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Summary

A biosensor for rapid determination of nonsteroidal anti-inflammatory drugs (NSAIDs)
is described based on the inhibition of cyclooxygenase enzyme (both isoforms) by NSAIDs.
The results show the full validity of the method, which has also been optimized by com-
paring the inhibition of two enzyme isoforms, COX-1 and COX-2, in the presence of differ-
ent tested pharmaceutical drugs (diclofenac, naproxen, ibuprofen, tolmetin). Also, recovery
trials were performed in milk and fresh cheese adulterated with known quantities of NSAIDs,
always obtaining recovery values >88 %.
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Introduction

The term NSAID indicates a class of drugs known
as nonsteroidal anti-inflammatory drugs. This is an im-
portant therapeutic class of drugs used to suppress pain
and inflammatory states in cases of relevant diseases
such as rheumatoid arthritis. The mechanism of action
of NSAIDs involves reduction of prostaglandin synthe-
sis by inhibition of cyclooxygenase (COX) enzyme through
competitive antagonism towards arachidonic acid that
binds to the COX enzyme (1,2). COX enzyme has 2 sub-
-types: COX-1 and COX-2, the former existing through-
out all the biological human systems, while the latter is
scarcely present in the stomach. In order to be an effec-
tive competitive inhibitor of arachidonic acid that binds
to COX, a drug must possess both high lipophilic and
acid properties to mimic a natural substrate. This is
clearly apparent in the chemical structures of all NSAIDs,
which contain carboxylic group of propionic acid (e.g.
ibuprofen, ketoprofen, etc.), or carboxylic group of acetic
acid (e.g. diclofenac), or an enolic group (3).

It has been demonstrated that NSAIDs exhibit ad-
verse effects on the gastrointestinal tract including nau-
sea, vomiting and diarrhoea. Ulcerogenic properties of
NSAIDs stem from organic acids they contain, which
are responsible for irritating the gastric mucosa, and
from their inhibitory effects on prostaglandin biosynthe-
sis (4–7).

For this reason, in order to protect the health of the
consumer, European Union has ruled Maximum Resid-
ual Limits (MRLs) for the veterinary medicinal products
in alimentary stocks of animal origin. On 17th Septem-
ber 2003 the Committee for Veterinary Medicinal Prod-
ucts adopted an Opinion recommending the establish-
ment of MRLs respecting the Council Regulation (EEC)
No 2377/90, as amended, for diclofenac, for bovine and
porcine species. These limits still have not been estab-
lished for naproxen, ibuprofen and tolmetin, which are
the other three tested pharmaceutical drugs in our re-
search.
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Comparability of monitored data is essential for any
meaningful assessment and for the management of envi-
ronmental risks of emerging pollutants. The reliability
and comparability of data at European level is often lim-
ited, because analytical methods for emerging pollutants
are often not fully validated, not harmonized or not suit-
able for all the relevant analysed matrices. Recent years
have seen an increase in monitoring pharmaceutical res-
idues in food (8) and in environmental water samples
(9). Recently, diclofenac has been found as an environ-
mental contaminant in sewage, surface, ground and
drinking water samples (10). These drug residues may
be released into the environment through many sources
like for instance urban domestic, hospital and industrial
waste effluents, and aquaculture plant or livestock farms
(11).

The determination of NSAIDs in environmental sam-
ples is performed by reversed-phase liquid chromato-
graphy (RPLC) with UV detection (10) or by RPLC com-
bined with diode-array detection and mass spectrometry
(MS) (12). These analytical methods are characterized by
high levels of precision and sensitivity, but they are very
expensive and require preliminary sample treatments by
solid phase extraction (SPE) (12) or as a free suspended
droplet of an aqueous solvent, which prolong the analy-
sis time.

Therefore, in the field of chemical analysis of these
drugs, there is the need for rapid, reliable and low cost
analytical methods, and the design and setting up of a
sensor can represent an efficient screening method (11,
13–17).

Sensors and biosensors, especially of electrochemi-
cal type, are particularly suitable for resolving various
analytical problems regarding several matrices, so their
use is increasing in many fields (18–21). To such scope a
biosensor operating in aqueous solution for the determi-
nation of NSAIDs in foods (fresh cheese and milk) and
based on the inhibition of COX by this drug was envis-
aged, designed and applied. The optimization of the
procedure was carried out by testing four NSAIDs: di-
clofenac, naproxen, ibuprofen and tolmetin.

Materials

Reagents and chemicals

Naproxen (sodium salt), diclofenac (sodium salt),
ibuprofen, tolmetin (sodium salt) (Fig. 1), Trizma® hy-
drochloride, arachidonic acid (acid from porcine liver),
cyclooxygenase-1 (from sheep), ciclooxygenase-2 (from
human recombinant), and dialysis membrane were from
Sigma-Aldrich (Milan, Italy). Lead nitrate and cadmium
nitrate were from Carlo Erba Reagenti SpA (Milan, Italy).
Mercury nitrate (monohydrate) was from Sigma-Aldrich
(Milan, Italy).

