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Abstract. The conditions under which a set of atomic orbitals becomes angularly independent are investi-
gated for both atomic and molecular systems. How these results can be applied to various molecules is 
considered. 
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INTRODUCTION 

When presented in their real form, only the atomic or-
bitals having azimuthal quantum number ℓ = 0 (the s 
orbitals) are spherical and have no angular dependence. 
The linear combination of spherical harmonics having 
the same azimuthal quantum number ℓ, with ℓ ≥ 1, 
yields atomic orbitals having angular dependence. For 
example, the px, py, and pz orbitals (the real p orbitals) 
have dumbbell shapes that change sign as value of the 
angular variable goes from 0 to 180o, or π radians. Simi-
larly, for ℓ = 2, most of the real d orbitals have clover-
leaf shapes that change sign every 90o,or π/2 radians. As 
ℓ increases in value, the shapes of the real orbitals be-
come more complicated, e.g. the simplest drawing of an 
f orbital (ℓ = 3) shows a 6-petalled flower that changes 
sign every 60o or π/3 radians. Parenthetically, it may be 
noted that the shapes of f orbitals are often not drawn 
correctly. 

In 1927, Unsöld proved that if one sums the elec-
tron density of all three p orbitals, where each orbital is 
occupied by an electron pair, then all angular depen-
dence disappears; that is, the resulting total density is as 
spherical as found from the use of s orbitals alone.1−3 

Similarly, if all five d orbitals are doubly occupied, or 
all seven f orbitals are doubly occupied, it was shown 
that the same spherical behavior results. Spherical den-
sity also occurs when each orbital is singly occupied, 
provided that all of the electron spins are parallel. 

In other words, Unsöld’s theorem states that the 
sum of the squares of all of the angular wave functions, 

that is, the probability distribution, corresponding to a 
given value of ℓ, is a constant, independent of the orien-
tation. While Unsöld’s theorem has important implica-
tions for the structure of complicated atoms, most text-
books on quantum mechanics do not explicitly discuss 
it, notable exceptions being the classic textbooks by 
Linus Pauling and E. Bright Wilson, Jr.,2 and by John C. 
Slater.3 

In a previous publication by the present authors, 
the conditions required for the independence of sets of 
atomic orbitals were considered.4 In the present work, 
these conditions are investigated in more detail. 

 

THE REQUIREMENTS FOR ANGULAR 
INDEPENDENCE 

In 1995, Icke showed that angular dependence vanishes 
when an s orbital and some suitable real orbitals having 
ℓ ≥ 1 are added together.5

 

It is possible to understand 
this phenomenon by considering the combination of 
atomic orbitals as a sum of cosine functions: 
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where Θ is an arbitrary angular coordinate that applies 
either to an atom or a molecular system with Dnh point-
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group symmetry. Here the leading terms N0 + 1 reflect 
the different normalization of the s orbital from those 
other orbitals that have some angular dependence. 
Moreover, Eq. (1) may be rewritten as 

   0n ns N S     (2) 

where 
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One may now ask to what does this sum converge for 
the angle variables 0 ≤ 2πΘ ≤ 2π (i.e., 0 ≤ Θ ≤ 1) as n 
goes to infinity. That is, what is the value of sn(Θ) for 
arbitrary angles Θ and for limiting values of n? Owing 
to the nature of the cosine function, the situation for Θ = 
0 and Θ = 1 are identical. Thus, this is an example of 
periodic boundary conditions. 

Since i is defined as and the real part of any 
complex number may be written as 

 (4) 

the following identity holds for all (angles) α 

 (5) 

Then the series in Eq. (3) can thus be rewritten as 
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Moreover, for any two arbitrary complex numbers u and 
v, 

 (7) 

accordingly, 

 (8) 

Now define 

 exp 2x i π     (9) 

so that Eq. (8) may be rewritten as 

  2 11 n
nS x x x x          (10) 

Therefore, for all finite n and x ≠ 1, 
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It is now possible to investigate under which con-
ditions the sums Sn(Θ) and Sn(x) have values equal to 
zero. This situation occurs if two conditions are met: 

1nx   (12) 

and 

1x   (13) 

Thus, 
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At this stage, one must consider whether Θ is a ra-
tional or irrational number. If Θ is rational, then must 
equal m/n, where m and n are integers, and Θ is real). 
By periodicity or modulus n, only those cases where m 
does not exceed n need be considered. Since it is also 
required that x does not equal 1, one may exclude the 
cases where Θ equals either 0 or 1. Does this mean that 
all (or more precisely, almost all) rational numbers 
between 0 and 1 result in a sum of 0? In other words, 
does this mean that exclusive of the end points result in 
a sum of 0? 

