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ABSTRACT

A real affine plane A2 is called an isotropic plane I2, if in

A2 a metric is induced by an absolute { f ,F}, consisting of

the line at infinity f of A2 and a point F ∈ f . In this paper

the well-known Butterfly theorem has been adapted for the

isotropic plane. For the theorem that we will further-on

call an Isotropic butterfly theorem, four proofs are given.
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Leptiri u izotropnoj ravnini

SAŽETAK

Realna afina ravnina A2 se naziva izotropnom ravninom I2
ako je metrika u A2 inducirana apsolutnom figurom { f ,F},
koja se sastoji od neizmjerno dalekog pravca f ravnine A2
i točke F ∈ f . U ovom je radu poznati Leptirov teorem

smješten u izotropnu ravninu. Za taj teorem, kojeg od

sada nazivamo Izotropnim leptirovim teoremom, dana su

četiri dokaza.

Ključne riječi: izotropna ravnina, leptirov teorem

1 Isotropic Plane

Let P2(R) be a real projective plane, f a real line in P2, and
A2 = P2\ f the associated affine plane. The isotropic plane
I2(R) is a real affine plane A2 where the metric is intro-
duced with a real line f ⊂ P2 and a real point F incidental
with it. The ordered pair { f ,F}, F ∈ f is called absolute
figure of the isotropic plane I2(R) ([3], [5]). In the affine
model, where

x = x1/x0, y = x2/x0, (1)

the absolute figure is determined by the absolute line f≡
x0 = 0, and the absolute point F(0:0:1). All projective
transformations that are keeping the absolute figure fixed
form a 5-parametric group

G5

{
x̄ = c1 +c4x
ȳ = c2 +c3x+c5y

,
c1,c2,c3,c4,c5 ∈ R

& c4c5 �= 0.
(2)

We call it the group of similaritiesof isotropic plane.

Defining in I2 the usual metric quantities such as the dis-
tance between two points, the angle between two lines etc.,
we look for the subgroup of G5 for those quantities to be
invariant. In such a way one obtains the fundamental group
of transformations that are the mappings of the form:

G3

{
x̄ = c1 +x
ȳ = c2 +c3x+y

. (3)

It is called the motion groupof isotropic plane. Hence,
the group of isotropic motions consists of translations and
rotations, that is

{
x̄ = c1 +x
ȳ = c2 +y

and

{
x̄ = x
ȳ = c3x+y

.

In the affine model, rotation is understood as stretching
along the y-axis.

2 Terms of Elementary Geometry within I2

We will first define some terms and point out some proper-
ties of triangles and circles in I2 that are going to be used
further on. The geometry of I2 could be seen for example
in Sachs [3], or Strubecker [5].

Isotropic straight line, parallel points, isotropic distance,
isotropic span
All straight lines through the point F are called isotropic
straight lines (isotropic lines). All the other straight
lines are simply called straight lines. Two points A, B
(A �= B) are called parallel if they are incidental with
the same isotropic line. For two no parallel points
A(a1,a2) , B(b1,b2), the isotropic distanceis defined by
d (A,B) := b1 − a1. Note that the isotropic distance is
directed. For two parallel points A(a1,a2) , B(b1,b2),
a1 = b1, the quantity known as isotropic spannis defined
by s(A,B) := b2 −a2. A straight line p through two points
A and B will be denoted by p≡ A∨B, or simply p≡ AB.
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Invariants of a pair of straight lines
Each no isotropic straight line g⊂ I2 can be written in the
normal form y= ux+v, that is, in line coordinates, g(u,v).
For two straight lines g1 (u1,v1), g2 (u2,v2) the isotropic
angleis defined by ϕ = ∠(g1,g2) := u2−u1 . Note that the
isotropic angle is directed as well. The Euclidean meaning
of the isotropic angle can be understood from the affine
model that is given in figure 1.

Fig. 1

For two parallel straight lines g1 (u1,v1) , g2 (u1,v2) there
exists an isotropic invariant defined by ϕ∗ (g1,g2) := v2 −
v1 (see fig. 2).

Fig. 2

Isotropic normal
An isotropic normalto the straight line g(u,v) in the point
P(p1, p2) , P /∈ g is an isotropic line through P. Inversely
holds as well, i.e. each straight line g ⊂ I2 is a normal
for each isotropic straight line. Denoting by S the point
of intersection of the isotropic normal in the point P with
the straight line g, the isotropic distance of the point P
from the line g is given by d (P,g) := s(S,P) = p2 − s2 =
p2 −up1 −v (see fig. 3).