Apparatus

Amperometric measurements were carried out in a
25 mL-glass cell and thermostated at room temperature
under continuous stirring. The oxygen electrode, model
332/P, was connected to a dissolved oxygen meter (Mod.
360, AMEL Milan, Italy) and to a recorder (Mod. 868,
AMEL Milan, Italy). A potential of –650 mV was applied
to the platinum cathode of the oxygen electrode, which
is the value at which oxygen reduction occurs.

Methods

Principle of the method

The prostaglandins are produced from the oxidation
of arachidonic acid catalysed by cyclooxygenase enzyme
(COX), as shown in Eq. 1:

/1/

NSAIDs exert a reversible inhibition on the cyclo-
oxygenase (COX) by means of a competitive action with
the arachidonic acid so that the kinetics of the reaction is
affected. This inhibition is related to the oxygen con-
sumption: in the presence of NSAIDs oxygen consump-
tion is lower than in their absence.

COX-1 and COX-2 are isoenzymes, different pro-
teins able to catalyze the same reaction: COX-1, or con-
stituent enzyme, is in charge of the basic level of pro-
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staglandins; COX-2, or inducibile enzyme, is activated
by various stimuli mediated by the inflammatory reac-
tions.

COX biosensor

The biosensor used to determine the NSAIDs was
obtained by coupling an amperometric electrode (Clark
type) for oxygen (Pt cathode at a constant potential of
–650 mV with respect to Ag/AgCl/Cl–) as electrochemi-

cal transducer, and 25 mL of COX enzyme (1000 U) im-

mobilised in a gel-like k-carrageenan membrane. The gel
containing the enzyme was in contact with the gas per-
meable membrane of the PTFE cap of Clark electrode
transducer. A nylon net and a PTFE O-ring were used to
fix the gel-like enzymatic membrane to the cap itself,
which was closed at one end by a PTFE gas permeable
membrane (Fig. 2). The procedure followed to obtain the

gel-like k-carrageenan membrane and the immobiliza-
tion of the enzyme was described in details in previous
papers (14–16).

Measurement procedure

The electrode was placed in a glass cell thermostat-
ed at 25 °C containing 10.0 mL of Tris-HCl buffer (0.1
mol/L at pH=8.0) and allowed to stabilise under con-
stant magnetic stirring. Once the signal has become con-
stant, 1.0 mL of arachidonic acid aqueous solution of
7.5·10–4 mol/L was added and the current was measur-

ed in terms of Di(O2)/ppm (it is of the order of 0.400

Di(O2)/ppm). The measuring cell was rinsed and dried
and a new measurement was performed by dipping the
biosensor in 10.0 mL of one of the various aqueous solu-
tions containing different concentrations of the four con-
sidered NSAIDs. After adding the substrate solution, the
change in oxygen concentration was recorded and com-
pared with the one previously obtained.

Percent oxygen value (Di) is a function of the NSAID
concentration in the cell:

Di=(Sc–Sd)/Sc·100 /2/

where Sc and Sd represent a current intensity in the ab-
sence or presence of NSAIDs, respectively, due to the
addition of arachidonic acid solution.

Treatment of samples

The mass of 5.0 g of fresh cheese was homogenised
(at 10 000 rpm for 5 min) in 5.0 mL of distilled water. A
volume of 1.0 mL of the homogenate was used in the
analysis and added to 9.0 mL of Tris-HCl buffer (0.1
mol/L) at pH=8.0. In the case of milk, 1.0 mL of the
sample was added to 9.0 mL of Tris-HCl buffer.

Results and Discussions

Of the two previously mentioned COX isoenzymes,
COX-1 was used to optimize the substrate concentration
used in the measurements and to test its effect on the in-
hibition degree in a 45-minute incubation. The data in
Fig. 3 present the effect of the substrate concentration on
the response after incubation with the tested NSAIDs. It
can also be seen that the best sensitivity and accuracy
are achieved at substrate concentrations higher than
7.5·10–4 mol/L.

To select other optimal conditions for enzyme inhi-
bition, the immobilised COX-1 biosensor inhibition vs.
incubation time dependence was recorded in the pres-
ence of different NSAIDs. Fig. 4 shows the effect of incu-
bation time. The percentage of inhibition increased with
incubation time for all the tested pharmaceutical drugs,
probably due to an increase of the interaction time be-
tween the inhibitor and the enzyme.

