition, as stated below:
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Definition 3. The topology τ of a topological space (X, τ) is said to be suitable for
a grill G on X if for any A ⊆ X, A \ Φ(A) 6∈ G, where Φ(A) is as defined above.

Let us call a grill G on a space X a µ-grill if any arbitrary family {Aα : α ∈ Λ}
of subsets of X, [∪αAα ∈ G ⇒ Aα ∈ G for at least one α ∈ Λ]. There are many
natural examples of µ-grills. For instance, for any non-empty subset A of a space
X, the principal grill generated by A (see definition 5) is such a grill.

As to the sharing of G-paracompactness between a topological space (X, τ) and
its associated space (X, τG), we prove the next two results.

Theorem 1. Let G be a µ-grill on a topological space (X, τ). Then (X, τG) is G-
paracompact if (X, τ) is so.

Proof. Without any loss of generality, let us consider a coverW of X by basic open
sets of (X, τG), given by W = {Wα : α ∈ Λ}, where for each α ∈ Λ, Wα = Uα \ Aα
with Uα ∈ τ and Aα 6∈ G. Then U = {Uα : α ∈ Λ} is a τ -open cover of X.
By G-paracompactness of (X, τ), U has a τ -locally finite τ -open precise refinement
V = {Vα : α ∈ Λ} such that X \ (∪α∈ΛVα) 6∈ G. It suffices to show that W∗ =
{Vα \Aα : α ∈ Λ} is a precise τG-locally finite τG-open refinement of W.

Clearly W∗ is a τG-open precise refinement of W. Also, since V is τ -locally finite
and τ ⊆ τG , V is τG-locally finite, and hence W∗ is τG-locally finite. It thus remains
to show that X \ ∪α∈Λ(Vα \Aα) 6∈ G. For this we see that
X \∪α∈Λ(Vα \Aα) = X \ [∪α∈Λ(Vα∩ACα )] = ∩α∈Λ[X \ (Vα∩ (X \Aα))] = ∩α∈Λ[(X \
Vα)∪Aα] = [∩α∈Λ(X \Vα)]∪ [∩α∈ΛAα]∪ [∪Λ((∩α∈Λ1(X \Vα))∩(∩β∈Λ2Aβ))]........(i),
where in the last bracketed portion Λ1 ∪ Λ2 = Λ and Λ1 ∩ Λ2 = ∅......(ii), and ∪Λ

stands for the union over all possible partitions of Λ such that (ii) holds. Now,
∩α∈Λ(X \ Vα) = X \ (∪ V) 6∈ G and ∩α∈ΛAα 6∈ G (since Aα 6∈ G for each α).
Furthermore, for any partition {Λ1,Λ2} of Λ with Λ = Λ1 ∪ Λ2 and Λ1 ∩ Λ2 =
∅, [∩α∈Λ1(X \ Vα)] ∩ [∩β∈Λ2Aβ ] ⊆ [∩β∈Λ2Aβ ] 6∈ G. Thus ∪Λ[(∩α∈Λ1(X \ Vα)) ∩
(∩β∈Λ2Aβ)] 6∈ G(as G is a µ-grill). Hence from (i) it follows that X \∪α∈Λ(Vα\Aα) 6∈
G, and we are through.

Theorem 2. Let G be a grill on a space (X, τ) such that τ \{∅} ⊆ G. If τ is suitable
for G and (X, τG) is G-paracompact, then (X, τ) is G-paracompact.

Proof. Let U = {Uα : α ∈ Λ} be a τ -open cover of X. Then U is a τG-open cover of
X as well. Hence U has a τG-locally finite precise refinement {Vα\Aα : α ∈ Λ, Vα ∈ τ
and Aα 6∈ G} such that X \ ∪α∈Λ(Vα \Aα) 6∈ G......(i)

We now show that V = {Vα : α ∈ Λ} is τ -locally finite. In fact, for each x ∈ X
there exists some U ∈ τG such that U ∩ (Vα \ Aα) = ∅ for all α 6= α1, α2, ........αn
(say). But U = V \ A, where V ∈ τ and A 6∈ G. Thus for any α 6= α1, α2, ........αn,
(V \A)∩ (Vα \Aα) = ∅, i.e., (V ∩Vα) \ (A∪Aα) = ∅. Then either (V ∩Vα) = ∅ or
else (∅ 6=) (V ∩ Vα) ⊆ A ∪ Aα. We claim that V ∩ Vα = ∅. For otherwise, V ∩ Vα
is a nonempty τ -open set ⇒ V ∩ Vα ∈ G ⇒ A ∪Aα ∈ G, a contradiction. Thus V is
τ -locally finite.