Fig. 3

Fig. 4

Triangles and circles
Under a triangle in I2 an ordered set of three no collinear
points {A,B,C} is understood. A, B, C are called vertices,
and a := B∨C, b := C∨A, c := A∨B sidesof a trian-
gle. A triangle is called allowableif no one of its sides is
isotropic. In a allowable triangle the lengthsof the sides are
defined by |a| := d (B,C), |b| := d (C,A), |c| := d (A,B),
with |a| �= 0, |b| �= 0, |c| �= 0. For the directed angles we
have α := ∠(b,c) �= 0, β := ∠(c,a) �= 0, γ := ∠(a,b) �= 0
(see figure 4).

Isotropic altitudes ha, hb, hc associated with sides a, b, and
c are isotropic straight lines passing through the vertices A,
B, C, i.e. normals to the sides a, b, and c. Their lengths are
defined by |ha| := s(L(A) ,A), where L(A) = a∩ ha, etc.
The Euclidian meaning is given in figure 5.

Fig. 5

An isotropic circle (parabolic circle) is a regular 2nd or-
der curve in P2(R) which touches the absolute line f in the
absolute point F . According to the group G3 of motions
of the isotropic plane there exists in I2 a three paramet-
ric family of isotropic circles, given by y = Rx2 + αx+

β, R �= 0, α,β ∈ R. Using transformations from G3,
each isotropic circle can be reduced in the normal form
y = Rx2, R �= 0. R is a G3 invariant and it is called the
isotropic radiusof the parabolic circle.
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3 The Isotropic Butterfly Theorem

Theorem 1 (Euclidean version) Let M be the midpoint of
a chord PQ of the circle, through which two other chords
AB and CD are drawn; AD cuts PQ at X and BC cuts PQ
at Y . M is also the midpoint of XY.

This theorem has been proved in a series of books and pa-
pers (e.g. [1], [2], [4]).

Theorem 2 (Isotropic version) Let M be the midpoint of
a chord

−→
PQ of the parabolic circle, through which two

other chords
−→
AB and

−→
CD are drawn;

−→
AD cuts

−→
PQ at X and

−→
BC cuts

−→
PQ at Y. M is also the midpoint of

−→
XY .

Proof 1
The point coordinates are: P(p1, p2), Q(q1,q2),
M (m1,m2), X (x1,x2), Y (y1,y2), with p1 �= q1, since

−→
PQ

is a chord and as a such a no isotropic line, wherefrom we
derive that x1 �= y1 �= m1 must be fulfilled as well. Let us
drop perpendiculars h1, h2 from X, and g1, g2 from Y on
AB and CD. Let’s also denote

d (P,M) = d (M,Q) = |s| ,
d (X,M) = |x| , d (M,Y) = |y| ,

(4)

H1 = h1 ∩AM, H2 = h2 ∩DM,
G1 = g1 ∩MB, G2 = g2 ∩MC.

(5)

Fig. 6: The Isotropic butterfly theorem in the affine model

As first we need the following:

Lemma 1 Let P, Q, P�= Q, be two points on a parabolic
circle k, and A�= P, A �= Q, any other point on the same

circle k. The isotropic angleϕ = ∠

(−→
PA,

−→
QA

)
does not

depend on the position of point A.

The proof is given in [3, p. 32].

Lemma 2 The relations

|a|
α

=
|b|
β

=
|c|
χ

, |ha| = |c|β, |hb| = |a|χ, |hc| = |b|α

hold for every allowable triangle.

The proof is given in [3, p. 28].

Lemma 3 Let k be a parabolic circle in I2, a point P∈
I2, P /∈ k, and S1, S2 two points of intersection of a no
isotropic straight line g through P with k. The product
f (P) := d (P,S1) ·d (P,S2) doesn’t depend of the line g, but
only of k and P.

The proof is given in [3, p. 38].

Let’s now continue the proof of the isotropic Butterfly
theorem.
According to lemma 1,

α = ∠

(−→
AB,

−→
AD

)
= α′ = ∠

(−→
CB,

−→
CD

)
,

and

β = ∠

(−→
DA,

−→
DC

)
= β′ = ∠

(−→
BA,

−→
BC

)
. (6)

We will also need

µ= ∠

(−−→
XM,

−→
MA

)
= µ′ = ∠

(−→
YM,

−→
MB

)
,

and

ν = ∠

(−−→
DM,

−−→
MX

)
= ν′ = ∠

(−→
CM,

−→
MY

)
. (7)

Let’s apply furthermore lemma 2 on the following pairs of
allowable triangles:
1st) 
AXM & 
MBY, 2nd) 
XDM & 
MYC,
3rd) 
AXM & 
MYC, 4th) 
XDM & 
MBY,
marking sides, angles and altitudes as given in figure 7.