For the values of real x chosen, it was required that 
Sn(Θ) and Sn(x) equal 0. The defining equation for Sn(x) 
is an nth

 

order equation in x. There are but n roots, which 
have already been found. For integer m and n→∞, the 
set of numbers m/n includes all rational numbers be-
tween 0 and 1. If n is set equal to p!, then the set of 
numbers m/n for all m not equal to n includes all quo-
tients m′/n′ not equal to 0 and 1 for all n′ ≤ p. As p →∞, 
and setting p!= n which in turn goes to ∞, all rational 
numbers between 0 and 1 are included. Thus, it would 
seem as if an infinite number of angles sum to zero. 

Next, one must consider the infinite set of num-
bers between 0 and 1 not yet discussed, namely, the 
irrational values of x. The size of the set of such num-
bers is recognized to equal ℵ1, and is larger than the 
number of rational numbers, recognized to equal ℵ0 - 
indeed, ℵ1 is infinitely larger than ℵ0. What is their sum 
corresponding to Sn(Θ) and Sn(x)? Since each irrational 
number is arbitrarily close to a rational number and 
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since the sum for all rational numbers is 0, then one 
might surmise that the sum for irrational numbers also 
has the value 0 if the sum does not diverge. More pre-
cisely, can the sum diverge? If the sum Sn(x) were to 
equal 0 at all points - at least for ”large enough” n, and 
not just the rational values of x, then its derivative Sn′(x) 
would equal 0 as well. This may be determined by re-
cognizing that Sn(x) is of the form N(x)/D(x). From 
simple calculus, 

 (15) 

By construction, D(x) never equals 0 while N (x) 
always does. Recall xn

 

=1; x ≠1. 

Therefore, 

 (16) 

and so N′ (x) must equal 0. This means that 

 (17) 

Since xn
 

= 1, one obtains 

 (18) 

Remembering that n becomes arbitrarily large 
while x is never larger than 1 means that Eq. (18) is 
never realized. Sn′(x) never equals 0, and so Sn(x) does 
not equal 0 at all points. Indeed, since ℵ0 is infinitely 
smaller than ℵ1, Sn(x) almost never equals 0. Thus, the 
initial conclusion is, in fact, false. 

Lest the reader be unsold by the preceding discus-
sion, there is an alternative way to investigate the sum 
given in Eq. (6) and rewritten as Eq. (7). Indeed, one 
may recast the sum [1 + x + x2

 

+…+ x n−1] as 

 (19) 

For all x chosen such that Θ = m/n, where m and n 
are integers, 

 (20) 

Then, either x = 0, in which case n =1, or Tn(x) = 
0. Therefore, Sn(x) = 0 for all n ≠ l. 

Similarly, for all x chosen such that Θ = m/n, 
where m and n are integers, 

 (21) 

For this situation, n = 1 is an allowed solution. 
Other solutions are [Tn(x)] = n and [Tn(x)] = 0. Consider 
the individual terms, e.g., Tn,k(x) Then it might appear 
that 

 nT x n     (22) 

However,  [Tn,k(x)] < 1 for all k ≠ 0. Therefore, 
the sum of the terms  [Tn,k(x)] ≤ n, where equality is 
found only for n = 1. This implies that the only general 
solution for arbitrary integer n is Tn(x) = 0. 

 

CHEMICAL SIGNIFICANCE 

The foregoing investigation of the angular independence 
of certain sets of atomic orbitals has implications for 
chemistry. First, consider homoleptic ions and mole-
cules such as BBr3, [ICl4]

−, and [XeF5]
−, with 3-, 4-, and 

5-fold symmetry and bond angles of 2π/3, π/2, and 2π/5, 
respectively. These species can be compared to NF3, 
[IF4]

+, and IF5, which lack the symmetries of the first set 
of species. Second, there are also regular polygonal 
rings such as [C5H5]

−, C6H6, [C7H7]
+, and [C8H8]

2−, with 
5-, 6-, 7-, and 8-fold symmetry and bond angles (formed 
by two adjacent carbons and the n-fold symmetry axes) 
such as π/5, π/3, 2π/7, and π/4. These species contrast 
with [C5H5]˙, [C6H6]

+, [C7H7]
−, and C8H8. In other 

words, the geometry is not merely due to the fact that 
these species are of the type AB3, AB4, and AB5 for the 
first set and CnHn, (n = 5, 6, 7, 8) for the second. A close 
examination of the coefficients of the real molecular 
orbitals, as opposed to the complex formulation, indi-
cates unequal electron densities for all atoms in systems 
having Dnh point-group symmetry. 

