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Abstract. The optimal off-line algorithm for solving the k-server problem is usually im-
plemented by network flows. In this paper, we first propose certain modifications to each
step of the original network-flow implementation. Next, by experiments we demonstrate
that the proposed modifications improve the speed of the algorithm. Finally, we investigate
how similar ideas for improvement can also be applied to some related on-line algorithms.
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1. Introduction

This paper deals with the k-server problem [10], where one has to decide how k
mobile servers should serve a sequence of requests. The goal of an algorithm for
solving such problem is not only to serve the given requests, but also to minimize
the total cost of serving.

It is usually required that the solution to the k-server problem is produced in
on-line fashion [7]. Indeed, each request ought to be served before the next request
arrives, and each decision may be based only on already seen requests. However,
in order to measure performance of on-line algorithms, it is also useful to consider
off-line algorithms. Contrary to any on-line procedure, whose serving is never quite
satisfactory due to lack of information on future requests, an off-line procedure
knows the whole input in advance and can deal with requests as they arrive at truly
minimum total cost. Thus we can speak about the optimal off-line algorithm.

On the first sight, finding an optimal solution to the k-server problem seems to
be a fairly complex task even if the whole sequence of requests is known in advance.
However, it has been shown that the optimal off-line algorithm can be implemented
quite efficiently in polynomial time. The well known implementation from [5] is
based on network flows, and it reduces the original k-server problem to a minimal-
cost maximal flow problem on a suitably constructed network.
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The aim of this paper is to propose certain modifications to the mentioned net-
work flow implementation of the optimal off-line algorithm. Our modifications are
expected to improve the original version of the algorithm in terms of speed. The
aim of the paper is also to evaluate experimentally the obtained improvements, and
to consider applicability of similar ideas in some slightly different contexts.

The paper is organized as follows. Section 2 lists preliminaries about the k-
server problem and the corresponding algorithms. Section 3 specifies the original
network-flow implementation of the optimal off-line algorithm, which runs in k steps.
Section 4 proposes modifications of the first step of the original algorithm. Section 5
does the same for the second step. Section 6 considers modifications of the remaining
steps. Section 7 presents experimental measurements of speed-up that is produced
by all modifications together. Section 8 briefly describes how the same or similar
modifications can also be applied to network-flow implementations of some related
on-line algorithms. The final Section 9 gives conclusions.

2. Preliminaries

In the k-server problem [10] we have k servers each of which occupies a location in
a fixed metric space M . Repeatedly, a request ri at some location x in M appears.
To serve a request at x, a corresponding algorithm must move a server to x unless it
already has a server at that location. Whenever the algorithm moves a server from
a location x to a location y, there incurs a cost equal to the distance between x and
y in M . The goal of good serving is not only to serve requests, but also to minimize
the total distance moved by all servers.

In the on-line version of the k-server problem the sequence of requests in not
known in advance. Each request must be served immediately before the next request
arrives. In order to decide how to serve the current request ri, an on-line algorithm
may take into account only the already seen requests r1, r2, . . . , ri−1, ri, and it
cannot use any information about the future requests ri+1, ri+2, . . . . On the other
hand, in the off-line version of the problem the sequence of requests is fixed and
given at the beginning. Consequently, an off-line algorithm can take together the
whole sequence as input and produce the complete serving plan at once.

As a concrete instance of the k-server problem, let us consider the metric space
M consisting of locations A, B, C, D, E, with distances given as shown in Figure 1.
Suppose that k = 3 servers are initially located at A, B and E. Let the first request
appear in C. Assume also that all forthcoming requests are going to appear in A, B
and C and none in E. Our serving algorithm has to decide first which of the three
servers should be moved to C. If the algorithm works on-line, it would possibly
move the nearest server from A. But an off-line algorithm would know that such a
choice is not optimal in the long run. Namely, moving the distant server from E is
more profitable since it would enable that all forthcoming requests are served at no
additional costs.

