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ABSTRACT

A real affine plane Ay is called an isotropic plane o, if in
A2 a metric is induced by an absolute {f,F}, consisting of
the line at infinity f of Ay and a point F € f. In this paper
the well-known Butterfly theorem has been adapted for the
isotropic plane. For the theorem that we will further-on
call an Isotropic butterfly theorem, four proofs are given.
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1 Isotropic Plane

Let P,(R) be areal projective plane,f area linein P,, and
A, = P\ f the associated affine plane. The isotropic plane
I2(R) is areal affine plane A, where the metric is intro-
duced with areal line f C P, and areal point F incidental
with it. The ordered pair {f,F}, F € f is called absolute
figure of the isotropic plane I2(R) ([3], [5]). In the affine
model, where

X=X1/X0, Y=X2/Xo, )
the absolute figure is determined by the absolute line =
Xo = 0, and the absolute point F(0:0:1). All projective
transformations that are keeping the absolute figure fixed
form a 5-parametric group

C1,C2,C3,C4,C5 € R (2)
& €4C5#0.

X = C1 + CgX
51 Y=Co+Cax+csy

We call it the group of similaritie®f isotropic plane.

Defining in I, the usual metric quantities such as the dis-
tance between two points, the angle between two lines etc.,
we look for the subgroup of Gs for those quantities to be
invariant. In such away one obtainsthe fundamental group
of transformationsthat are the mappings of the form:

X=0C1+X
Gs { y=Cotcax+y 3

Leptiri u izotropnoj ravnini
SAZETAK

Realna afina ravnina Ay se naziva izotropnom ravninom |
ako je metrika u Ay inducirana apsolutnom figurom {f,F},
koja se sastoji od neizmjerno dalekog pravca f ravnine Az
i totke F € f. U ovom je radu poznati Leptirov teorem
smjeSten u izotropnu ravninu. Za taj teorem, kojeg od
sada nazivamo lzotropnim leptirovim teoremom, dana su
Cetiri dokaza.

Kljuéne rijeci: izotropna ravnina, leptirov teorem

It is called the motion groupof isotropic plane. Hence,
the group of isotropic motions consists of tranglations and
rotations, that is

X=C1+X X=X
{ y==C+y and { y=Cax+y ’

In the affine model, rotation is understood as stretching
aong the y-axis.

2 Termsof Elementary Geometry within I

We will first define some terms and point out some proper-
ties of triangles and circlesin I, that are going to be used
further on. The geometry of |, could be seen for example
in Sachs [3], or Strubecker [5].

I sotropic straight line, parallel points, isotropic distance,
isotropic span

All straight lines through the point F are caled isotropic
straight lines (isotropic lines). All the other straight
lines are simply called straight lines Two points A, B
(A # B) are called parallel if they are incidental with
the same isotropic line. For two no parallel points
A(a1,a2), B(b1,by), the isotropic distances defined by
d(A,B) :=b; —a;. Note that the isotropic distance is
directed. For two paralel points A(az,a2), B(bg,by),
a1 = by, the quantity known as isotropic spanris defined
by s(A,B) := by —ap. A straight line p through two points
A and B will bedenoted by p= AV B, or smply p= AB.
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Invariants of a pair of straight lines

Each no isotropic straight line g C 1, can be written in the
normal formy = ux-v, that is, in line coordinates, g (u, V).
For two straight lines g (ug,v1), g2 (U2, Vv2) the isotropic
angldsdefined by ¢ = £(g1,92) := U — u; . Notethat the
isotropic angleis directed as well. The Euclidean meaning
of the isotropic angle can be understood from the affine
model that is givenin figure 1.

A

ER
Fig. 1
For two parallel straight lines g1 (u1,v1) , g2 (u1,Vv2) there

exists an isotropic invariant defined by ¢ x (91,02) 1= v2 —
v1 (seefig. 2).

Fig. 2

| sotropic normal

An isotropic normalto the straight line g (u,Vv) in the point
P(p1,p2), P ¢ gisanisotropic line through P. Inversely
holds as well, i.e. each straight line g C I is a norma
for each isotropic straight line. Denoting by S the point
of intersection of the isotropic normal in the point P with
the straight line g, the isotropic distance of the point P
fromthelinegisgivenby d(Pg) :=s(SP)=p— s =
p2 —upy — v (seefig. 3).