Again, Vα\Aα ⊆ Uα and Vα\Aα ⊆ Vα ⇒ Vα\Aα ⊆ Uα∩Vα ⇒ ∪α∈Λ(Vα\Aα) ⊆
∪α∈Λ(Uα ∩ Vα) ⇒ X \ ∪α∈Λ(Vα \ Aα) ⊇ X \ ∪α∈Λ(Uα ∩ Vα) and hence by (i),
X \ ∪α∈Λ(Uα ∩ Vα) 6∈ G. Now, W = {Uα ∩ Vα : α ∈ Λ} is a τ -locally finite τ -open
precise refinement of U such that X \(∪ W) 6∈ G. Thus (X, τ) is G-paracompact.
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From the last two theorems we have:

Corollary 1. Let (X, τ) be a topological space and G a µ-grill on X such that
τ \ {∅} ⊆ G and τ is suitable for G. Then (X, τ) is G-paracompact iff (X, τG) is
G-paracompact.

Our principal concern of this paper, as already said in the introduction, is to
exhibit how certain chosen kind of grills can affect interesting generalizations of the
notions of paracompactness and the like. Such a study is scheduled to be taken up
in the next section. For now, we show that a well known weaker form of paracom-
pactness reduces to G-paracompactness if the grill G can be chosen suitably. To that
end we observe that

Result 1. For any topological space X, Gδ = {A ⊆ X : intcl A 6= ∅} is a grill on
X.

A well known weaker form of paracompactness is almost paracompactness
(see [9]), the definition of which is recalled below:

Definition 4. A topological space (X, τ) is said to be almost paracompact if ev-
ery open cover U of X has a precise locally finite open refinement U∗ such that
X\cl(∪U∗) = ∅.

Theorem 3. A topological space (X, τ) is almost paracompact iff X is Gδ-para-
compact.

Proof. Let U be an open cover of an almost paracompact space (X, τ). Then there
exists a precise locally finite open refinement U∗ of U such that X\cl(∪U∗) = ∅. We
claim that X \ (∪ U∗) 6∈ G.
For otherwise, X \ (∪ U∗) ∈ G ⇒ intcl(X \ (∪ U∗) 6= ∅⇒ X\ clint(∪U∗) 6= ∅
⇒ X\ cl(∪U∗) 6= ∅, a contradiction. Thus (X, τ) is Gδ-paracompact.

We now prove a stronger converse that whenever G is any grill on X with τ \{∅}
⊆ G (clearly Gδ satisfies such a condition), then the almost paracompactness of
(X, τ) is implied by the G-paracompactness of X. We first observe that for such a
grill G, we have intA = ∅ whenever A(⊆ X) 6∈ G (as τ \ {∅} ⊆ G). Now let U be an
open cover of X. Then by the definition of G-paracompactness there exists a precise
locally finite open refinement U∗ of U such that X \ (∪ U∗) 6∈ G. Thus int(X \ (∪
U∗)) = ∅, i.e., X = cl (∪ U∗), proving (X, τ) to be almost paracompact.

Example 2. Let us consider the space X of Example 2.3 [6], given by X = <+∪{p}
where <+ = [0,∞) and p 6∈ <+ equipped with the topology τ described as follows :
<+ has the usual topology and is an open subspace of X; and a basic neighbourhood
of p ∈ X is of the form On(p) = {p} ∪ [∪∞i=n(2i, 2i + 1)] where n ∈ ω (= the first
infinite cardinal). Then (X, τ) is almost paracompact but not paracompact (see [6] for
details). Then by Theorem 3, (X, τ) is Gδ-paracompact without being paracompact.
Incidentally we observe that for G = P(X) \ {∅}, X is not G-paracompact, although
Gδ ⊆ G.
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3. Principal grill [A], [A]-regularity and [A]-paracompactness

We define now a kind of grills, associated with nonempty subsets of a set X.

