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AB STRA CT
The Kloštar oil fi eld is situated in the northern part of the Sava Depression within the Croatian part of the Pannonian 
Basin. The major petroleum reserves are confi ned to Miocene sandstones that comprise two production units: the 
Lower Pontian I sandstone series and the Upper Pannonian II sandstone series. We used well logs from two wells 
through these sandstones as input data in the neural network analysis, and used spontaneous potential and resistivity 
logs (R16 and R64) as the input in network training. The fi rst analysis included prediction of lithology, which was de-
fi ned as either sandstone or marl. These two rock types were assigned categorical values of 1 or 0 which were then 
used in numerical analysis. The neural network was also used to predict hydrocarbon saturation in selected wells. 
The input dataset was extended to depth and categorical lithology. The prediction results were excellent, because the 
training and prediction dataset showed little disagreement between the true and predicted values. At present, this study 
represents the best and most useful application of neural networks in the Croatian part of the Pannonian Basin.
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1. INTRODUCTION

We used data from the Kloštar oil fi eld in Croatia to test the 
application of neural networks as a part of a project with a 
Cro ati an oil company (INA). The only other geomathema-
tical tools used on this oil fi led were several interpolation meth-
ods used for porosity mapping (BALIĆ et al., 2008). The fi eld 
is located approximately 35 km east of the Croatian capital of 
Zagreb (Fig. 1). This particular fi eld was selected because it is 
part of a joint research project between the Faculty of Mining, 
Geology and Petroleum Engineering, and a Croatian oil com-
pany. We used neural network analysis to predict reservoir 
lithology of the I and II sandstone series as either shale or sand-
stone, as well as the hydrocarbon saturation of the sandstone 
intervals. These intervals are generally represented by clastic, 

brackish to freshwater deposits that are characteristic of the 
Upper Pannonian and Lower Pontian succession throughout 
the Croatian part of the Pannonian Basin (LUČIĆ et al., 2001).

2. PETROLEUM GEOLOGY SETTINGS

The Dinaric oriented (NW–SE) Križ structure (including the 
Kloštar fi eld) is located at the most northwestern part of 
Moslavačka Gora Mountain. Despite many available well 
data, the borders of the stratigraphic units are commonly not 
precisely defi ned, mostly because of a lack of palaeontologi-
cal samples and complex tectonics resulting in many tectonic 
blocks. At favorable locations, stratigraphic boundaries are 
determined based on available well data, including cores, mud 
chips, and logs. The following fi ve units are defi ned and de-
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The Pliocene deposits, i.e., Dacian and Romanian, are 
also locally known as the Paludina beds. These sediments 
are characterized by the alternation of clays and medium- 
and coarse-grained sands.

Quaternary deposits consist predominantly of yellow-
ish sandy clays with abundant lime concretions. The average 
thickness ranges between 10 and 15 m.

The Kloštar structure is a faulted anticline with Dinaric 
strike (NW–SE). The geological history appears interesting, 
as shown by investigations of structural settings and the tec-
tonic evolution of the western part of the Sava Depression 
(VELIĆ, 1979, 1980, 1983). The fi eld structure was formed 
in the Middle Miocene, when intensive Badenian and Sar-
matian uplifting events resulted in formation of a NW to SE-
oriented anticline of 7×2 km. Later, in the Late Miocene, this 
structure was differentiated in two smaller parts: the north-
ern, which was uplifted during the Pontian, and the southern, 
which was only activated during the Upper Pontian. The re-
cent structural shape was tectonically created during the 
Pliocene and Quaternary, when the main phase of hydrocar-
bon migration probably occurred.

3. ARTIFICIAL NEURAL NETWORKS

A neuron is a basic element of a network that is mathemati-
cally presented as a point in space toward which signals are 
transmitted from surrounding neurons (Fig. 2).

The value of a signal on the activity of a neuron is de-
termined by a weight factor multiplied by a corresponding 
input signal. The total input signal is determined as a sum-
mation of all products of weight factor multiplied by the cor-
responding input signal given by
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scribed below, based on these boundaries: Palaeozoic, Middle 
Miocene, Upper Miocene, Pliocene, and Quaternary sediments.

The basement of the Tertiary system represents the 
core of the Križ structure. It includes extrusive igneous and 
metamorphic rocks, including granites of Palaeozoic age 
(VRAGOVIĆ & MAYER, 1980). This formation is a buried 
hill, formed by radial tectonic movements and denudation 
processes that occurred before the Miocene epoch. The rocks 
are weathered and fractured. In structurally favourable 
places, hydrocarbon accumulations are confi rmed.