F A

s(S, P)=p, -8, =Py- Upy- v
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Trianglesand circles

Under atrianglein |, an ordered set of three no collinear
points {A, B,C} isunderstood. A, B, C are called vertices
and a:=BVC, b:=CVA, c:=AVB sidesof a trian-
gle. A triangleis called allowableif no one of its sidesis
isotropic. Inaallowabletrianglethelengthsof the sidesare
defined by |a| := d(B,C), |b| :=d(C,A), |c| :=d(A,B),
with |a] # 0, |b| # 0, |c| # 0. For the directed angles we
haveo := Z(b,c) #0,B:=Z(c,a) #0,7:= Z(a,b) #0
(seefigure 4).

Isotropic altitudes R, hy, he associated with sides a, b, and
c areisotropic straight lines passing through the vertices A,
B, C, i.e. normalstothesidesa, b, and c. Their lengthsare
defined by |ha| :=s(L(A),A), where L(A) = anh,, etc.
The Euclidian meaning is givenin figure 5.

L.,

ol
>
v

Fig. 5

An isotropic circle (parabolic circle) is a regular 2" or-
der curvein P,(R) which touches the absoluteline f inthe
absolute point F. According to the group Gz of motions
of the isotropic plane there exists in I, a three paramet-
ric family of isotropic circles, given by y = R¥ + ax+
B, R#0, o, €R. Using transformations from Gg,
each isotropic circle can be reduced in the normal form
y=R¥X, R#0. RisaGs invariant and it is called the
isotropic radiusof the parabolic circle.
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3 Thelsotropic Butterfly Theorem The proof isgivenin [3, p. 32].

Theorem 1 (Euclidean version) Let M be the midpoint of
a chord PQ of the circle, through which two other chords
AB and CD are drawn; AD cuts PQ at X and BC cuts PQ lal = [} = H, lha| = [c|B, |ho| = laly, |he| = |b|a
atY. M is also the midpoint of XY . a By

hold for every allowable triangle.

Lemma?2 The relations

This theorem has been proved in a series of books and pa- o
pers (e.g. [1], [2], [4]). The proof isgivenin [3, p. 28].

i i o Lemma 3 Let k be a parabolic circle inJ, a point P&
Theorem 2 (Isotropic version) Let M be the midpoint of I, P¢ k, and S, S two points of intersection of a no

a chord PQ of the parabolic circle, through which two isotropic straight line g through P with k. The product
other chordsAB andCD are drawn;AD cutsPQ at X and f(P):=d(P,S)-d(P,$) doesn’t depend of the line g, but

BC cutsP_Q) atY. M is also the midpoint Y . only of k and P.
Proof 1 The proof isgivenin [3, p. 38].
The point coordinates are:  P(p1,p2), Q(01,02),

. ! ity Let's now continue the proof of the isotropic Butterfl
M (M1, mp), X (x1,X2), Y (Y1,Y2), With pp # 0z, since PQ 0o P P g
isachord and as a such a no isotropic line, wherefrom we According to lemma 1,

derive that x; # y1 # my must be fulfilled as well. Let us

drop perpendiculars hy, hy from X, and g1, g2 from Y on o=/ (Méﬁf)) —o =/ (6?3, —D)) ,
ABand CD. Let’s also denote q
an
d(PM)=d(M,Q) =g, =% =2\ o T
dXM) =[x, d(M.Y) =y, * p=#(PADC) ==« (BABC). (®)
We will
Hi=hiNAM, Hp=h,nDM, g AR S
Gi=gi:NMB, G =g2MMC. p=Z(XM,MA) = = 2 (YM,MB),
and
A — — —
y F V:Z(DM,MX) :v’:é(CM,MY). @)

Let’s apply furthermorelemma 2 on the following pairs of
alowabletriangles:

1st) AAXM & AMBY, 2nd) AXDM & AMYC,

3rd) AAXM& AMYC, 4th) AXDM & AMBY,
marking sides, angles and altitudes as given in figure 7.

v

=
l

N,
1 X

Fig. 6: The Isotropic butterfly theorem in the affine model
Asfirst we need the following:

Lemmal Let P, Q, P#£ Q, be two points on a parabolic
circle k, and A#£ P, A+# Q, any other point on the same

circle k. The isotropic angle = £ (PT& (5&) does not
depend on the position of point A.

v
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1) AAXM — Xl m
—_— - - 9
/(AX,XM) @ u

lh| = |a] - ;

AmBy — WL [l _ bl
/(BY,YM) H B’
lhy| = [b] - ;