Definition 5. Let X be a nonempty set and (∅ 6=)A ⊆ X. Let us define [A] =
{B ⊆ X : A ∩B 6= ∅}.
It is easy to verify that [A] is a grill on X. We shall call this grill the principal grill
generated by A.

Remark 2. In case of the principal grill generated by X, [X]-paracompactness re-
duces simply to paracompactness.

In order to achieve a generalization of the famous Michael’s theorem on regular
paracompact spaces, we need to recall a kind of regularity axiom in terms of grills
so as to serve our purpose.

Definition 6 (see [8]). Corresponding to given grill G on a topological space (X, τ),
we define the space X to be G-regular if for each closed subset F of X and each
x ∈ X \ F , there exist disjoint open sets U and V such that x ∈ U and F \ V 6∈ G.

Remark 3. It follows from the above two definitions that the principal grill [X]
generated by X is, in fact, P(X) \ {∅} (where P(X) stands, as usual, for the power
set of X) and hence a space (X, τ) is [X]-regular iff (X, τ) is regular. Also, every
regular space is G-regular for any grill G on X, although not the converse is true as
shown below.

Example 3. Let X = {a, b, c}, τ = {∅, X, {a}, {b}, {a, b}, {a, c}}. Then (X, τ) is
a topological space. It is easy to verify that (X, τ) is not regular but is a G-regular
space, where G is the grill {{a}, {b}, {a, b}, {a, c}, {b, c}, X} on X.

Furthermore, we show by the following examples that G-regularity of a space
(X, τ) has nothing to do with the regularity of the topological space (X, τG).

Example 4. Let X = {a, b, c}, τ = {∅, X, {a}, {b}, {a, b}}. Then (X, τ) is a topo-
logical space. Let G = {{a}, {a, b}, {a, c}, X}. Then G is a grill on X. It is easy to
verify that (X, τG) is not regular but (X, τ) is G-regular.

Example 5. Let X = {a, b, c}, τ = {∅, X, {a}, {b}, {a, b}, {a, c}}. Then (X, τ) is
a topological space. Let G = {{b}, {c}, {a, b}, {a, c}, {b, c}, X}. Then G is a grill on
X. It is easy to show that (X, τG) is regular but (X, τ) is not G-regular.

In case of a principal grill [A] generated by a subset A of a space X, we obtain
the following characterization for [A]-regularity.

Theorem 4. Let A be any nonempty subset of a space (X, τ). Then (X, τ) is [A]-
regular iff for each closed subset F of X and each x 6∈ F , there exist disjoint open
sets U and V such that x ∈ U and F ∩A ⊆ V .
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Proof. Let (X, τ) be [A]-regular and F a closed subset of X and x ∈ X \ F . Then
there exist disjoint open sets U and V such that x ∈ U and F \ V 6∈ [A]. Now,
F \ V 6∈ [A]⇒ (F \ V ) ∩A = ∅⇒ F ∩A ∩ (X \ V ) = ∅⇒ F ∩A ⊆ V .
Conversely, let the given condition hold and let F be a closed subset of X with x ∈
X \F . Then there exist disjoint open sets U and V such that x ∈ U and F ∩A ⊆ V .
Now, F ∩A ⊆ V ⇒ F ∩A∩ (X \ V ) = ∅⇒ F ∩ (X \ V ) 6∈ [A]⇒ (F \ V ) 6∈ [A].

As a particular case of the next theorem we obtain (see Corollary 3) the well
known result that a paracompact T2 space is regular.

Theorem 5. Let G be a grill on a space (X, τ). If X is G-paracompact and T2, then
X is G-regular.