In this paper we are mostly concerned with the optimal off-line algorithm -
OPT. As input this algorithm takes the initial configuration of servers S(0) and the
whole sequence of requests r1, r2, . . . , rn. It considers all possibilities and produces
a complete list of server moves that enables serving of all requests at truly minimum
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Figure 1. A k-server problem instance

total cost.
Although the k-server problem must usually be solved in on-line fashion, OPT

is still useful as a tool for evaluation of on-line algorithms. For instance, there is
an important measure of goodness of on-line algorithms involving OPT, which is
called competitiveness [11]. An on-line algorithm is said to be competitive if its
performance is only a bounded number of times worse than that of OPT on any
input.

In this paper we are also concerned with the on-line work function algorithm
(WFA) [2, 9, 10]. Although being rather complex, this algorithm is still very im-
portant since it exhibits the best characteristics regarding competitiveness [1, 2, 9].
To serve the request ri, the WFA switches from the current server configuration
S(i−1) to a new configuration S(i), obtained from S(i−1) by moving one server into
the requested location (if necessary). Among k possibilities (any of k servers could
be moved) S(i) is chosen so that

F (S(i)) = COPT(S(0), r1, r2, . . . , ri, S
(i)) + d(S(i−1), S(i)) (1)

becomes minimal. Thus the objective function F (S(i)) is defined as a sum of two
parts.

• The first part, usually called the work function, is the minimal total cost of
starting from S(0), serving in turn r1, r2, . . . , ri, and ending up in S(i).

• The second part is the distance traveled by a server to switch from S(i−1) to
S(i).

As we can see from (1), the WFA is closely related to OPT. Indeed, each step
of the WFA consists of k off-line optimization problem instances plus some simple
arithmetics. But note that the optimization problems within the WFA are not quite
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equivalent to those within OPT; namely there is an additional constraint regarding
the final configuration of servers. Still, we expect that any implementation of OPT
can be incorporated into the WFA after a slight adjustment.

Together with the original WFA, we will also consider its “lightweight” version
denoted as the w-WFA [3], which is based on the idea that the sequence of previous
requests and configurations should be examined through a moving window of size
w. In its i-th step the w-WFA acts as if ri−w+1, ri−w+2, . . . , ri−1, ri was the
whole sequence of previous requests, and as if S(i−w) was the initial configuration
of servers. In other words, the objective function F (), originally defined by (1), is
redefined in the following way:

F (S(i)) = COPT(S(i−w), ri−w+1, ri−w+2, . . . , ri−1, ri, S
(i)) + d(S(i−1), S(i)). (2)

According to [3], the w-WFA assures similar quality of serving as the original
WFA but runs dramatically faster. As visible from (2), the w-WFA is again closely
related to OPT; namely it again reduces to a series of slightly altered off-line opti-
mization problems.

3. The optimal off-line algorithm

The optimal off-line algorithm OPT can be realized relatively easily by network flow
techniques [4]. We now describe the original implementation from [5]. According
to [5], finding the optimal strategy to serve a sequence of requests r1, r2, . . . , rn

by k servers reduces to computing the minimal-cost maximal flow on a suitably
constructed network with 2n + k + 2 nodes. The details of this construction are
shown in Figure 2.

As we can see from Figure 2, the network corresponding to the off-line problem
consists of a source node s̄, a sink node t̄, and three additional layers of nodes.
The first layer represents the initial server configuration S(0), i.e. the node s

(0)
j

corresponds to the initial location of the j-th server. The remaining two layers
represent the whole sequence of requests, i.e. the nodes rp and r′p both correspond
to the location of the p-th request.

Only some pairs of nodes in the network shown in Figure 2 are connected by
arcs. Note that an rp is connected only to the associated r′p. Also, a link between
an r′p and an rq exists only if q > p. All arcs are assumed to have unit capacity. The
costs of arcs leaving s̄ or entering t̄ are 0. An arc connecting rp with r′p has the cost
−L, where L is a suitably chosen very large positive number. All other arc costs are
equal to distances between the corresponding locations.