Ihd _ Jal
and using marks from fig. 6 we get
Iy o[’
x| [ha
At (8)
vl (g
ond) AXDM = — > _ld_m
/(MX,XD) B v’
lhy[ = |m[- B =[d]-V;

amye = M eI
/(MY,YO) o v
lhy[ = [m[- o= [c|- v;

Il = H and using marks from fig. 6 we have

lhy[ Ic|
x| |he|
X _ el 9
¥~ o ©

Analogously, for the third pair of triangles we get

— = . (10)
2| d(Y,C)

Finally, for the fourth pair of triangles we have
lhz| _d(X,D)
rel_ . 11
@ dEY) -

From (4), (8), (9), (10), (11), and lemma 3 one computes

X2 _ [Pl el _ [hal |he|
2 loil g2l lgal o
d(AX) d(X,D) —d(X,A)-d(X,D)
TdY,C) dB)Y) —d(Y.C)-d(Y.B)
_d(X,P)-d(X,Q)  (p1—X)(q1—X1)
Cd(Y,P)-d(Y,Q  (pr—y1)(@i—y1)

_ (Pr—muA My —Xg) (G — M+ M —X1)
(P1— Mg+ My —y1) (01 — My + My — Y1)

— (s =) (sl x) _ s~ 1% (12)
— (s (=)~ 52—y
2 2 2
X S|”— |X]
M B o =P = =l

y? |-y
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The solution |x| = —1y|

= d(X,M)=-d(M,Y) =

d(Y,M), wherefrom it follows that points X and Y are par-

alel points, which has been excluded earlier.
So, x| =1y = d(X,M)=d(M,Y).D

Proof 2

Let's use the notation given in (4), that is, d(P,M) =
ly|, aswell as (6)

d(M,Q) =1s,d(X,M)=|x,d(M,Y) =
and (7) for the observed angles.

>
1

Fig. 8

From lemma 3, as shown in (12), we have
d(X,P)-d (I8l +[x) = [x*—[s|.
(13)

Lemma 2 applied on the allowable triangles ADMX and
AAXMyields

(X,Q) =—(Is—[x))

Abmx = 305D _ (iE[i,l\_/lz_) _dM,X)
4<|v|x, XD) b
d(X,D) d(M,X)
= " = B (14)
Anxm— TAX) d(XOZM) = (d(l\j’A)H)
Z( AX, XM
L dAX) _dXM) a5
u o

v



KoG-8-2004

J. Beban-Brki¢, V. Volenec: Butterflies in the I sotropic Plane

Lemma4 The sum of the directed sides of an allowable Lemma 1 yields that o =
triangle in > equals zero; the sum of the directed angles of

an allowable triangle in4 equals zero as well.

The proof isgivenin[3, p. 22].

For the allowable triangle AADM, from lemma 4,

V+u+o+p=0 = Pf=—(v+p+o). (16)
Using (13)-(16) together, we obtain

d(X,A)-d(X,0) = ~d (X, M) £ -d(M,X) 5 =
w2 VU N Y
=X i =X
= |x? (1+V7u) =|s?

o(v+p+o)

2
I il CICR TELY) an

oVt o (vt o)

Following the same procedure ((13)-(16)) for the segment
ly| =d(M,Y), dueto the symmetry inv and pin the latter
expression, we'll get exactly same result. So, [x2 = |y|%,
thatis |x| = £|y|, and following the conclusion from proof
Lix=ly =dX,M)=d(M,Y).O

Proof 3
The proof is based on the following:

Lemma5 Ifintwo allowable triangles ind a directed an-

gle of one is equal to a directed angle of the other, then the
areas of the triangles are in the same ratio as the products

of the sides composing the equal angles.

Proof According [3, p. 26] the isotropic area of an allow-
able triangle ABC, A(ag,az2), B(b1,bp), and C(cy,Cp) is
given by

1 1 1
a1b101

Faec = >
ap b2 C2

Let's mark the directed angles as given before in (6) and
(7) (seefigure 6), and let’s observe the allowable triangles
AXMand MY C (figure9).

