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Cesàro semiconservative FK spaces
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Abstract. In this paper we call an FK space X containing φ a Cesàro semiconservative
space if Xf ⊂ σs holds. Therefore we give some characterizations of these spaces.
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1. Introduction

Conservative spaces play a special role in summability theory. However, in [7],
Snyder and Wilansky have shown that the results seem mainly to depend on a weaker
assumption and that the spaces be semiconservative. They give the definition of a
semiconservative FK space and investigate the properties of this space in [7] ,[8].
In those papers, an FK space X containing φ is called a semiconservative space if
Xf ⊂ cs holds. This is a significant generalization of the theory.

In this paper we studied Cesàro semiconservative spaces which have weaker as-
sumption than a semiconservative space. Here by replacing cs by σs, we give a new
definition called a Cesàro semiconservative FK space.

2. Notions and definitions

Let w denote the space of all real or complex-valued sequences. It can be topologized
with seminorms pi (x) = |xi| , (i = 1, 2, ...), and any vector subspace of w is called
a sequence space. A sequence space X, with a vector space topology τ is a K space
provided that the inclusion mapping I : (X, τ) → w, I(x) = x is continuous. If, in
addition, τ is complete, metrizable and locally convex, then (X, τ) is called an FK
space. So an FK space is a complete, metrizable local convex topological vector
space of sequences for which the coordinate functionals are continuous. An FK
space whose topology is normable is called a BK space. The basic properties of
such spaces can be found in [8], [9] and [11].

By m and c0 we denote the spaces of all bounded sequences and null sequences,
respectively. These are FK spaces under ‖x‖ = supn |xn|. By l and cs we shall
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denote the space of all absolutely summable sequences and convergent series, re-
spectively. The sequences spaces

h =

x ∈ w : lim
j
xj = 0, and

∞∑
j=1

j |∆xj | <∞

 ,

q =

x ∈ w : sup
j
|xj | <∞ and

∞∑
j=1

j
∣∣∆2xj

∣∣ <∞
 ,

σb =

x ∈ w : sup
n

∣∣∣∣∣∣ 1n
n∑
k=1

k∑
j=1

xj

∣∣∣∣∣∣ <∞
 ,

σs =

x ∈ w : lim
n

1
n

n∑
k=1

k∑
j=1

xj exists

 ,

and

σ0 =

{
x ∈ w : lim

n

∣∣∣∣∣ 1n
n∑
k=1

xk

∣∣∣∣∣ = 0

}
are FK spaces with the norms

‖x‖h =
∞∑
j=1

j |∆xj |+ sup
j
|xj | ,

‖x‖q =
∞∑
j=1

j
∣∣∆2xj

∣∣+ sup
j
|xj | ,

‖x‖σb = sup
n

∣∣∣∣∣∣ 1n
n∑
j=1

k∑
j=1

xj

∣∣∣∣∣∣ ,
and

‖x‖σ0
= sup

n

1
n

∣∣∣∣∣
n∑
k=1

xk

∣∣∣∣∣ ,
respectively, where ∆xj = xj − xj+1,∆2xj = ∆xj − ∆xj+1. The space q ∩ c0 is
denoted by q0. Under the norm ‖.‖q , q0 is a BK space, (see [1], [2]).

Throughout the paper e denotes the sequence of ones, (1, 1, ..., 1, ...); δj , (j =
1, 2, ...), the sequence (0, 0, ..., 0, 1, 0, ...) with the one in the j−th position. Let
φ := l.hull

{
δk : k ∈ N

}
and φ1 = φ ∪{e}. The topological dual of X is denoted

by X ′. The space X is said to have AD if φ is dense in X and an FK space X is
said to have AK or to be an AK space, if X ⊃ φ and for each x ∈ X, x(n) → x,
(n→∞) , in X, where

x(n) =
n∑
k=1

xkδ
k = (x1, x2, ..., xn, 0, ...) .
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In addition, an FK space is said to have a σK space if X ⊃ φ and for each x ∈ X,

1
n

n∑
k=1

x(k) → x, (n→∞) .