Proof. Let F be a closed subset of Xand y ∈ X \ F . Then the Hausdorffness
of X implies that for each x ∈ F , there exist disjoint open sets Gx and Hx such
that y ∈ Gx and x ∈ Hx. Clearly y 6∈clHx. Then U = {Hx : x ∈ F} ∪ {X \ F}
is an open cover of X. Thus there exists a precise locally finite open refinement
U∗ = {H ′x : x ∈ F} ∪ {W} such that H ′x ⊆ Hx for each x ∈ F , W ⊆ X \ F and
X \ (∪ U∗) 6∈ G. Let G = X \ ∪{clH ′x : x ∈ F} and H = ∪{H ′x : x ∈ F}. Then
G and H are two nonempty disjoint open sets (U∗, being locally finite, is closure
preserving) such that y ∈ G, F \ H 6∈ G (as X \ ∪ U∗ 6∈ G), proving (X, τ) to be
G-regular.

Corollary 2. Let A be a nonempty subset of a space (X, τ). If X is an [A]-
paracompact Hausdorff space, then it is [A]-regular.

If in the above corollary we put A = X, then by Remarks 2 and 3 we obtain:

Corollary 3. A paracompact T2 space is regular.

Lemma 1. For a nonempty subset A of a Hausdorff space (X, τ), let X be [A]-
paracompact. Then for each x ∈ X and each open set U containing x, there exists
an open neighbourhood V of x such that cl V \ U ⊆ X \ A i.e.,(cl V \ U) ∩ A = ∅,
and hence cl V ∩A ⊆ U .

Proof. Let x ∈ X and U be an open neighbourhood of x. Then X \ U is a closed
subset of X, not containing x. As (X, τ) is [A]-regular (by Corollary 2), we get by
Theorem 4, two disjoint open sets G and V such that x ∈ V and (X \ U) ∩A ⊆ G.
Now, G ∩ cl V = ∅ ⇒ [(X \ U) ∩A]∩ cl V = ∅ ⇒ (X \ U) ∩A ∩ cl V = ∅ ⇒ cl
V ∩ (X \ U) ⊆ X \A, i.e., cl V \ U ⊆ X \A and hence the rest follows.

Theorem 6. Let (X, τ) be an [A]-paracompact, Hausdorff space for some nonempty
subset A of X and U = {Uα : α ∈ Λ} be an open cover of X. Then there exists a
precise locally finite open refinement {Gα : α ∈ Λ} of U such that A ⊆ ∪{Gα : α ∈ Λ}
and cl Gα ∩ A ⊆ Uα ∩ A.

Proof. Let U = {Uα : α ∈ Λ} be an open cover of X. Then by Lemma 1, for
each α ∈ Λ and each x ∈ Uα , there exists Vα,x ∈ τ with x ∈ Vα,x such that cl
Vα,x ∩A ⊆ Uα. Now, V = {Vα,x : x ∈ Uα, α ∈ Λ} is an open cover of X. Hence
by [A]-paracompactness of X, there exists a precise locally finite open refinement
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W = {Wα,x : x ∈ Uα, α ∈ Λ} of V such that X \ (∪{Wα,x : x ∈ Uα, α ∈ Λ}) 6∈ [A],
i.e., A ⊆ ∪{Wα,x : x ∈ Uα, α ∈ Λ}. Now, for any x ∈ Uα and α ∈ Λ, Wα,x ⊆ Vα,x
⇒ cl Wα,x ∩A ⊆ cl Vα,x ∩A ⊆ Uα ∩A. Let Gα = ∪x∈UαWα,x for each α ∈ Λ. Then
clearly {Gα : α ∈ Λ} is a precise locally finite open refinement of U , and cl Gα =cl
(∪x∈UαWα,x) = ∪x∈UαclWα,x. So, (cl Gα) ∩A = ∪x∈Uα(clWα,x ∩A) ⊆ Uα ∩A.

We now state and prove our desired theorem as follows.