It is obvious that the maximal flow through the network shown in Figure 2 must
have the value k. Moreover, the maximal flow can be decomposed into k disjunct
unit flows from s̄ to t̄. Each unit flow determines the trajectory of the corresponding
server and the requests that are accomplished by that server. If the chosen constant
L is large enough, then the minimal-cost maximal flow will be forced to use all arcs
between rp and r′p, thus assuring that all requests will be served at minimum cost.

Actual computation of the optimal flow can be accomplished by the flow aug-
mentation method [4]. We start with a flow that is not of maximum value but has
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the minimal cost among those with that value. Then in each step we augment the
value of the current flow in such a way that it still has the minimal cost among
those with the same value. After a sufficient number of steps we obtain the desired
minimal-cost maximal flow.
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Figure 2. The network describing the optimal solution to the off-line k-server
problem

In our particular case the computation can be started with the null flow. Namely,
since the involved network is acyclic, the null flow obviously has the minimal cost
among those with value 0. In each step, augmentation is achieved by solving a
single-source shortest path problem in the corresponding displacement network [4].
The obtained shortest path determines the unit flow that has to be superimposed
onto the current flow in order to obtain augmentation. Since the maximal flow has
value k and each augmentation increments the flow value by one unit, computing
the minimal-cost maximal flow reduces to exactly k steps.

The mentioned shortest path problems can be solved by various sub-algorithms.
Relatively efficient computation is assured by Dijkstra’s procedure [8]. It is well
known that Dijkstra’s procedure can be applied only to networks whose arc costs
are nonnegative. On the first sight, our networks do not qualify since they contain
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costs −L. Still, it turns out that Dijkstra can be used after a suitable transformation
of arc costs in each step. The details of that transformation can be found in [6].

Putting it all together, the network flow realization of OPT for solving the k-
server problem on a sequence of n requests reduces to k steps. Each of those steps
reduces to a single-source shortest path problem in a displacement network con-
sisting of 2n + k + 2 nodes. With some preprocessing, any shortest path problem
can be solved by Dijkstra’s procedure. Since Dijkstra’s procedure has a quadratic
computational complexity and the complexity of the mentioned preprocessing is of
the same order, we can estimate that one step of the algorithm takes O((n + k)2)
time. Consequently, the computing time for the whole original implementation of
the algorithm is O(k · (n + k)2).

4. Modifying the first step

For a given network, the associated displacement network can be constructed exactly
as defined in [4]. However, in our case the standard construction may be simplified
thanks to the fact that only unit flows and unit capacities are used. Indeed, the
displacement network can quickly be obtained from the original network by reversing
directions of all arcs saturated by a flow, and by changing signs of their costs.
The previously mentioned shortest path problem within the displacement network
consists of finding a path from the source s̄ to the sink t̄ with the minimal sum of
arc costs.

Since our algorithm starts with the null flow, the displacement network in the
first step is identical to the original network. Thus the first step reduces to finding
the shortest (cheapest) path from s̄ to t̄ in the network shown in Figure 2. We claim
that such path must include all arcs of the form rp → r′p. Indeed, each of those arcs
has a negative cost −L, while all other arcs have positive costs. By assumption, L is
chosen so large that inclusion of −L compensates for any additional positive costs.
So inclusion of an additional rp → r′p surely makes a path shorter.

Now let us see how our shortest path looks like. Thanks to the special structure
of our network, any path from s̄ to t̄ that includes all arcs rp → r′p must have the
form:

s̄→ s(0)
x → r1 → r′1 → r2 → r′2 → · · · → rn−1 → r′n−1 → rn → r′n → t̄.

Here, s
(0)
x is one of the nodes from the first layer in Figure 2. To fully identify the

shortest path, we must choose the right x. Since all other costs are fixed, x must
obviously be chosen so that the cost of the arc s

(0)
x → r1 is minimal. Or differently

speaking, we must pick up the node s
(0)
x representing the server that is nearest to the

location of the first request. Thus determining the shortest path reduces to finding
the minimum among k values.