The Middle Miocene (Badenian, Sarmatian) unit un-
conformably overlies the Palaeozoic igneous–metamorphic 
complex. The basal part is characterized by coarse-grained 
conglomerates, conglomeratic sandstones, and sandstones 
often intercalated with shale. It is overlain by dark-gray, 
sandy, bituminized marls, partially intercalated with light-
gray, fi ne-grained sandstones. Miocene beds form economic 
hydrocarbon reservoirs at the southern and eastern parts of 
the Kloštar structure.

Upper Miocene (Pannonian, Pontian) strata are well 
documented throughout the fi eld area. Lower Pannonian 
strata conformably overlie Sarmatian bituminized marls. Up-
per Pannonian sediments are represented by predominantly 
brown or dark-gray calcareous marls and sandstones, located 
in the southwestern part, and partially saturated by hydro-
carbons. They are defi ned as the II sandstone series. Lower 
Pontian sediments are represented by dark-gray, massive 
marls and sandy marls to the south and east of the fi eld area. 
Sandstones, mostly arenites with minor proportions of marl 
or clay, are dominant in the northwest and are partially satu-
rated with hydrocarbons. The Lower Pontian sandstones are 
also called the II sandstone series.

The Upper Pontian succession is monotonous, consist-
ing of soft sandy or clayey sediments and the proportion of 
sand increases upward.

Fi gu re 1: Geographic posi-
tion of the Kloštar fi eld in 
Croatia.
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where n represents the number of inputs for the neuron i. If 
the total input signal has a value greater than the sensitivity 
threshold of a neuron, then it will have an output of maxi-
mum intensity. Alternatively, a neuron is inactive and has no 
output. Value of the output is given by

( )i i ioutput F u t= ⋅ ,

where F represents the activation function and ti, the targeted 
out put value of neuron i. One can fi nd a more detailed des crip-
  tion of neural network basics and methods in MCCUL LO  CH 
& PITTS (1943), ROSENBLATT (1958) and ANDERSON 
& ROSENFELD (1988).

The basic architecture of a neural network consists of 
neurons divided into layers. Three is a minimum number of 
layers which a neural network has to have. These layers are 
the input layer, the hidden layer and the output layer. The 
input layer is for accepting signals, or in our case, input vari-
ables. These data are transferred to the hidden layer where 
it is processed by the activation function belonging to the 
neurons within it. Data which proved to be signifi cant in the 
analysis in the hidden layer neurons is sent to the output layer 
as the resulting data for the predicted variable. The number 
of hidden layers can be more than one or strictly one, de-
pending on the type of the neural network. For example, the 
multi layer perceptron (MLP) neural network is basically 
designed to be able to have more than one hidden layer and 
to perform better with two or three hidden layers than with 
one. In opposition to the multi layer perceptron, the radial 
basis function (RBF) neural network can only have one hid-
den layer but the number of neurons within this layer is much 
larger than the number of neurons in the single hidden layer 
of the MLP.

For this analysis, we used the two aforementioned types 
of neural networks, the supervised learning-multilayer per-
ceptron and the radial basis function neural network. The 
MLP network is based on a back propagation algorithm 
which calculates the error surface gradient in each step of 
the analysis. In the following step, the weight factors are ad-
justed according to the earlier calculated error surface gradi-
ent so the error minimizes and a new error surface is calcu-
lated. Also, the network can utilize a two-phase learning with 
second learning algorithms such as conjugate gradient de-
scent (GORSE et al., 1997), quasi-Newton (BISHOP, 1995), 
Levenberg–Marquardt (LEVENBERG, 1944; MARQU-
ARDT, 1963), quick propagation (FAHLMAN, 1988) and 

delta-bar-delta (JACOBS, 1988) which basically work on 
similar principles to the back propagation algorithm with a 
somewhat different approach. The greatest advantage of 
these aformentioned algorithms over the back propagation 
is that they are signifi cantly faster but sometimes the stand-
ard back propagation algorithm gives the best results. For 
more information in Croatian on these learning algorithms 
please refer to the geostatistical dictionary of MALVIĆ et 
al. (2008).

The MLP is more successfully applied in classifi cation 
and prediction problems (RUMELHART et al., 1986), and 
is the most often used neural network in solving geological 
problems. The RBF network is also a commonly used neural 
network but is more successfully and frequently applied in 
solving classifi cation problems than in solving prediction 
problems.

Neural networks have been successfully applied in pe-
troleum geology problems such as determining reservoir pro-
perties (e.g., lithology and porosity) from well logs, (BHATT, 
2002) and well-log correlation (LUTHI & BRYANT, 1997). 
In the Croatian part of the Pannonian Basin, only a few pe-
troleum geology research projects have been performed. In 
these studies, clastic facies were determined from well logs 
(MALVIĆ, 2006) and porosity was predicted based on well 
and seismic data (MALVIĆ & PRSKALO, 2007).