Fig. 7

31
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1st) 
AXM ⇒
|x|

∠
(−→
AX,

−−→
XM

) =
|a|
α

=
|m|

µ
,

|hx| = |a| · µ;


MBY ⇒
|y|

∠
(−→
BY,

−→
YM

) =
|m′|

µ
=

|b|
β

,

|hy| = |b| · µ;

⇒
|hx|

|hy|
=

|a|
|b|

, and using marks from fig. 6 we get

|x|
|y|

=
|h1|

|g1|
. (8)

2nd) 
XDM ⇒
|x|

∠
(−−→
MX,

−→
XD

) =
|d|
β

=
|m|

ν
,

|hy| = |m| · β = |d| · ν;


MYC ⇒
|y|

∠
(−→
MY,

−→
YC

) =
|c|
α

=
|m′|

ν
,

|hy| = |m′| · α = |c| · ν;

⇒
|hx|

|hy|
=

|d|
|c|

, and using marks from fig. 6 we have

|x|
|y|

=
|h2|

|g2|
. (9)

Analogously, for the third pair of triangles we get

|h1|

|g2|
=

d (A,X)

d (Y,C)
. (10)

Finally, for the fourth pair of triangles we have

|h2|

|g1|
=

d (X,D)

d (B,Y)
. (11)

From (4), (8), (9), (10), (11), and lemma 3 one computes

|x|2

|y|2
=

|h1|

|g1|
·
|h2|

|g2|
=

|h1|

|g2|
·
|h2|

|g1|
=

=
d (A,X)

d (Y,C)
·
d (X,D)

d (B,Y)
=

−d (X,A) ·d (X,D)

−d (Y,C) ·d (Y,B)
=

=
d (X,P) ·d (X,Q)

d (Y,P) ·d (Y,Q)
=

(p1 −x1)(q1 −x1)

(p1 −y1)(q1 −y1)
=

=
(p1 −m1 +m1 −x1)(q1 −m1 +m1 −x1)

(p1 −m1 +m1 −y1)(q1 −m1 +m1 −y1)
=

=
−(|s|− |x|) (|s|+ |x|)
−(|s|+ |y|) (|s|− |y|)

=
|s|2 −|x|2

|s|2 −|y|2
. (12)

|x|2

|y|2
=

|s|2 −|x|2

|s|2 −|y|2
⇒ |x|2 = |y|2 ⇒ |x| = ±|y|

The solution |x| = −|y| ⇒ d (X,M) = −d (M,Y) =
d (Y,M), wherefrom it follows that points X and Y are par-
allel points, which has been excluded earlier.
So, |x| = |y| ⇒ d (X,M) = d (M,Y). �

Proof 2
Let’s use the notation given in (4), that is, d (P,M) =
d (M,Q) = |s|, d (X,M) = |x|, d (M,Y) = |y|, as well as (6)
and (7) for the observed angles.

Fig. 8

From lemma 3, as shown in (12), we have

d (X,A) ·d (X,D) = d (X,P) ·d (X,Q) ,

d (X,P) ·d (X,Q) =−(|s|− |x|) (|s|+ |x|) = |x|2−|s|2 .

(13)

Lemma 2 applied on the allowable triangles 
DMX and

AXM yields


DMX ⇒
d (X,D)

ν
=

d (D,M)

∠

(
−−→
MX ,

−−→
XD

) =
d (M,X)

β

⇒
d (X,D)

ν
=

d (M,X)

β
(14)


AXM⇒
d (A,X)

µ
=

d (X,M)

α
=

d (M,A)

∠

(
−−→
AX ,

−−→
XM

)

⇒
d (A,X)

µ
=

d (X,M)

α
. (15)
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Lemma 4 The sum of the directed sides of an allowable
triangle in I2 equals zero; the sum of the directed angles of
an allowable triangle in I2 equals zero as well.

The proof is given in [3, p. 22].