Every AK space is a σK space. For example w, h, c0, σ0 are AK spaces while
q0, σs are σK spaces ([1], [2], [8]). In addition, every σK space is an AD space.

Let X be an FK space containing φ. Then Xf =
{{
f
(
δk
) }

: f ∈ X ′
}

. In
addition,

Xβ =

{
x :

∞∑
k=1

xkyk exists for every y ∈ X

}
,

Xσ =

x : lim
n

1
n

n∑
k=1

k∑
j=1

xjyj exists for every y ∈ X

 ,

Xσb =

x : sup
n

1
n

∣∣∣∣∣∣
n∑
k=1

k∑
j=1

xjyj

∣∣∣∣∣∣ <∞ for every y ∈ X

 .

Let E, E1 be sets of sequences. Then for k = β, σ, σb

a) E ⊂ Ekk,

b) Ekkk = Ek

c) if E ⊂ E1, then Ek1 ⊂ Ek

holds. Also, if φ ⊂ E ⊂ E1, then Ef1 ⊂ Ef .

Theorem 1. Let X be an FK space containing φ. Then

i) Xβ ⊂ Xσ ⊂ Xσb ⊂ Xf ,

ii) If X is a σK space, then Xf = Xσ,

iii) If X is an AD space, then Xσ = Xσb.

Proof.

ii) Let u ∈ Xσ and define f(x) = limn
1
n

n∑
k=1

k∑
j=1

xjuj for x ∈ X. Then f ∈ X ′ by

the Banach-Steinhause Theorem ([8], 1.0.4). Also

f(δp) = lim
n

1
n

(n− (p− 1))up = up(p < n)

so u ∈ Xf . Thus Xσ ⊂ Xf .

Now we show that Xf ⊂ Xσ. Let u ∈ Xf . Since X is a σK space

f(x) = lim
n

1
n

n∑
k=1

k∑
j=1

xjf(δj) = lim
n

1
n

n∑
k=1

k∑
j=1

xjuj

for x ∈ X, then u ∈ Xσ. Hence Xf = Xσ.
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iii) Let u ∈ Xσb and define fn(x) = 1
n

n∑
k=1

k∑
j=1

xjuj for x ∈ X. Then {fn} is

pointwise bounded, hence equicontinuous by ([8], 7.0.2). Since

lim
n
fn(δp) = up, (p < n),

then φ ⊂ {x : limn fn(x) exists}. Hence {x : limn fn(x) exists} is a closed
subspace of X by the Convergence Lemma, ([8],1.0.5) and ([8],7.0.3). Since
X is an AD space, then X = {x : limn fn(x) exists} = φ and then limn fn(x)
exists for all x ∈ X. Thus u ∈ Xσ. The opposite inclusion is trivial.

i) φ ⊂ X by the hypothesis. Since φ is an AD space, then

Xσb ⊂
(
φ
)σb

=
(
φ
)σ ⊂ (φ)f = Xf

by (iii) and ([8], 7.2.4).

Let A = (aij) be an infinite matrix. The matrix A may be considered as a linear

transformation of sequences (xk) by the formula y = Ax, where yi =
∞∑
j=1

aijxj ,

(i = 1, 2, ...).
For an FK space (X,u), we consider the summability domain

XA := {x ∈ w : Ax ∈ X} .

Then XA is an FK space under the seminorms pi(x) = |xi| , (i = 1, 2, ...) , hi (x) =

supm

∣∣∣∣∣ m∑j=1

aijxj

∣∣∣∣∣ , (i = 1, 2, ...) and (u ◦A) (x) = u (Ax) , [8].

Recall that, given a matrix A with lA ⊃ φ is called l−replaceable if there is a

matrix B = (bnk) with lB = lA and
∞∑
n=1

bnk = 1, for all k ∈ N, [6].