4. DATA ANALYSIS

We used well log data from two wells as input data for the 
neural network analysis. The data consist of the most basic 
well logs because measurements were taken in 1956 (well 
Klo–A) and 1957 (well Klo–B). Although these logs were 
taken some 50 years ago, we can successfully use them for 
interpretation (Fig. 3). Available data for analysis included 
resistivity (R16 and R64) and spontaneous potential (SP) logs. 
Resolution of the data was 10 cases (measurements) per me-
tre of well log.

We performed two types of analysis. First we predicted 
the lithology, followed by the hydrocarbon saturation. We 
carried out the analysis such that the neural network was fi rst 
trained on a specifi c interval of well log data (overseen learn-
ing), and afterward we used the trained neural network to 
predict the value of desired parameters for the intervals on 
which the neural network was not trained.

All neural network analysis were made using StatSoft 
STATISTICA 7.1.

Fi gu re 2: Artifi cial neuron model.
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4.1. Lithology prediction

To predict lithology, we manually determined the lithologi-
cal component by distinguishing layers of marl and sand-
stone from well logs (BASSIOUNI, 1994) on wells Klo–A 
and Klo–B. The neural network was trained on the fi rst set 
of data, which includes intervals that correspond to the I 
sandstone series, and the prediction was made on the inter-
vals that correspond to the II sandstone series and vice versa. 
Input data for training of the neural network, resistivity (R16, 
R64) and SP logs, were used. We defi ned lithology as a cat-
egorical variable (1 for sandstone, 0 for marl). For training 
of the neural network, we used manually determined lithol-
ogy. Results described in the tables represent the success of 
the neural network training. Values are shown as training er-
ror and prediction error. The program in which the analyses 
were made automatically divides the training dataset into 
two parts, the length of which is user defi ned. The fi rst set is 
used for training of the neural network; the second, for test-
ing the neural network’s ability to predict cases. This kind 
of data distribution minimizes the risk of overtraining. The 
training procedure is stopped when user-defi ned conditions 

have been met (fi nal number of iterations or desired amount 
of error) or when the program decides that further training 
will no longer yield better results. Results of neural network 
training for the prediction of lithology are given in Table 1 
and expressed as two error values in percentages. The train-
ing error corresponds to the previously mentioned dataset 
that was used for training the neural network. The selection 
error describes the neural network’s success for predicting 
the values on unknown data. Two neural networks were 
trained for each well, one MLP and one RBF network. Here 
the prediction could only be done on the deeper or shallower 
parts of the well log in the same well; cross-prediction or 2D 
neural network analysis did not yield satisfactory results here 
because of the different values of SP logs in the two wells.

Table 1 shows that both of the neural networks have been 
successfully trained on the corresponding interval. The ano-
maly is shown in Table 1, where the MLP network showed 
a high training error but low selection error. Initially one 
might presume that the RBF network with signifi cantly lower 
training error is more successful in predicting the unknown 
data interval, but this is not the case. The MLP network had 
slightly better results than the RBF, so we conclude that the 
value of the selection error is a much more reliable indicator 
of success of a neural network than the training error is. Thus, 
when neural network training is fi nished, the best network 
parameters are the ones with the smallest selection errors. 
The relationship between manually determined lithology and 
lithology gained from neural network analysis is shown in 
Figs. 4 and 5.

4.2. Hydrocarbon saturation prediction

As opposed to lithology prediction, hydrocarbon saturation 
prediction uses cross-prediction. The neural network is 
trained on one well log interval, much larger than in the for-
mer prediction case. Training had been done on one well, 
Klo–A, and prediction had been performed on another well, 

Fi gu re 3: Part of the Klo–B well log representing the interval for the I sandstone series.

Table 1: Neural network parameters for lithology prediction

Neural network type 
and propertiesa

Well Training 
errorb

Selection 
errorb

RBF 3–31–1 Klo-A 0.152942 0.172753

MLP 3–4–6–3–1 Klo-A 0.31438 0.133478

RBF 3–13–1 Klo-B 0.156621 0.149185

MLP 3–6–4–2–1 Klo-B 0.255012 0.214935

a  Neural network type and properties correspond to the type of network and 
number of neurons per layer where fi rst and last number represent the pro-
perties of the input and output layer. Values between these represent the 
number and properties of the hidden layers.

b  Error value ranges from 0 to 1, where 0 represents 100% success of predic-
tion, i.e., no error.
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Klo–B. For input data we used resistivity logs (R16, R64), SP 
logs, corresponding data about well depth and lithology, and 
the hydrocarbon saturation value. Hydrocarbon saturation 
was manually determined from resistivity log R64. The cor-
responding data well depth gave better results in this neural 
network performance than in lithology prediction, where it 
had little or no effect. Hydrocarbon saturation value, as well 
as lithology, was defi ned as a categorical value. Here “1” 
stands for positive hydrocarbon accumulation and “0” for 

Fi gu re 4: Comparison of MLP neural 
network predicted (dotted line) and 
manually determined data (solid line) 
in lithology prediction analysis for 
well Klo–A. The diagram’s abscissa 
represents vertical depth, and the or-
dinate represents the value of litho-
logy expressed as either marl (0) or 
sandstone (1).

