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Let G be a weighted graph with the adjacency matrix A = �aij�. A Euclidean graph associated

with a molecule is defined by a weighted graph with the adjacency matrix D = �dij�, where for i �
j, dij is the Euclidean distance between the nuclei i and j. In this matrix, dii can be taken to be

zero if all the nuclei are equivalent. Otherwise, one may introduce different weights for different

nuclei. Balasubramanian computed the Euclidean graphs and automorphism groups for benzene,

eclipsed and staggered forms of ethane and eclipsed and staggered forms of ferrocene (see Chem.

Phys. Letters 232 (1995) 415–423). The present work describes a simple computational method

by means of which it is possible to calculate the automorphism group of weighted graphs. We

have applied this method to compute the symmetry of trimethylamine and cubane.
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INTRODUCTION

The simplicity and elegance of some of the applications

of graph theory to chemistry can perhaps be only com-

pared with the results of group theory, which is con-

cerned with symmetry as the basic quality of a system.

In some problems, connectivity and symmetry are com-

bined and the question of determinig symmetry proper-

ties of graphs becomes important.

Let us recall some definitions and notations. An auto-

morphism of a graph G is a permutation g of the vertex

set VG of G with the property that, for any vertices u and

v, g(u) and g(v) are adjacent if and only if u is adjacent to

v. The set of all automorphisms of a graph G, with the op-

eration of the composition of permutations, is a permuta-

tion group on VG, denoted Aut(G). By symmetry we

mean the automorphism group symmetry of a graph. The

symmetry of a graph, also called topological symmetry,

accounts only for the bond relations between atoms, and

does not fully determine molecular geometry. The sym-

metry of a graph need not be the same as (i.e., isomorphic

to) the molecular point group symmetry. However, it does

represent the maximal symmetry that the geometrical re-

alization of a given topological structure may possess.

In Refs. 1, 2, Randi} showed that a graph can be de-

picted in different ways such that its point group sym-

metry or three dimensional perception may differ, but

the underlying connectivity symmetry is still the same as

characterized by the automorphism group of the graph.

However, the molecular symmetry depends on the coor-

dinates of the various nuclei that relate directly to their

three dimensional geometry. Although the symmetry as

perceived in graph theory by the automorphism group of

the graph and the molecular group are quite different, it

was shown by Balasubramanian3 that the two symme-

tries are connected in some cases.



The topic of perceiving the symmetry of a graph

through the automorphism group of the graph has been

studied in considerable depth,3–9 but the connection be-

tween the graph automorphism problem and the symme-

try of a molecule has not been explored as much. Lon-

guet-Higgins10 showed that a more desirable representa-

tion of molecular symmetry is to use the nuclear

permutation and inversion operations resulting in a

group called the Permutation-Inversion (PI) group. Bala-

subramanian3 noted that the automorphism group of the

Euclidean graph of a molecule is sometimes the Permu-

tation-Inversion group of the molecule.

In Ref. 11, the full non-rigid symmetry of trimethy-

lamine with C3v point group was computed. In this pa-

per, we compute the symmetry of this molecule.

Throughout the paper, all groups considered are assu-

med to be finite. Our notation is standard and taken

mainly from Ref. 12.

EXPERIMENTAL

Computations of the symmetry properties of molecules

were carried out using GAP.13 GAP is a free and extendable

software package for computation in discrete abstract alge-

bra. The term extendable means that you can write your

own programs in the GAP language, and use them in just

the same way as the programs which form part of the sys-

tem (the »library«). More information on the motivation

and development of GAP to date can be found on the GAP

web page http://www.gap-system.org.

The method described in this paper appears to be quite

general, and can be extended to solve several problems in

computational chemistry. GAP contains a large library of

functions. Here, we explain those which are important for

the calculations in this paper. The function Symmetric-

Group(n) returns the symmetric group Sn to n letters. It is a

well-known fact that this group has order n!. We can asso-

ciate a permutation matrix to every permutation a � Sn.

This permutation matrix can be calculated with the function

PermutationMat(a,n). Also the function TransposedMat(A)

returns the transpose matrix of matrix A.

A permutation of the vertices of a graph belongs to its

automorphism group if it satisfies PtAP = A, where Pt is

the transpose of permutation matrix P and A is the adja-

cency matrix of the graph under consideration. There are n!

possible permutation matrices for a graph with n vertices.

However, all of them may not satisfy the above relation.

For a given adjacency matrix A, we can write a simple GAP

program to calculate all the permutation matrices with

PtAP = A.

RESULTS AND DISCUSSION

The automorphism group of a graph depends only on the

connectivity of the graph and does not depend on how

the graph is represented in three dimensions. This means

that a graph, in general, can be represented in different

ways in three dimensions such that two representations

could yield different three-dimensional symmetries and

yet their automorphism groups are the same since the

latter depend only on which vertices are connected in the

graph. For this reason, the symmetry of a graph was

thought to be quite different from the point group sym-

metry, and it is apparent that the two symmetries need

not be related to each other.