Note that after the first step of the algorithm the arcs of the form rp → r′p are
never used again. Indeed, because of saturation during the first step, these arcs
become reversed in further steps, and they obtain very large positive costs +L.
Inclusion of such reversed arcs surely produces paths with positive lengths. A path
with a positive length can never be the shortest since there always exists at least



Off-line algorithm for the k-server problem 125

one “shortcut” of the form s̄→ s0
j → t̄ with the length 0. Consequently, arcs of the

form rp → r′p can be discarded or ignored after the first step.
To summarize, our modification of the first step of the algorithm consists of the

following.

• No general path-finding procedure is used. Instead, the shortest path is directly
determined according to the specification shown above.

• Arcs of the form rp → r′p are only implicitly assumed to exist in the shortest
path, but in fact they are removed from the network.

With this modification, the first step is accomplished in time needed to find the
minimum among k values, thus in time O(k), which is much faster than in the
original implementation.

Note also that the modified version of the first step does not use the constant
L explicitly. Moreover, thanks to deletion of arcs rp → r′p the same constant also
becomes irrelevant for the remaining steps. Thus it is in fact not necessary to specify
L at all! From the practical point of view, this is a very convenient side-effect of our
modification. Namely, large constants are common in network flow models, but in
actual computation they can easily cause errors or numerical instabilities if they are
chosen too small or too large. Our modified algorithm avoids such difficulties.

5. Modifying the second step

The displacement network in the second step of the algorithm corresponds to the
flow which has been obtained in the first step. Additionally, all reversed arcs of the
form r′p → rp have been deleted, as explained in the previous section.

Let s
(0)
x be the node chosen in the first step as a part of the shortest path from

the source s̄ to the sink t̄. Note that the node r′n is also included in the same path.
Then the following claims are true.

• The reversed arc s
(0)
x → s̄ cannot be used in the second or any other shortest

path and may therefore be removed from the present and all further networks.

• The reversed arc t̄ → r′n also cannot be used in any shortest path and can
again be removed permanently from the network.

• Without t̄ → r′n, the node r′n becomes isolated, and can as well be removed
from the network.

• After the above mentioned removals, the remaining displacement network used
in the second step becomes acyclic.

To prove that the arc s
(0)
x → s̄ really cannot take part in any shortest path,

we will assume the opposite and show that such assumption leads to contradiction.
Indeed, with the arc s

(0)
x → s̄ included, the shortest path obviously contains a cycle

from s̄ back to s̄. Such cycle must have a negative length since otherwise it could
be removed from the shortest path in order to make it simpler or even shorter. A
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cycle with a negative length can be used to modify the network flow obtained in
the previous step of the algorithm, so that the flow value remains the same and
the cost decreases. This is clearly a contradiction with the basic property of the
flow-augmenting method: namely the flow in each step is chosen so that it always
has the minimal cost among those with the same value.

To prove that the arc t̄ → r′n also cannot be a part of a shortest path we can
use analogous arguments as for the arc s

(0)
x → s̄. Namely, the inclusion of t̄→ r′n in

a shortest path implies existence of a cycle from t̄ back to t̄ with a negative length,
which is again not possible.

Now we will prove that after the mentioned removals of obsolete arcs and nodes
the displacement network in the second step really becomes acyclic. We will simply
show for each particular node that it cannot be a part of any cycle.

• The source s̄ cannot be incorporated into a cycle since its only incoming arc
s
(0)
x → s̄ has been deleted.

• A similar argument is valid for the sink t̄, thanks to removal of the arc t̄→ r′n.

• A node s
(0)
j (j 6= x) cannot be in a cycle since it can be entered only from s̄,

and we already know that s̄ is not in a cycle.

• The node s
(0)
x cannot be in a cycle since it can be entered only from r1, r1 can

be entered only from some s
(0)
j (j 6= x), and s

(0)
j in not in a cycle.