An FK space X containing φ1 is called Cesàro conull if

f (e) = lim
n

1
n

n∑
k=1

k∑
j=1

f
(
δj
)
,

for all f ∈ X ′, [5].
In addition, an FK space X is called semiconservative if Xf ⊂ cs, this means

that X ⊃ φ and
∞∑
j=1

f
(
δj
)

is convergent for each f ∈ X ′, [7] .

3. Cesàro semiconservative FK spaces

In this section we extend the notation of the semiconservative FK space introduced
by Snyder and Wilansky [7] to the concept of Cesàro semiconservative FK Space
and we investigate the properties of these spaces.
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Definition 1. An FK space X, containing φ, is called Cesàro semiconservative
if Xf ⊂ σs, where Xf ⊂ σs if and only if e(k) is weakly Cesàro Cauchy i.e.{

1
n

n∑
k=1

f(e(k))

}
is convergent for each f ∈ X ′ equivalently lim

n

1
n

n∑
k=1

k∑
j=1

f
(
δj
)

ex-

ists.

For example, c0, σ0 are Cesàro semiconservative FK spaces. Every semiconser-
vative FK space is a Cesàro semiconservative FK space. But the following example
shows that every Cesàro semiconservative FK space is not a semiconservative space.
Before presenting this example we shall give some theorems.

Theorem 2. If a matrix A is l-replaceable, then lA is not a Cesàro semiconservative
FK space.

Proof. If A is l−replaceable, then there is f ∈ l′A such that f
(
δj
)

= 1 for all j ∈ N ,

[6]. Hence limn
1
n

n∑
k=1

k∑
j=1

f
(
δj
)

does not exist since 1
n

n∑
k=1

k∑
j=1

f
(
δj
)

= n+1
2 , so lA is

not a Cesàro semiconservative space.

Theorem 3. If X A is a Cesàro conull FK space, then it is a Cesàro semiconser-
vative space.

Proof. Suppose that XA is Cesàro conull. Then

f (e) = lim
n

1
n

n∑
k=1

k∑
j=1

f
(
δj
)
,

for all f ∈ X ′A. Hence Xf
A ⊂ σs.

Now we present the example promised in this section.

Example 1. Define the sequence Ax by (Ax)j = xj − xj−1 (x0 = 0) if j is square,
and 0 otherwise. Then lA is a Cesàro semiconservative space but not a semiconser-
vative space.

Proof. lA is a Cesàro conull FK space by ([5], Example 3.2) , so lA is a Cesàro
semiconservative space by Theorem 3.

Now we show that lA is not a semiconservative space. To see this, let B := AT .
Then

∞∑
k=1

∣∣∣∣∣
∞∑
i=n

bik

∣∣∣∣∣ = 1,

if n is a square, otherwise 0. Thus

lim
n

∞∑
k=1

∣∣∣∣∣
∞∑
i=n

bik

∣∣∣∣∣
does not exist and B /∈ (l∞ : cs) =

(
lβ : cs

)
by ([8] , 8.5.8) and then lA is not a

semiconservative space by ([8], 9.4.4).
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Theorem 4.

i) A closed subspace Y , containing φ, of a Cesàro semiconservative space X is a
Cesàro semiconservative space.

ii) An FK space Y that contains a Cesàro semiconservative space X must be a
Cesàro semiconservative space.

iii) A countable intersection of Cesàro semiconservative spaces is a Cesàro semi-
conservative space.

Proof.

i) is true since Y f = Xf (see [8], Theorem 7.2.6).

ii) holds since Y f ⊂ Xf ⊂ σs .

iii) First the intersection X =
⋂
Xn is an FK space by ([8],Theorem 4.2.15).

Every f ∈ X ′ can be written f =
m∑
k=1

gk, where each gk ∈ X ′n for some n by

([8], 4.0.3, 4.0.8).

Theorem 5. zσ is a Cesàro semiconservative space if and only if z ∈ σs.