In this section, we investigate the automorphism

group of weighted graphs. By definition, a weighted

graph is a graph whose edges and vertices are weighted

with different weights. The adjacency matrix of a

weighted graph is defined as: Aij = wij, if i � j and verti-

ces i and j are connected by an edge with weight wij; Aij =

vi, if i = j and the weight of vertex i is vi, and, Aij = 0,

otherwise. Note that Aii can be taken as zero if all the

nuclei are equivalent. Otherwise, one may introduce dif-

ferent weights for nuclei in different equivalence classes

and the same weight for the nuclei in the same equiva-

lence classes.

Consider trimethylamine to illustrate the Euclidean

graph and its automorphism group. It suffices to mea-

sure the Euclidean distances in terms of the H-H bond

lengths and then construct the Euclidean distance matrix

P. It should be noted that one does not have to work with

exact Euclidean distances in that a mapping of weights

into a set of integers suffices as long as different weights

are identified with different integers. In fact, the auto-

morphism group of the integer-weighted graph is identi-

cal to the automorphism group of the original Euclidean

graph. To illustrate, let us use a Euclidean edge weight-

ing for trimethylamine mapped from Euclidean distan-

ces as 1.78 �1, 4.18 � 2, 3.63 � 3, 2.99 � 4, 2.40 �
5. The resulting distance matrix for this weighted Eucli-

dean graph is:

0 1 1 2 3 3 3 4 5

1 0 1 3 4 5 3 5 4

1 1 0 3 5 4 2 3 3

2 3 3 0 1 1 5 4 3

3 4 5 1 0 1 3 3 2

3 5 4 1 1 0 4 5 3

3 3 2 5 3 4 0 1 1

4 5 3 4 3 5 1 0 1

5 4 3 3 2 3 1 1 0
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Not all 9! permutations of the vertices belong to the

automorphism group of the weighted graph since the

weights of all the edges are not the same. For example,

the permutation (1,2,3,4,5,6,7) does not belong to the

automorphism group since the resulting graph shown in

Figure 1 does not preserve connectivity. It has been

computed by GAP that the set of permutations that pre-

serves the Euclidean connectivity is:
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G = �(1)(2)(3)(4)(5)(6)(7)(8)(9),(1,3)(4,7)(5,9)(6,8),

(1,4)(2,6)(3,5)(7,9),(1,5,7)(2,6,8)(3,4,9)),

(1,7,5)(2,8,6)(3,9,4),(1,9)(2,8)(3,7)(4,5)�.

Since there is a unique non-abelian group of order 6,

i.e., S3, G is isomorphic to the symmetric group on three

symbols.

Below we write a GAP-program for computing the

automorphism group of the Euclidean graph of

trimethylamine. The program does not miss any permu-

tation since it checks the candidate permutations of the

given automorphism group in lexicographical order and

saves them in a file named »H2.txt«. In our program, P

denotes the integer matrix corresponding to the distance

matrix of the molecule under consideration.

A GAP Program for Finding Symmetry of

Trimethylamine

P:= ��0,1,1,2,3,3,3,4,5�,�1,0,1,3,4,5,3,5,4�,
�1,1,0,3,5,4,2,3,3�,�2,3,3,0,1,1,5,4,3�,
�3,4,5,1,0,1,3,3,2�,�3,5,4,1,1,0,4,5,3�,
�3,3,2,5,3,4,0,1,1�,�4,5,3,4,3,5,1,0,1�,
�5,4,3,3,2,3,1,1,0��;
n:=9;i:=0;H:=��;
t:=SymmetricGroup(n);

tt:=Elements(t);

for a in tt do

x1:=PermutationMat(a,n);

x:=TransposedMat(x1);

y1:=x*P*x1;

if y1 = P then AppendTo(»H2.txt«,a,»\n«);fi;

od;

G:=Group(H);

Using this program and a similar method we can

calculate the automorphism group of cubane. To do this,

we compute the Euclidean edges of this molecule in Ta-

ble II. Again, since the automorphism group of the inte-

ger-weighted graph is identical to the automorphism

group of the original Euclidean graph, it is enough to

calculate the integer distance matrix E for cubane. The

resulting weighted Euclidean graph for cubane is shown

in Figure 2. Similarly to the case of trimethylamine, we

use Euclidean edge weighting for cubane mapped from

Euclidean distances as 2.82 �1, 3.99 � 2 and 4.89 �
3. The resulting Euclidean edges and the distance matrix

for this weighted Euclidean graph are:
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Figure 1. (a) Trimethylamine with C3v point group; (b) The Euclid-
ean graph of trimethylamine.