• The node r1 cannot be within a cycle since its only outgoing arc leads to s
(0)
x ,

and s
(0)
x is not in a cycle.

• A node rp (p = 2, 3, . . . , n) cannot be a part of a cycle since its only outgoing
arc leads to r′p−1, while at the same time all outgoing arcs from r′p−1 lead
towards some rq with q > p. Thus there is no way to return back to rp.

• The only remaining nodes are r′p (p = 1, 2, . . . , n− 1). But they alone cannot
form a cycle since they are not directly connected.

Acyclicity is an important property of a network since it allows finding shortest
paths very efficiently by simple one-way scanning of nodes. Namely, thanks to
acyclicity, it is possible to find a “topological” ordering of nodes [8], i.e. such sequence
where for each arc u→ v the starting node u is put in the sequence before the ending
node v. The scanning procedure processes nodes in topological order and computes
for each node its distance from the source s̄, by taking into account only the costs
of its incoming arcs and the already computed distances for its direct predecessors.

It is easy to check that for our particular network the following sequence of nodes
determines a topological ordering:

s̄, s
(0)
1 , s

(0)
2 , . . . , s

(0)
x−1, s

(0)
x+1, . . . , s

(0)
k , r1, s

(0)
x , r2, r

′
1, r3, r

′
2, . . . , rn, r′n−1, t̄.

Thus to compute the shortest path efficiently, the nodes should be scanned in the
order shown above.

Putting it all together, our modification of the second step of the algorithm
consists of the following.
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• The arcs s̄ → s
(0)
x and r′n → t̄ used in the previous shortest path are perma-

nently removed from the network.

• The isolated node r′n is also permanently removed from the network.

• The shortest path problem in the remaining displacement network is solved by
scanning the nodes in the topological order shown above.

Since a suitable topological ordering of nodes is already known in advance, sorting
the nodes takes no time. The proposed scanning procedure takes only the time
needed to examine each arc in the network exactly once. On the other hand, the
Dijkstra procedure combined with preprocessing of arc costs would process each arc
at least twice. Moreover, Dijkstra would also require a lot of additional operations for
finding certain minima. Consequently, our modified implementation of the second
step should run considerably faster than the standard combination of Dijkstra with
preprocessing. A more accurate analysis of operations shows that the speedup within
the second step should be at least 4.

6. Further modifications

Now we consider the third, fourth, or any of the remaining steps of the algorithm.
The displacement network now corresponds to the flow that has been obtained in
the step preceding the current step. Many arcs and nodes have already been deleted,
according to the rules stated in Sections 4 and 5 and the rules that will shortly be
introduced in this section.

Let s̄ → s
(0)
x be the first arc of the shortest path obtained in the previous step.

Let r′y → t̄ be the last arc of the same path. Then the following claims are true.

• The reversed arc s
(0)
x → s̄ cannot be used in any shortest path and may

therefore be removed from the current and all further networks.

• The reversed arc t̄ → r′y also cannot be used in any shortest path and can
again be removed permanently from the network.

• Without t̄ → r′y, the node r′y becomes inaccessible since it does not have any
other incoming arc. Thus r′y can as well be removed from the network together
with its outgoing arcs.

The first two claims above are in fact generalizations of similar claims from
Section 5, and they can be proved in the same way as in Section 5. The third claim
is a consequence of the following two facts.

• Initially, the node r′y has only one incoming arc - see Figure 2.

• For any chosen node, the number of incoming (or outgoing) arcs remains con-
stant through the whole algorithm.

To see why the number of incoming (or outgoing) arcs for a given node cannot
change, let us remember that in our networks only unit flows and unit capacities are
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used. A new unit flow through the chosen node will saturate exactly one incoming
and one outgoing arc, thus reversing their directions while keeping the total number
of incoming (or outgoing) arcs the same.