Proof. Let zσ be a Cesàro semiconservative space. Then zσf ⊂ σs. Since zσ is
a σK space by [5], we have zσf = zσσ. So since {z} ⊂ zσσ ⊂ σs, we get z ∈ σs.
Now let z ∈ σs. Then q = σsσ ⊂ zσ [1] and hence zσσ ⊂ qσ = σs. Since zσ is a σK
space, then zσf = zσσ ⊂ σs.

Example 2. σs is not a Cesàro semiconservative space. Because σs = eσ and
e /∈ σs.

Theorem 6.

i) Every Cesàro semiconservative space contains q0.

ii) The intersection of all Cesàro semiconservative spaces is q0.

iii) q0 is not a Cesàro semiconservative space.

iv) There is no smallest Cesàro semiconservative space.

Proof.

i) Let X be a Cesàro semiconservative space. Then Xf ⊂ σs ⊂ σb = qσ0 , [1] and
since q0 is a σK space, then Xf ⊂ qσ0 = qf0 . So, since q0 is an AD space, we
obtain q0 ⊂ X by ([8],Theorem 8.6.1) .

ii) Let the intersection of all Cesàro semiconservative spaces be I. We get I ⊂
∩{zσ : z ∈ σs} = σsσ = q using Theorem 5. Also I ⊂ c0, since c0 is a Cesàro
semiconservative space so I ⊂ q ∩ c0 = q0. The opposite inclusion is by (i).
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iii) Since qf0 = qσ0 = σb * σs, then q0 is not a Cesàro semiconservative space.

iv) By (ii) and (iii).

Example 3. q and σb are not Cesàro semiconservative spaces.

Proof. q0 and σs are closed subspaces of q and σb, respectively. Then since q0 and
σs are not Cesàro semiconservative spaces, q and σb are not Cesàro semiconservative
spaces by Theorem 4 (i).

Xσ ⊂ σs is not sufficent for X to be a Cesàro semiconservative space since
qσ = σs. This is not surprising since this condition holds for every space containing
e.

Definition 2. An FK space is called bounded convex Cesàro semiconservative if it
is a Cesàro semiconservative space and includes q.

Since q0 is an AD space, then X ⊃ q0 if and only if Xf ⊂ σb by ([8], 8.6.1).
Thus X ⊃ q if and only if Xf ⊂ σb and e ∈ X, by ([8], 8.3.7). However, X is a
bounded convex Cesàro semiconservative space if and only if Xf ⊂ σs and e ∈ X,
also if and only if X is a Cesàro semiconservative space and e ∈ X.

The definition of a Cesàro conull FK space X in which X ⊃ φ, can be given as
follows by using Cesàro semiconservativity. A Cesàro semiconservative space X is
called Cesàro conull, if

f (e) = lim
n

1
n

n∑
k=1

k∑
j=1

f
(
δj
)
,

for all f ∈ X ′. A Cesàro semiconservative space need not contain e but must contain
e, if it is Cesàro conull. A Cesàro conull space is an automatically bounded convex
Cesàro semiconservative space.

4. A relationship between the distinguished subsets and Cesàro
semiconservative FK spaces

In this section we give the relation between the distinguished subspaces which are
σF+, σF , σB+, σB and Cesàro semiconservative and bounded convex Cesàro semi-
conservative FK spaces. First we shall give the definition of the distinguished
subsets σF+, σF , σB+, σB.

Let X be an FK space containing φ. Then we define
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σF+ (X) =

x : lim
n

1
n

n∑
k=1

k∑
j=1

xjf
(
δj
)

exists for all f ∈ X ′


= {x : {xnf (δn)} ∈ σs for all f ∈ X ′} ,

σB+ (X) =

{
x :

{
1
n

n∑
k=1

x(k)

}
is bounded in X

}
= {x : {xnf (δn)} ∈ σb for all f ∈ X ′} .

Also σF = σF+ ∩X and σB = σB+ ∩X, [4].