For the allowable triangle 
ADM, from lemma 4,

ν+µ+ α+ β = 0 ⇒ β = −(ν+µ+ α) . (16)

Using (13)-(16) together, we obtain

d (X,A) ·d (X,D) = −d (X,M) ·
µ
α
·d (M,X) ·

ν
β

=

= |x|2
νµ

−α(ν+µ+ α)
= |x|2 −|s|2

⇒ |x|2
(

1 +
νµ

α(ν+µ+ α)

)
= |s|2

⇒ |x|2 =
|s|2 [α(ν+µ+ α)]

νµ+ α(ν+µ+ α)
. (17)

Following the same procedure ((13)-(16)) for the segment
|y| = d (M,Y), due to the symmetry in ν and µ in the latter
expression, we’ll get exactly same result. So, |x|2 = |y|2,
that is |x|=±|y|, and following the conclusion from proof
1, |x| = |y| ⇒ d (X,M) = d (M,Y). �

Proof 3

The proof is based on the following:

Lemma 5 If in two allowable triangles in I2 a directed an-
gle of one is equal to a directed angle of the other, then the
areas of the triangles are in the same ratio as the products
of the sides composing the equal angles.

Proof According [3, p. 26] the isotropic area of an allow-
able triangle ABC, A(a1,a2), B(b1,b2), and C(c1,c2) is
given by

FABC =
1
2

∣∣∣∣∣∣
1 1 1
a1 b1 c1

a2 b2 c2

∣∣∣∣∣∣ .

Let’s mark the directed angles as given before in (6) and
(7) (see figure 6), and let’s observe the allowable triangles
AXM and MYC (figure 9).

Lemma 1 yields that α = ∠

(−→
MA,

−→
AX

)
= α′ =

∠

(−→
YC,

−→
CM

)
, hence, we have to proof the equality:

FAXM

FMYC
=

d (M,A) ·d (A,X)

d (Y,C) ·d (C,M)
. (18)

Fig. 9

For the points A(a1,a2), C(c1,c2), M (m1,m2), X (x1,x2)
and Y (y1,y2), the isotropic areas of the triangles are given
by

FAXM =
1
2

∣∣∣∣∣∣
1 1 1
a1 x1 m1

a2 x2 m2

∣∣∣∣∣∣ ,

and

FMYC =
1
2

∣∣∣∣∣∣
1 1 1

m1 y1 c1

m2 y2 c2

∣∣∣∣∣∣ .

The sides composing the equal angles are d (M,A) =
(a1 −m1), d (A,X) = (x1 −a1), d (Y,C) = (c1 −y1), and
d (C,M) = (m1 −c1). For the directed angles α and α′ we
have

α = ∠

(−→
MA,

−→
AX

)
=

x2 −a2

x1 −a1
−

a2 −m2

a1 −m1

α′ = ∠

(−→
YC,

−→
CM

)
=

m2 −c2

m1 −c1
−

c2 −y2

c1 −y1

α = α′ ⇒
x2 −a2

x1 −a1
−

a2 −m2

a1 −m1
=

m2 −c2

m1 −c1
−

c2 −y2

c1 −y1

⇒
x1m2 −x2m1 −a1m2 +a2m1 +a1x2 −a2x1

y1c2 −y2c1 −m1c2 +m2c1 +m1y2 −m2y1
=

=
a1x1 −x1m1 +m1a1 −a2

1

m1c1 −m1y1 +c1y1 −c2
1

.

The latter equation can be reach writing extensively equa-
tion (18). �
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Let’s apply now lemma 5 on the following pairs of allow-
able triangles:


MAX and 
YCM⇒

FMAX

FYCM
=

d (M,A) ·d (A,X)

d (Y,C) ·d (C,M)
, (19)


CMY and 
DMX ⇒

FCMY

FDMX
=

d (C,M) ·d (M,Y)

d (D,M) ·d (M,X)
, (20)


XDM and 
MBY ⇒

FXDM

FMBY
=

d (X,D) ·d (D,M)

d (M,B) ·d (B,Y)
, (21)


YMBand 
XMA⇒

FYMB

FXMA
=

d (Y,M) ·d (M,B)

d (X,M) ·d (M,A)
. (22)

(19) · (20) · (21) · (22)=
FMAX

FYCM
·

FCMY

FDMX
·
FXDM

FMBY
·

FYMB

FXMA
= 1

⇒
d (A,X) ·d (M,Y)

d (Y,C) ·d (M,X)
·
d (X,D) ·d (Y,M)

d (B,Y) ·d (X,M)
= 1

⇒
d (A,X) ·d (X,D)

d (B,Y) ·d (Y,C)
=

d (M,X) ·d (X,M)

d (M,Y) ·d (Y,M)
. (23)