The three claims above assure that the current displacement network can be
simplified. However, contrary to Section 5, now we cannot guarantee that such
simplified network is acyclic. Thus the associated shortest path problem cannot
be solved by straightforward one-way scanning of nodes, as it has been done in
Section 5. Instead, a more general path-finding procedure must be used, such as
Dijkstra with preprocessing of arc costs. Still, thanks to special properties of our
network, it is possible to use a slightly modified version of Dijkstra. Namely, by
similar reasoning as in the previous paragraph, it can be shown that each node rp

has only one outgoing arc. Moreover, according to [6], the preprocessed cost of that
outgoing arc must be 0. A consequence is that within the Dijkstra procedure it is
necessary to maintain a list of only n nodes rp, instead of all k + 2n nodes. This
modification produces a version of Dijkstra whose computing time is slightly better
than for the standard version, although still within the same order of magnitude.

It can easily happen that the shortest path obtained in the current step turns
out to have the length 0. We claim that in such case the whole algorithm can be
stopped since the flow from the previous step already describes the optimal solution.
To prove this claim, let us note that the zero-length shortest path can always be
chosen as a shortcut of the form

s̄→ s
(0)
j → t̄,

where s
(0)
j is a suitable node not affected by the present flow. For reasons similar

as before, the arcs constituting the shortcut can be removed from further networks.
Thus the displacement network in the next step will look almost the same as in the
current step, except that the above two arcs will be missing. Consequently, the next
step will again produce a zero-length shortest path in a form of another shortcut, . . . ,
and so on until the last step. Emergence of a zero-length shortest path in fact means
that our particular instance of the off-line k-server problem is solved optimally by
less than k servers, so that the remaining servers should stay idle.

In accordance with the observed properties, we propose the following modification
of the third, fourth, or any further step of the algorithm.

• The arcs s̄ → s
(0)
x and r′y → t̄ used in the previous shortest path are perma-

nently removed from the network.

• The node r′y is also permanently removed from the network together with its
outgoing arcs.

• The shortest path problem in the remaining displacement network is solved by
a customized version of Dijkstra with appropriate preprocessing of arc costs.

• If the newly obtained shortest path has the length 0, then the whole algorithm
is stopped.

Thanks to removal of arcs and nodes, the displacement network in each step becomes
simpler, thus enabling faster execution.
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7. Experimental evaluation of speedup

In order to produce experimental results, we have developed two C++ programs.
The first of them implements the optimal off-line algorithm OPT exactly as it has
been described in Section 3. The second program follows our improved implemen-
tation of the same algorithm, thus incorporating all modifications described in Sec-
tions 4-6. Both programs have been tested on the same k-server problem instances,
by using a computer with a 2.8 GHz CPU and 2GB of memory. The obtained
solutions as well as the corresponding computing times have been recorded.

As expected, for each particular problem instance both versions of OPT have pro-
duced exactly the same solutions, i.e. the same server trajectories and the same serv-
ing costs. However, the computing times needed to reach those solutions have been
quite different. Thus experimenting has enabled measuring of the overall speedup
produced cumulatively by all modifications of OPT described in Sections 4-6.

The results of our experiments regarding speedup are presented in Tables 1-
3. The first table contains the absolute computing times (in milliseconds) for the
original OPT. Similarly, Table 2 lists the absolute computing times (again in mil-
liseconds) for the modified OPT. Table 3 gives relative speedups of the modified
OPT compared to the original OPT, i.e. it contains entries from the first table di-
vided by the corresponding entries from the second table. In each table, one entry
corresponds to one particular problem instance. Thereby, the problem instances are
organized in columns and rows, according to their parameters n (request sequence
length) and k (number of servers), respectively.

n = 1000 n = 1500 n = 2000 n = 2500 n = 3000
k = 2 218 468 828 1188 1704
k = 3 313 704 1250 1812 2594
k = 5 531 1203 2125 3078 4391
k = 10 1110 2422 4281 6140 8859
k = 20 2218 4891 8610 12375 17703

Table 1. Computing times of the original OPT (in milliseconds)

For very short request sequences both versions of OPT run very quickly, so that
accurate measurement of time becomes impossible. Therefore only larger problem
instances are shown in our tables. For such instances, the modified OPT is always
at least 5 times faster than the original OPT. The best result is obtained for k = 2
and n = 1000, where the speedup reaches 13.6. In general, we can observe that for
a fixed n the speedup becomes better as k becomes smaller.