Theorem 7. Let X be an FK space containing φ and z ∈ w. Then z ∈ σF+ if
and only if z−1.X = {x : z.x ∈ X} is a Cesàro semiconservative FK space, where
z.x = {znxn} in particular e ∈ σF+ if and only if X is a Cesàro semiconservative
FK space.

Proof. Let f ∈ (z−1.X)
′
. Then f(x) = αx+ g(z.x), α ∈ φ, g ∈ Y ′

, by ([8], 4.4.10)
and f(δn) = αn+g(z.δn) = αn+g(zn.δn) = αn+zng(δn). Hence, since α ∈ φ ⊂ σs,
then {f(δn)} ∈ σs if and only if {zng(δn)} ∈ σs, i.e. z ∈ σF+.

Theorem 8. Let X be an FK space containing φ and z ∈ w. Then z ∈ σF if and
only if z−1.X is a bounded convex Cesàro semiconservative FK space in particular
e ∈ σF if and only if X is bounded convex Cesàro semiconservative.

Proof. Let z ∈ σF . Then z ∈ X so e ∈ z−1.X and since z ∈ σF+, z−1.X is a
Cesàro semiconservative FK space by Theorem 7. Thus z−1.X is a bounded convex
Cesàro semiconservative FK space.

Let z−1.X be a bounded convex Cesàro semiconservative FK space. Then
z−1.X is Cesàro semiconservative and e ∈ z−1.X so z ∈ X. Thus since z ∈ σF+

by Theorem 7 and z ∈ X then, z ∈ σF .

Theorems 9 and 10 have already been obtained by Buntinas [1] but here we
present their alternate proofs.

Theorem 9. Let X be an FK space containing φ and z ∈ w. Then z ∈ σB+ if and
only if z−1.X ⊃ q0, in particular e ∈ σB+ if and only if X ⊃ q0.

Proof. Let f ∈ (z−1.X)
′
. Then f(δn) = αn + zng(δn) by ([8], 4.4.10). Thus, since

α ∈ φ ⊂ σs, then z ∈ σB+ if and only if {zng(δn)} ∈ σb, i.e. z ∈ σB+.

Theorem 10. Let X be an FK space containing φ and z ∈ w. Then z ∈ σB if and
only if z−1.X ⊃ q, in particular e ∈ σB if and only if X ⊃ q.

Proof. Let z ∈ σB. Then z ∈ X so e ∈ z−1.X and z ∈ σB+. Thus z−1.X ⊃ q by
Theorem 9. Let z−1.X ⊃ q, then z−1.X ⊃ q0 and e ∈ z−1.X. Thus, since z ∈ σB+

by Theorem 9 and z ∈ X, then z ∈ σB.
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Theorem 11. Let X be an FK space containing φ. Then X is a Cesàro semicon-
servative space if and only if σF+ ⊃ q.

Proof. Let X be a Cesàro semiconservative FK space. Then e ∈ σF+ by Theorem
7. Since e ∈ σF+ = Xfσ [4], then Xf ⊂ Xfσσ ⊂ {e}σ and so q = {e}σσ ⊂ Xfσ =
σF+. Let σF+ ⊃ q. Then e ∈ σF+ and so X is a Cesàro semiconservative FK
space by Theorem 7.

Theorem 12. Let Y be a Cesàro semiconservative FK space and Z an AD space.
Suppose that for an FK space X, X ⊃ Y.Z. Then X ⊃ Z, where Y.Z = {y.z : y ∈
Y, z ∈ Z}.

Proof. Let z ∈ Z. Then, since X ⊃ Y.Z, z−1.X ⊃ Y . Thus, since Y is a Cesàro
semiconservative space, then z−1.X is a Cesàro semiconservative space by Theo-
rem 4 (ii) and so z ∈ σF+ by Theorem 7. Hence Z ⊂ σF+ = Xfσ [4] . Thus
Xf ⊂ Xfσσ ⊂ Zσ ⊂ Zf and so Z ⊂ X by ([8], 8.6.1).
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