— —
/ (MA,AX) — o =
/ (Y_C):,CT/I)) , hence, we have to proof the equality:

Faxm d(M,A)-d(AX)
FMYC7 d(YaC)d(CaM)

(18)

A

Fig. 9

For the points A(az,az), C(c1,C2), M (my,mp), X (X1,%2)
andY (y1,Y2), the isotropic areas of the triangles are given
by

1 1 1 1
Faxm = > aa X3 |,
a X2 M
and
1 1 1
Fvyc = > m y1 G
m Yy C

The sides composing the equal angles are d (M,A) =
(a1 —my), d(AX) = (x1—ay), d(Y,C) = (c1—y1), and
d(C,M) = (my —c1). For the directed angles o and o’ we
have

:4(m7—)>()zxz—az_az—mz
X1—ar a—m
a’zé(Y_C),C_)M>:mZ_CZ—CZ_y2
M —-C C—W1
Xp—d P—Mp Mp—C C—V
X1—a a—-M m—C Ci—Y1
X{Mp —XoMy — ayp + @M +agXo —axXy
Y1C2 — Y2C1 — MiC2 + MpC1 + Miy2 — Moy
. a1x17x1m1+m1a17a§
- m1C1*m1Y1+01Y1*C%.

The latter equation can be reach writing extensively equa-
tion (18). O

o=0 =

33
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Let’s apply now lemma 5 on the following pairs of allow-
abletriangles:

AMAX and AYCM =
Fuax _ d(M,A)-d(AX) a9)
Frem d(ch)d(CvM),
ACMY and ADMX =
Femy d(C,M)-d(M,Y) (20)
Fomx  d(D,M)-d(M,X)’
AXDM and AMBY =
Fxom _ d(X.D)-d(D,M) e
Fwey d(M,B)-d(B,Y)’
AY MBand AXMA =
Fwve B d(Y,M)-d(M,B) 22)
5

Fxma  d(X,M)-d(M,A

Fvax Femy Fxow Fyme

(19>'(20).(21>'(22):FYCM Fomx  Fvey FXMAil
d(AX)-d(M.Y) d(X.D)-d(Y.M)
7 AY,0)-dM,X) d(B,Y)-d(X,M)
d(AX)-d(X.D) d(M,X)-d(X,M)
~ 4BY)dY.C) amy)dym) &

According lemma 3, and using the notation given in (4),
we have

d(AX)-d(X,D)=d(PX)-d(X,Q) = s~ |x, (24)
and
d(B,Y)-d(Y,C)=d(PY)-d(Y,Q =g’ |y]*. (25

Inserting (24) and (25) in (23) we obtain

2

2 2
S b b 2_ 12
=——z = X =W = X==%lyl,

R

and finally, as it has been shown before,

X =1yl = d(X,M)=d(M,Y).0

Proof 4
Let k be aparabalic circlein I, and let M be the midpoint

of the chord P_Q> of k. Let’s choose the coordinate system
as shown (in the affine model) in figure 10, i.e, the tangent
—>

on the circle k parallel to the chord PQ as the x-axis, and
theisotropic straight line through M as the y-axis.

34

Fig. 10

Let A(ay,Re&), B(by,RE)A # B = a1 # by, and
C(c1,RG), D(d1,RcE), C# D = ¢y # dy, be four points
on the parabolic circle k. Choosing M (0, m), for the chord
l56 we have |56 =y=m. Besides, for AB being a chord
through M, the following relations are obtained:

M, A, B collinear points <
0O m 1

a Ra& 1
by Rbf 1

— 0o aby — —g. (26)

Analogoudly, for CD bei ng a chord through M, we have:
M, C, D collinear points <

0O m 1 m
ca RE 1 :O(:)cldlz—ﬁ. (27)
d RE 1

Let's denote further on X (xg,m) and Y (y1, m).
One obtains the following:
A, D, X callinear points <

=

X1 m
a R& 1
d R&E 1

=0< Rx (ag+d1) = m+ Ragds.

(28)
C, B, Y coallinear points <
yp m 1

by RE 1
a2 RE 1

=0< Ry (b1 +¢1) = m+Rbics.

(29)
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Finally, using (26), (27), (28), and (29) it follows:

m+Rad;  m+Rbcy
X - _
Lt R(a1+di) - R(b1+c1)

(m+Ragdp) (by +c¢1) 4 (M+Rbycy) (g +dy)

R(ap +dy) (by +c1)

_ R(agbyd; +agcyd; +agbycy +bycydy) +m(ag +by +cp +dyp)

R(ag +dp) (b +cp)

R(—Rdh— Ras — Rc1 — Bbi) +m(ag + by +cq +dy)
R(ag +dy) (by +c1)

= M isthe midpoint of XY. O
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