The observed general behavior of the speedup regarding k is easy to explain.
Namely, in the modified OPT the first two steps have been substantially improved
compared to the original OPT. On the other hand, the improvement of the remaining
steps is not so dramatic, i.e. the respective computing times are still within the same
order of magnitude as in the original implementation. If k is small, then the relative
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n = 1000 n = 1500 n = 2000 n = 2500 n = 3000
k = 2 16 47 78 125 187
k = 3 31 78 141 234 343
k = 5 62 156 296 453 640
k = 10 172 360 640 1000 1390
k = 20 343 750 1343 2078 2937

Table 2. Computing times of the modified OPT (in milliseconds)

n = 1000 n = 1500 n = 2000 n = 2500 n = 3000
k = 2 13.625 9.957 10.615 9.504 9.112
k = 3 10.097 9.026 8.865 7.744 7.563
k = 5 8.565 7.712 7.179 6.795 6.861
k = 10 6.453 6.728 6.689 6.140 6.373
k = 20 6.466 6.521 6.411 5.955 6.028

Table 3. Speedup of the modified OPT vs. the original OPT

proportion of the well improved first two steps within the whole algorithm becomes
larger, so that the overall speedup rises.

There are however some entries in Table 3 that do not conform to the above rule.
For instance, the speedup for k = 20 and n = 1000 happens to be better than for
k = 10 and n = 1000. Such exceptions can be explained by peculiarities of particular
concrete problem instances. Namely, both versions of OPT can take advantage of
some special data values and occasionally produce some additional savings.

8. Adjustments for on-line algorithms

Now we are concerned with the question of how the presented improvements of OPT
can be applied to speed up the work function algorithm - WFA. As it has already
been observed, the optimization problem instances within the WFA have similar
but slightly different form than those solved by OPT. Therefore the WFA cannot be
improved simply by calling the already improved versions of OPT. Instead, we must
first find a suitable network flow formulation for the WFA itself, which should be
similar to the one used for OPT. Then we should try to apply similar modifications
to the WFA as we have done for OPT.

A network flow implementation of the WFA can be obtained by following defini-
tion (1). According to (1), the i-th step of the WFA can be reduced to k minimal-cost
maximal flow problems. Each of those flow problems solves one optimization prob-
lem instance from (1), and uses a network that is slightly different than the one
shown in Figure 2. Network redesign is needed to implement the constraint within
(1) dealing with the final configuration of servers S(i). There are more possibilities
how such adjusted network should look like. One version is shown in Figure 3.

The network in Figure 3 consists of 2i + 2k nodes. Arc costs and capacities are
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determined similarly as it has been explained for the network in Figure 2. The main
difference compared to Figure 2 is that the fourth layer of nodes has been added,
which is analogous to the first layer, and which specifies the currently chosen version
of the final server configuration S(i). Note that the second and third layer now
correspond only to the requests r1, r2, . . . , ri−1. Still, since the final configuration
S(i) always covers the location of the last request ri, we are sure that ri will also be
served at no additional cost. t
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Figure 3. Solving one of k optimization problems within the i-th step of the WFA

When we switch from one particular version of S(i) to another, the structure of
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the whole network remains the same, only the costs of arcs entering the fourth level
must be adjusted in order to reflect different final setting of servers.