Fi gu re 5: Comparison of RBF neural 
network predicted (dotted line) and 
manually determined data (full line) 
in lithology prediction analysis for 
well Klo–B. The diagram’s abscissa 
represents vertical depth, and the or-
dinate represents the value of litho-
logy expressed as either marl (0) or 
sandstone (1).

Table 2:  Neural network parameters for hydrocarbon saturation prediction

Neural network type and propertiesa Training 
errorb

Selection 
errorb

MLP 5–6–8–1 0.056897 0.091173

a  Neural network type and properties correspond to the type of network and 
number of neurons per layer where the fi rst and last numbers represent the 
properties of the input and output layer. Values between these represent the 
number and properties of the hidden layers.

b  Error value ranges from 0 to 1, where 0 represents 100% success of predic-
tion, i.e., no error.
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negative. For this analysis, only the MLP neural network was 
used because an RBF network was characterized by a high 
selection and training error.

Neural network parameters are shown in Table 2. Rela-
tionships between manually determined and neural network 
predicted hydrocarbon saturation are shown in Fig. 6.

5. DISCUSSION

Generally, for all neural network analyses, the more input 
cases and more input variables used, the more successful the 
results and the better prediction will be.

Prediction of the lithology has proven reliable only when 
the extrapolation of data was within one well interval. In this 
analysis the most signifi cant value was the SP log. With the 
input of resistivity logs alone, correspondence between true 
and predicted values was not satisfactory. Also, the input logs 
were recorded in 1956 and 1957.

A problem that appeared in this study, which prohibited 
cross-prediction of lithology, was different SP log values for 
wells Klo–A and Klo–B. The Rm for Klo–A was 72 Ωm for 
mud temperature of 13°C and 625 Ωm for Klo–B with a mud 
temperature of 1°C. This problem led to unsuccessful pre-
diction in the shallower part of the well log data interval, 
where electric properties of mud on wells Klo–A and Klo–B 
were signifi cantly different, and to successful prediction in 
the deeper part of the well log data interval (>850 m of 
depth), where values were similar on both corresponding 
well log data intervals. This problem probably occurred be-
cause of the different electrical properties of mud, infl uenced 
by different temperature values and the composition of the 
mud itself. In deeper segments of the well, temperature and 

electrical properties of mud on both wells were normalized, 
and therefore cross-prediction on deeper intervals was pos-
sible. One solution to this problem for shallower intervals 
could be introducing lithology descriptive variables that are 
not as dependent on mud properties as the SP log. For ex-
ample, gamma ray logs as well as other well logs that defi ne 
reservoir properties, such as compensated neutron and den-
sity logs, could be used to obtain better neural network per-
formance.

6. CONCLUSIONS

In this study, we trained several artifi cial neural networks 
with the task of predicting the lithology of Upper Pannonian 
sediments (II sandstone series) and Lower Pontian deposits 
(I sandstone series), as well as hydrocarbon saturation within 
these beds. Sandstone facies are adequate media for statisti-
cal and neural network analysis. Our analysis of sandstone 
reservoirs of the Kloštar fi eld by neural tools yielded the fol-
lowing results:

When determining the lithological component in wells 
Klo–A and Klo–B with RBF and MLP neural networks, we 
achieved excellent correspondence between true and pre-
dicted values.

Prediction of hydrocarbon saturation in well Klo–B with 
a neural network trained in well Klo–A gave excellent cor-
respondence between true and predicted values.

Our results show the great potential of neural networks’ 
application in petroleum geology research, where they could 
be used to quickly acquire results from well logs, to obtain 
vertical and lateral correlation of such logs, and to solve other 
petroleum geology problems.

Fi gu re 6: Comparison of MLP neural 
network predicted (dotted line) and 
manually determined data (solid line) 
in hydrocarbon saturation analysis in 
wells Klo–A and Klo–B. The diagram 
ordinate represents hydrocarbon sat-
uration (0 or 1), whereas the abscissa 
represents the corresponding data 
depth.
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