Theorem 7. Let (X, τ) be a Hausdorff space and A a dense subset of X. Then the
following statements are equivalent:
(a) (X, τ) is [A]-paracompact.
(b) Each open cover of X has a precise locally finite refinement that covers A and
consists of sets which are not necessarily closed or open.
(c) For each open cover U = {Uα : α ∈ Λ} of X, there exists a locally finite closed
cover {Fα : α ∈ Λ} of X such that Fα ∩A ⊆ Uα for each α ∈ Λ.

Proof. (a)⇒ (b): It is trivial.
(b)⇒ (c): Let {Uα : α ∈ Λ} be an open cover of X. Then for any x ∈ X, there

exists some Uα(x) ∈ U such that x ∈ Uα(x). Then by Lemma 1, there exists some
Hx ∈ τ with x ∈ Hx such that cl Hx ∩ A ⊆ Uα(x). Thus H = {Hx : x ∈ X} is
an open cover of X, and hence by (b), there is a precise locally finite refinement
{Ax : x ∈ X} of H such that A ⊆ ∪{Ax : x ∈ X}. Since {Ax : x ∈ X} is locally
finite, so is {cl Ax : x ∈ X}. Thus ∪{clAx : x ∈ X} = cl [∪{Ax : x ∈ X}]⊇ cl A = X
(as A is dense in X)⇒ X = ∪{clAx : x ∈ X}. Now, Ax ⊆ Hx ⇒ cl Ax ⊆clHx ⇒ cl
Ax ∩A ⊆clHx ∩A ⊆ Uα(x).
For each α ∈ Λ, set Fα = ∪{clAx : α = α(x)}. Then Fα is closed for each α ∈ Λ, as it
is a union of locally finite closed sets. Thus {Fα : α ∈ Λ} is locally finite and a cover
of X. Finally, Fα∩A = ∪{clAx : α = α(x)}∩A = ∪{ cl Ax∩A : α = α(x)} ⊆ Uα∩A,
for each α ∈ Λ.

(c)⇒ (a): Let U = {Uα : α ∈ Λ} be an open cover of X. In view of (c), let
{Fα : α ∈ Λ} be a locally finite closed cover of X such that Fα ∩ A ⊆ Uα for each
α ∈ Λ. For any x ∈ X, there exists Vx ∈ τ with x ∈ Vx such that Vx ∩Fα 6= ∅ for at
most finitely many α ∈ Λ. Now, V = {Vx : x ∈ X} is a cover of X. So there exists a
locally finite closed cover {Bx : x ∈ X} such that Bx ∩A ⊆ Vx, for all x ∈ X. Thus
{Bx ∩A : x ∈ A} is a cover of A.
Let us now consider U(Fα) = X \ ∪{Bx : Bx ∩ Fα ∩ A = ∅}. We first note that
U(Fα) is open for each α ∈ Λ. Now, Fα ∩ A ⊆ U(Fα). In fact, y ∈ Fα ∩ A and
y 6∈ U(Fα) ⇒ y ∈ Fα ∩ A and y ∈ By′ for some y′ ∈ X ⇒ By′ ∩ Fα ∩ A = ∅. But
y ∈ Fα ∩A and y ∈ By′ ⇒ y ∈ By′ ∩ Fα ∩A, a contradiction.

We shall now show that {U(Fα) : α ∈ Λ} is locally finite. Indeed, each x ∈ X has
some open neighbourhood W intersecting finitely many Bx’s, say Bx1 , Bx2 , .....Bxn .
Then W is contained in

⋃n
i=1Bxi (as {Bx : x ∈ X} is a cover of X). Note that

Bx ∩ U(Fα) 6= ∅ ⇒ Bx ∩ Fα ∩ A 6= ∅. Now each Bx ∩ A is contained in Vx, where
Vx intersects at most finitely many Fα
⇒ Bx ∩A intersects at most finitely many Fα
⇒ each set Bx intersects at most finitely many U(Fα)
⇒W intersects at most finitely many U(Fα).
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Thus {U(Fα) : α ∈ Λ} is locally finite. Also, {U(Fα) : α ∈ Λ} covers A, because
Fα ∩A ⊆ Uα and {Fα ∩A : α ∈ Λ} is a cover of A.