Actual computation of the optimal flow in the network shown in Figure 3 can
again be accomplished by the flow augmentation method, which now reduces to
k steps each involving one single-source shortest path problem in a displacement
network having 2i + 2k nodes. All path problems can again be solved by Dijkstra’s
procedure after appropriate preprocessing. Since the i-th step of the WFA reduces
to k network flow problem instances, it follows that the computing time of the i-th
step amounts to O(k2 · (i + k)2).

The described implementation of the WFA can be improved by speeding up
the flow augmentation algorithm that solves each particular network flow problem
instance given by Figure 3. After careful analysis we have found out that most
modifications of particular steps of OPT, which have been described in Sections 4-6,
can as well be applied within the context of Figure 3. More precisely, the following
claims are true.

• In the first step of the flow augmenting algorithm: the shortest path has the
form

s̄→ s(0)
x → r1 → r′1 → r2 → r′2 → · · · → ri−1 → r′i−1 → s(i)

y → t̄.

Here x is chosen so that the cost of the arc s
(0)
x → r1 is minimal, and y is

chosen so that the cost of the arc r′i−1 → s
(i)
y is minimal. Thus the first step

can be accomplished in time O(k), since it reduces to finding two independent
minima, each among k values.

• After the first step of the flow augmenting algorithm: all arcs of the form
rp → r′p can permanently be removed from the network. Their costs do not
need to be specified explicitly.

• At the beginning of the second, third, or any further step of the flow aug-
menting algorithm: the arcs of the form s̄ → s

(0)
x and s

(i)
y → t̄, which have

been used within the shortest path in the previous step, can permanently be
removed from the network.

• In the second step of the flow augmenting algorithm: the displacement network
is acyclic. Thus the shortest path problem in the second step can be solved by
scanning the nodes in topological order. One appropriate ordering of nodes is:

s̄, s
(0)
1 , s

(0)
2 , . . . , s

(0)
x−1, s

(0)
x+1, . . . , s

(0)
k , r1, s

(0)
x , r2, r

′
1, r3, r

′
2, . . .

. . . , ri−1, r
′
i−2, s

(i)
y , r′i−1, s

(i)
1 , s

(i)
2 , . . . , s

(i)
y−1, s

(i)
y+1, . . . , s

(i)
k , t̄.

The proofs of the above claims are similar to those given in Sections 4-6. By applying
the listed modifications of the flow augmenting algorithm, we can obtain a similar
speedup of the WFA as achieved for OPT.

Note that the network flow techniques described in this section can also be ap-
plied to the lightweight version of the work function algorithm - the w-WFA. More
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precisely, the i-th step of the w-WFA can be reduced to k minimal-cost maximal
flow problems with networks built according to Figure 3. But now each network
consists of only 2w + 2k nodes. Actual computation can again be accomplished by
the flow augmentation method and Dijkstra’s procedure. The resulting computing
time of the w-WFA is O(k2 · (w + k)2) per step. We see that the w-WFA is more
suitable for practical purposes than the WFA since its computing time does not rise
from step to step. After applying the improvements from this section, the network
implementation of the w-WFA becomes faster and therefore even more suitable for
practical use.

9. Conclusions

Although the k-server problem is in essence an on-line problem, it is still interesting
to consider the corresponding optimal off-line algorithm. Namely, a fast imple-
mentation of the optimal off-line algorithm can provide benchmarks for assessing
performance of on-line algorithms. Also, such implementation can be used as a
building block within certain complex on-line algorithms that rely on solving some
auxiliary off-line subproblems.

In this paper we have described how the conventional network flow implementa-
tion of the optimal off-line algorithm can be improved in terms of speed. According
to the presented experimental measurements, our improved version of the algorithm
is indeed considerably faster than the original version, especially if the number of
servers k is relatively small. Most of the proposed modifications of the off-line algo-
rithm can as well be applied within the mentioned complex on-line algorithms, but
after some adjustments.

The presented ideas turn out to be quite successful in speeding up the first two
steps of the optimal off-line algorithm, while their effect on the remaining steps is
not so significant. Our future plan is to consider and evaluate some additional ideas
for improvement of that last part of the algorithm.
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