According lemma 3, and using the notation given in (4),
we have

d (A,X) ·d (X,D) = d (P,X) ·d (X,Q) = |s|2−|x|2 , (24)

and

d (B,Y) ·d (Y,C) = d (P,Y) ·d (Y,Q) = |s|2 −|y|2 . (25)

Inserting (24) and (25) in (23) we obtain

|s|2 −|x|2

|s|2 −|y|2
=

−|x|2

−|y|2
⇒ |x|2 = |y|2 ⇒ |x| = ±|y| ,

and finally, as it has been shown before,

|x| = |y| ⇒ d (X,M) = d (M,Y) .�

Proof 4
Let k be a parabolic circle in I2, and let M be the midpoint
of the chord

−→
PQ of k. Let’s choose the coordinate system

as shown (in the affine model) in figure 10, i.e, the tangent
on the circle k parallel to the chord

−→
PQ as the x-axis, and

the isotropic straight line through M as the y-axis.

Fig. 10

Let A
(
a1,Ra2

1

)
, B

(
b1,Rb2

1

)
,A �= B ⇒ a1 �= b1, and

C
(
c1,Rc2

1

)
, D

(
d1,Rd2

1

)
, C �= D ⇒ c1 �= d1, be four points

on the parabolic circle k. Choosing M (0,m), for the chord
−→
PQ we have

−→
PQ≡ y = m. Besides, for

−→
AB being a chord

through M, the following relations are obtained:

M, A, B collinear points ⇔
∣∣∣∣∣∣

0 m 1
a1 Ra2

1 1
b1 Rb2

1 1

∣∣∣∣∣∣ = 0 ⇔ a1b1 = −
m
R

. (26)

Analogously, for
−→
CD being a chord through M, we have:

M, C, D collinear points ⇔
∣∣∣∣∣∣

0 m 1
c1 Rc2

1 1
d1 Rd2

1 1

∣∣∣∣∣∣ = 0 ⇔ c1d1 = −
m
R

. (27)

Let’s denote further on X (x1,m) and Y(y1,m).

One obtains the following:

A, D, X collinear points ⇔

∣∣∣∣∣∣
x1 m 1
a1 Ra2

1 1
d1 Rd2

1 1

∣∣∣∣∣∣ = 0 ⇔ Rx1 (a1 +d1) = m+Ra1d1.

(28)

C, B, Y collinear points ⇔

∣∣∣∣∣∣
y1 m 1
b1 Rb2

1 1
c1 Rc2

1 1

∣∣∣∣∣∣ = 0 ⇔ Ry1 (b1 +c1) = m+Rb1c1.

(29)
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Finally, using (26), (27), (28), and (29) it follows:

x1 +y1 =
m+Ra1d1

R(a1 +d1)
+

m+Rb1c1

R(b1 +c1)
=

=
(m+Ra1d1)(b1 +c1)+(m+Rb1c1)(a1 +d1)

R(a1 +d1) (b1 +c1)
=

=
R(a1b1d1 +a1c1d1 +a1b1c1 +b1c1d1)+m(a1 +b1 +c1 +d1)

R(a1 +d1) (b1 +c1)
=

=
R

(
−m

Rd1 −
m
Ra1 −

m
Rc1 −

m
Rb1

)
+m(a1 +b1 +c1 +d1)

R(a1 +d1) (b1 +c1)
= 0

⇒ M is the midpoint of
−→
XY. �

References

[1] COXETER, H. S. M., GREITZER, S. L., Geometry
Revisited, MAA 1967

[2] GREITZER, S. L., Arbelos, v 5, ch 2, pp 38-39, MAA
1991

[3] SACHS, H., Ebene isotrope Geometrie, Vieweg-
Verlag, Braunschweig; Wiesbaden, 1987

[4] SHKLYARSKY, D. O., CHENTSOV, N. N., YAGLOM,
I. M., Selected Problems and Theorems of Elementary
Mathematics, v 2, Moscow, 1952

[5] STRUBECKER, K., Geometrie in einer isotropen
Ebene, Math.-naturwiss. Unterricht, no. 15, pp. 297-
306, 343-351, 1962

Jelena Beban-Brkić

Department of Geomatics, Faculty of Geodesy,

University of Zagreb
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