Let now U∗ = {U(Fα) ∩ Uα : α ∈ Λ}. Then U∗ is a precise locally finite open
refinement of U . Thus Fα ∩A ⊆ Uα ∩ U(Fα), for all α ∈ Λ⇒ A ⊆ ∪α∈Λ(Fα ∩A) ⊆
∪α∈Λ(Uα ∩ U(Fα) ⇒ A ⊆ ∪ U∗ ⇒ A ∩ (X \ (∪ U∗)) = ∅ ⇒ X \ (∪ U∗) 6∈ [A],
proving (X, τ) to be [A]-paracompact.

Taking A = X in the above theorem and using Corollary 2, we arrive at the well
known theorem of E. Michael:

Corollary 4. In a regular space X, the following are equivalent:
(a) X is paracompact.
(b) Every open cover of X has a locally finite refinement consisting of sets not
necessarily open or closed.
(c) Each open cover of X has a closed locally finite refinement.

Finally, we show that G-paracompactness is a topological invariant in the follow-
ing sense.

Theorem 8. Let G and G′ be two grills respectively on two topological spaces (X, τ)
and (Y, τ ′). Let f : (X, τ) → (Y, τ ′) be a homeomorphism and f(G) ⊇ G′. If (X, τ)
is G-paracompact then (Y, τ ′) is G′-paracompact [ here the notation f(G) stands for
{f(G) : G ∈ G} which is clearly a grill in Y , as f is onto].

Proof. Let {Vα : α ∈ Λ} be an open cover of Y . Then by continuity and surjective-
ness of f , {f−1(Vα) : α ∈ Λ} is an open cover of X. Hence by G-paracompactness
of (X, τ), there exists a locally finite precise open refinement {Wα : α ∈ Λ} of
{f−1(Vα) : α ∈ Λ} such that X \ ∪α∈ΛWα 6∈ G. Since f is an open map, {f(Wα) :
α ∈ Λ} is an open precise refinement of {Vα : α ∈ Λ} in (Y, τ ′). We note that
{f(Wα) : α ∈ Λ} is locally finite as f is a homeomorphism. Now, asX\∪α∈ΛWα 6∈ G,
Y \ ∪α∈Λf(Wα) = f(X \ ∪α∈ΛWα) 6∈ f(G) and hence Y \ ∪α∈Λf(Wα) 6∈ G′. Thus
(Y, τ ′) is G′-paracompact.

Corollary 5. Let (X, τ) and (Y, τ ′) be two topological spaces, (∅ 6=)A ⊆ X, and
f : (X, τ) → (Y, τ ′) a homeomorphism. If (X, τ) is [A]-paracompact then (Y, τ ′) is
[f(A)]-paracompact.

Proof. It is only sufficient to note that [f(A)] = f([A]) and the rest follows from
Theorem 8.

Taking A = X in the above corollary and using Remark 2, we get

Corollary 6. Let (X, τ) and (Y, τ ′) be two topological spaces, f : (X, τ)→ (Y, τ ′) a
homeomorphism. If (X, τ) is paracompact then (Y, τ ′) is paracompact.

The next example shows that in Theorem 8 we cannot replace homeomorphism
by a continuous, open surjection.
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Example 6. Let X be an uncountable discrete space and Y = {0, 1} with Sierspin-
ski’s topology {Y,∅, {0}, } . Let G= {(A × {1}) : A is an infinite subset of X}. It
is easy to check that G is a grill on X × Y . Now it is easy to see that X × Y is G-
paracompact (as X×Y is a paracompact space and using Remark 1 (a)). Let p 6∈ X
and consider the space (X∪{p}, σ) where σ = {U ⊆ X∪{p} : p ∈ U}. Now consider
the map f : X ×Y −→ X ∪{p} defined by f(x, 0) = p and f(x, 1) = x. It is easy to
see that f is continuous, open and surjection and G′

= f(G) = {A ⊆ X ∪{p} : A is
infinite}. Clearly, X ∪{p} is not G′

-paracompact as the open cover {{p, α} : α ∈ X}
is an open cover of X ∪ {p} having no locally finite refinement whatsoever.
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