TABLE I. Euclidean edges of trimethylamine

0.00 1.78 1.78 4.18 3.63 3.63 3.63 2.99 2.40

1.78 0.00 1.78 3.63 2.99 2.40 3.63 2.40 2.99

1.78 1.78 0.00 3.63 2.40 2.99 4.18 3.63 3.63

4.18 3.63 3.63 0.00 1.78 1.78 2.40 2.99 3.63

3.63 2.99 2.40 1.78 0.00 1.78 3.63 3.63 4.18

3.63 2.40 2.99 1.78 1.78 0.00 2.99 2.40 3.63

3.63 3.63 4.18 2.40 3.63 2.99 0.00 1.78 1.78

2.99 2.40 3.63 2.99 3.63 2.40 1.78 0.00 1.78

2.40 2.99 3.63 3.63 4.18 3.63 1.78 1.78 0.00

TABLE II. Euclidean edges and the integer matrix of cubane

0.00 2.82 3.99 2.82 2.82 3.99 4.89 3.99

2.82 0.00 2.82 3.99 3.99 2.82 3.99 4.89

3.99 2.82 0.00 2.82 4.89 3.99 2.82 3.99

2.82 3.99 2.82 0.00 3.99 4.89 3.99 2.82

2.82 3.99 4.89 3.99 0.00 2.82 3.99 2.82

3.99 2.82 3.99 4.89 2.82 0.00 2.82 3.99

4.89 3.99 2.82 3.99 3.99 2.82 0.00 2.82

3.99 4.89 3.99 2.82 2.82 3.99 2.82 0.00

E =

0 1 2 1 1 2 3 2

1 0 1 2 2 1 2 3

2 1 0 1 3 2 1 2

1 2 1 0 2 3 2 1

1 2 3 2 0 1 2 1

2 1 2 3 1 0 1 2

3 2 1 2 2 1 0 1

2 3 2 1 1 2 1 0
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Figure 2. (a) Cubane with the Oh point group and its integer distance matrix; (b) The Euclidean graph of cubane.

In the end, we apply again our GAP program to com-

pute the automorphism group of the Euclidean graph of

cubane. Using this program, we have:

G:= � (), (2,4)(6,8), (1,6)(4,7), (3,6)(4,5), (1,3)(5,7), (2,5)(3,8), (1,8)(2,7), (1,8,3,6)(2,5,4,7),

(1,5,6,7,3,4)(2,8), (2,4,5)(3,8,6), (1,2)(3,4)(5,6)(7,8), (1,5)(2,6)(3,7)(4,8), (1,3,8,6)(2,4,7,5),

(1,2,6,7,8,4)(3,5), (1,6,8)(2,7,4), (1,4)(2,3)(5,8)(6,7), (1,3)(2,4)(5,7)(6,8), (1,4,8,5)(2,3,7,6),

(1,4,8,7,6,2)(3,5), (1,3,8)(2,7,5), (1,7)(2,3)(4,6)(5,8), (1,2,3,7,8,5)(4,6), (1,6,8,3)(2,5,7,4),

(1,5,8,7,3,2)(4,6), (1,6,3)(4,5,7), (1,7)(2,8)(3,5)(4,6), (1,7)(2,6)(3,5)(4,8), (1,5,6,2)(3,4,8,7),

(1,7)(2,3,4,8,5,6), (1,8,6)(2,4,7), (1,7)(2,8)(3,4)(5,6), (1,6)(2,5)(3,8)(4,7), (1,8,6,3)(2,4,5,7),

(1,4,3,7,6,5)(2,8), (1,3,6)(4,7,5), (1,4)(2,8)(3,5)(6,7), (1,8)(2,7)(3,6)(4,5), (1,2,6,5)(3,7,8,4),

(1,7)(2,6,5,8,4,3), (1,8,3)(2,5,7), (1,2)(3,5)(4,6)(7,8), (1,5)(2,8)(3,7)(4,6), (1,5,8,4)(2,6,7,3),

(1,3,6,8)(2,7,5,4), (2,5,4)(3,6,8), (1,4,3,2)(5,8,7,6), (1,6,3,8)(2,7,4,5), (1,2,3,4)(5,6,7,8)�
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SA@ETAK

Simetrijska svojstva nekih kemijskih grafova

Ali Reza Ashrafi i Masood Hamadanian

Neka je G ute`eni graf s matricom susjedstva A = �aij�. Euklidski graf pridru`en molekuli definiran je kao

ute`eni graf s matricom susjedstva D = �dij�, gdje je dij euklidska udaljenost izme|u ~vorova i i j. U toj matrici

dijagonalni elementi dii jednaki su nuli, ako su svi ~vorovi grafa ekvivalentni. Ako nisu, tada se uvode te`ine za

razli~ite ~vorove. Balasubramanian je izra~unao euklidske grafove i grupe automorfizama benzena, otkrivene i

zasjenjene konformacije etana i ferocena (vidi Chem. Phys. Lett. 232 (1995) 415–423). U ovome radu je pri-

kazana jednostavna ra~unska metoda pomo}u koje se mogu ra~unati grupe automorfizama za ute`ene grafove.

Metoda je ilustrirana na ra~unanju simetrijskih svojstava grafova kojima su prikazani trimetilamin i kuban.