Interestingly, the first set of carbon-containing 
rings gives us an even simpler proof of our angular 
independence result. According to the textbook litera-
ture,6

 

within the Hückel molecular orbital approximation 
for an N-carbon ring, a simple expression for the 
coefficient )(k

mb on of the mth
 

orbital, ψm on carbon atom 
k is given by 

 (23) 

Ck is the normalization factor and is the same for 
all k ≠ N . It is seen that k = N is a constant function 
because cos(0) equals 1 and so has a different normali-
zation factor from the other solutions. 

However, the N-dimensional vector that corres-
ponds to the mth

 

molecular orbital, ψm, is orthogonal to 
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other all eigenfunction solutions including ψN. Since the 
coefficient at all atoms in the lowest energy solution for 
the n-atom ring equals the constant (1/ N ), this 
means that the sum over all k (including N ) vanishes: 

 (24) 

However, the common factors (1/ N ) and Ck cannot 
equal zero. Therefore, one concludes that 

 (25) 

Thus, for specified angles, one apiece for each size of 
the carbon ring, and within a multiplicative factor, angu-
lar independence has been demonstrated, at least for the 
class of ions and molecules considered. 

Therefore, rational numbers appear to be adequate 
for the understanding and, at least heuristic, validity of 
the conditions required for angular independence. In-
deed, for a planar homocyclic system, most often carbo-
cyclic CnHn with some charge or another, consider the 
molecular orbitals. If each member of a degenerate set 
of molecular orbitals is equally occupied (either both 
singly or both doubly occupied), then equal electron 
density occurs at each atom. Accordingly, C6H6, with 
point-group symmetry D6h, has uniform electron density 
at each atom. So does [C5H5]

−, with point-group sym-
metry D5h, but neutral C5H5 does not, even with with 
point-group symmetry D5h. That the last system also 
will undergo Jahn-Teller distortion only exacerbates or 
exaggerates the nonuniformity of charges on carbon. 

There are some other species that are worthy of 
mention at this point. For example, consider the cyclo-
nonatetraenide ion, [C9H9]

−, which has D9h point-group 
symmetry in both solution, and in numerous diverse 
salts and complexes.7

 

However, the nonacyano deriva-
tive, [C9(CN)9]

−, is expected to have only 2-fold sym-
metry because of repulsion between the substituents 
according to calculational theory.8

 

Nonetheless, this 
anion is still expected to remain the conjugate base of an 
exceptionally strong acid as well as a desirable synthetic 
goal for the organic chemist. 

Furthermore, higher species with the formula CnHn 
(neutral and charged, n > 9) lack Dnh symmetry. For 
example, calculational theory shows the still-unknown 

[C11H11]
+

 

to have 6 minima, none of which have D11h 
symmetry.9

 

Indeed, the well-known and highly stable 
[18]-annulene C18H18, not only lacks D18h symmetry, but 
seemingly lacks even the customarily believed D6h 
point-group symmetry.10

 

Even for these species with n ≤
 9, when unequal occupancy of degenerate molecular 

orbitals occurs, there exists the possibility of blocking 
Dnh point-group symmetry. After all, as drawn, some of 
the degenerate molecular orbitals have nodes at some of 
the atoms and, therefore, zero electron density at those 
atoms. Since the other atoms have nonzero coefficients, 
the electron density is positive, and the orbital electron 
density lacks Dnh point-group symmetry. 

 

CONCLUSION 

Within the spirit of Unsöld’s theorem, certain conditions 
have been found under which a collection of atomic 
orbitals or molecular orbitals are angularly independent. 
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SAŽETAK 

O kutnoj neovisnosti setova atomskih orbitala 
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Istraživani su uvjeti pod kojima set atomskih orbitala postaje kutno neovisan, za atomske i molekulske sisteme. 
Razmatrano je kako se ovi rezultati mogu primjeniti na različite molekule. 