However, longer incubation time means longer anal-
ysis time as well, and a shorter lifetime of the biosensor.
Therefore, incubation time was chosen as a compromise
among the inhibition, analysis time and lifetime values.
It can be seen in Fig. 4 that the optimal inhibition time
for naproxen, diclofenac, ibuprofen and tolmetin was
determined to be 30 min.
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Fig. 2. a: body electrode; b: dielectric; c: Ag+/AgCl anode; d: Pt
cathode; e: cap of a Clark electrode; f: gas permeable membra-
ne in PTFE; g: O-ring; h: nylon net; i: k-carrageenan containing
immobilised COX enzyme; j: internal solution of KCl 0.1 M
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Fig. 3. Response dependence of the amperometric COX-1 bio-
sensor after incubation with 1·10–6 mol/L naproxen, diclofenac,
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In order to evaluate which one of the two enzymatic
isoforms had better characteristics (sensitivity, resistance)
for the arrangement of the COX biosensor, calibration
curves of both isoenzymes (response vs. concentration of
each tested pharmaceutical drug) were determined (Figs.
5 and 6). The shown trends are logarithmic and have
been linearized.

It is shown that the activities of both enzymatic
isoforms are more inhibited by naproxen and diclofenac
than by ibuprofen and tolmetin. Detection limits deter-
mined as the concentration of the inhibitor giving a de-
crease of the signal corresponding to three times the var-
iability of the blank value were: 5.0·10–8 mol/L for na-
proxen and diclofenac and 0.5·10–8mol/L for ibuprofen
and tolmetin (Table 1), and thus validating that the pro-
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Fig. 5. Calibration curves of COX-1 biosensor measuring napro-
xen, diclofenac, ibuprofen and tolmetin with equation R2, LOD,
SD (0.1 mol/L Tris-HCl buffer, pH=8.0, inhibition time 30 min,
N=3)
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Fig. 6. Calibration curves of COX-2 biosensor measuring napro-
xen, diclofenac, ibuprofen and tolmetin with equation R2, LOD,
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posed biosensor is not specific to a particular NSAID
but to the whole class of NSAIDs. The comparison be-
tween the data obtained using COX-1 and COX-2 re-
veals that the range of linearity, sensitivity and LOD val-
ues for each tested pharmaceutical drug are almost the
same. However, COX-1 enzyme shows a longer life in
use than COX-2, so it is preferred for a large scale pro-
duction and to develop a sensor to perform the recovery
and interference tests.

In addition to NSAIDs, cyclooxygenase is also in-
hibited by other organic contaminants, for instance other
classes of pharmaceuticals, pesticides and surfactants. Al-
though these organic compounds could inhibit cyclooxy-
genase, it was found that dimethoate, sodium dodecyl
sulphate (SDS) and sulphamethoxazole at the concentra-
tion of 1·10–5 mol/L yield a markedly lower inhibition
(28 %) than the tested NSAIDs at the concentration of
10–8 mol/L. Therefore, these organic compounds should
not cause significant interference with the analysis. The
influence of heavy metal ions such as mercury, cadmium
and lead, as the most relevant from the environmental
point of view and well known enzymatic inhibitors, has
also been considered.

The results shown in Table 2 show that heavy met-
als and pesticides can interfere significantly with enzy-
matic activity of COX enzyme, but surfactants and anti-
biotic drugs do not interfere with the catalytic activity of
the enzyme.

The reproducibility of the biosensor was also inves-
tigated. Five measurements using the same biosensor
were carried out at naproxen concentration of 5.0·10–6

mol/L. Relative standard deviation (RSD) of the ampe-
rometric responses is 6 %. The enzyme electrode was
stored at 4 °C in 0.1 mol/L Tris-HCl buffer (pH=8.0).

Lastly, the biosensor method using COX-1 to deter-
mine NSAIDs was tested using real samples. To this

end, different foods of animal origin (milk and fresh
cheese) were chosen and specifically adulterated with
known quantities of pharmaceutical drugs. The recovery
of NSAIDs was evaluated by the biosensor method. Tests
were also run to determine the efficiency of aqueous ex-
traction procedure using real food samples adulterated
with different pharmaceutical drugs at just one adultera-
tion level (1·10–6mol/L).

The results of both recovery and extraction effi-
ciency are summarized in Table 3. Clearly, according to
the used procedure, the percentage of unrecovered
NSAIDs is of the order of 10–12 %.

Conclusions

The obtained results indicate the complete validity
of the method, especially of preliminary screening for
the presence of NSAIDs in food. The COX biosensor al-
lows the determination of the presence of nonsteroidal
anti-inflammatory drugs (NSAIDs) in aqueous solution
in which the analytes were soluble. The use of COX-1
for the biosensor is more suitable for large production
lines than COX-2, because of the longer lifetime of the
enzyme. The recovery tests performed on adulterated
foods with the four tested pharmaceutical drugs show
that the percentage of unrecovered NSAIDs is of the or-
der of 10–12 %. However, the method can be reliably ap-
plied only on free samples or the samples treated in or-
der to let them be free from heavy metal ions and
pesticides.
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