
1. INTRODUCTION

In late Cretaceous times rudist bivalves became the 
most important benthic carbonate producers in both 
the Tethyan and Caribbean realms (KAUFFMAN, 
1973; ROSS & SKELTON, 1993). They predominantly 
built widespread mono- to paucispecific associations 
but were also able to co-exist successfully with corals 
yielding complex and diverse coral–rudist reefs (e.g., 
KAUFFMAN & SOHL, 1973; MASSE & PHILIP, 
1981; LAVIANO, 1984; CAMOIN et al., 1988; 
SCOTT et al., 1990; HÖFLING, 1997; SANDERS & 
BARON-SZABO, 1997; SANDERS & PONS, 1999; 
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GÖTZ, 2001, 2003; MITCHELL, 2002). The spatial 
distribution of coral–rudist reefs was mainly controlled 
by environmental conditions (e.g., sedimentation rate, 
palaeobathymetry, current regimes, salinity) (GILI et 
al., 1995; GILI & SKELTON, 2000; GÖTZ, 2003). 
Like many other taxa, rudists became extinct at or close 
to the Cretaceous/Tertiary (K/T) boundary. As a result 
of the scarcity of outcrops and the poor stratigraphic 
constraints of rudist associations, the timing and pattern 
of rudist demise is still controversial (JOHNSON & 
KAUFFMAN, 1996; STEUBER et al., 2002). 

The Upper Cretaceous Cardenas Formation con-
tains abundant rudist and coral–rudist associations, 
which belong to the youngest known late Cretaceous 
assemblages worldwide. These assemblages may poten-
tially provide new data about latest Cretaceous rudist 
history (JOHNSON & KAUFFMAN, 1996). Since 
the monograph of BÖSE (1906) the diverse faunal 
assemblages of the Cardenas Fm. have been studied 
by several authors (BÖSE & CAVINS, 1927; BUR-
CKHARDT, 1930; MUELLERRIED, 1930; MYERS, 
1968; HURTADO-GONZALEZ, 1984; VEGA et al., 
1995; ALENCASTER et al., 1999; CAUS et al., 2002). 
Nevertheless, a detailed analysis of these coral–rudist 
associations is lacking in the literature. 

Herein we present a detailed description of an 
approximately 170 m thick sequence selected from 
an approximately 900 m thick section of the Cardenas 
Fm. It is exposed in a river bed called the Arroyo de la 
Atarjea (MYERS, 1968), situated approximately 3 km 
north of the city of Cardenas (Fig. 1). MYERS (1968) 
first described the composition and tectonic structures 
of the Cardenas Fm. from this locality. The selected 
sequence contains one radiolitid assemblage and 23 
coral–rudist reefs. Subsequently, we use the term “reef” 
in the general sense of “calcareous deposits created by 
essentially in place sessile organisms” (RIDING, 2002, 
p. 165).

2. GEOLOGIC SETTING AND LITHOLOGIES 
OF THE CARDENAS FORMATION

The Upper Cretaceous Cardenas Formation exposed in 
central Mexico (State of San Luis Potosí) is a mixed 
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Abstract
In the Cardenas Formation (central Mexico), a 175 m thick sedimen-
tary sequence of Maastrichtian age was analyzed with respect to its 
palaeontology and sedimentology. A wide variety of lithological 
and palaeontological features characterize this sequence comprising 
unfossiliferous and fossil-bearing sand- and siltstones, and diverse 
rudist and coral–rudist associations in carbonate or mixed carbonate/
clastic lithologies. A total of 24 rudist and coral–rudist associations 
are exposed in the investigated section, which are grouped into 5 
limestone units. Radiolitid assemblages, coral–rudist reefs, coral-domi-
nated reefs, and hippuritid-dominated reefs are present. The stacking 
pattern of these reef intervals indicates a general transgressive trend 
through the entire section. Smaller-scale facies trends could be dis-
tinguished within each limestone unit, comprising deepening-upward 
sequences, defined by a shoreface–calcareous algae–radiolitid–marl 
facies transition, and shallowing-upward sequences defined by a 
hippuritid–actaeonellid–coral/rudist facies transition. This cyclic 
sedimentation pattern is obscured by an episodic input of clastic sedi-
ments derived from the uplifting Sierra Madre Oriental, which in turn 
triggered either the development or decline of reefs. 
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clastic–carbonate sedimentary sequence approximately 
1800 m in thickness. Laterally, the sedimentary rocks of 
the Cardenas Fm. pass into the deep water marls of the 
coeval Mendez Formation, which in turn overlie marl 
and limestone units of the San Felipe Formation (Fig. 2) 
(SOHL et al., 1991; VEGA et al., 1995). The Cardenas 
Fm. conformably overlies the uppermost limestone 
units of the Valles–San Luis Potosí (V. S. L. P.) carbo-
nate platform (Tamasopo Formation), which are of 
Cenomanian to Santonian age (BASAÑEZ-LOYOLA 
et al., 1993). The Cardenas Fm. is overlain by the red 
beds of the Tabaco Formation, which are of unknown 
age (MYERS, 1968). According to our results, the 
Tabaco Fm. consists of sandstones, claystones, and 
varicoloured conglomerates that conformably overlie 
the Cardenas Fm. Tectonically the sediments of the 
Tamasopo Fm., the Cardenas Fm., and Tabaco Fm. 
are part of the fold and thrust belt of the Sierra Madre 
Oriental of eastern Mexico (TORRE, 1964; FUENTE-
NAVARRO, 1964; SUTER, 1987). 

The sedimentary rocks of the Cardenas Fm. were 
deposited during the Campanian–Maastrichtian time 
period (MYERS, 1968; CAUS et al., 2002), when a 
facies change from carbonate dominated deposition 
to mainly clastic sedimentation took place in northern 
and central Mexico (LOPEZ-RAMOS, 1985; SOHL 
et al., 1991; MORAN-ZENTENO, 1994; YE, 1997). 
In central Mexico this facies change is represented by 
the transition from the limestone units of the V. S. L. P. 
carbonate platform to the mixed clastic–carbonate 
sediments of the Cardenas Fm. and the marls of the 
Mendez Fm. (SOHL et al., 1991; MORAN-ZENTENO 
et al., 2000; GOLDHAMMER & JOHNSON, 2001). 
The input of clastic sediments during the Upper Creta-
ceous may be attributed to early orogenic phases of 
the Sierra Madre Oriental (SOHL et al., 1991; YE, 
1997). Due to this uplift underlying older sedimentary 
units of the V. S. L. P. carbonate platform were eroded 
and deposited as clastic sediments in the foreland 
basin east of the Sierra Madre Oriental (Fig. 3) (YE, 
1997). In the Cardenas region, the shallow water 

units of the Cardenas Fm. were deposited in a narrow 
depositional area in front of the Sierra Madre Oriental, 
whereas the Mendez Fm. represents the deeper parts 
of the foreland basin farther east. In the Tertiary, the 
main orogenic phases of the Sierra Madre Oriental 
involved the sediments of the Cardenas Fm., resulting 
in their deformation into broad anticlines and synclines 
(TORRE, 1964; FUENTE-NAVARRO, 1964; MYERS, 
1968). 

MYERS (1968) subdivided the Cardenas Fm. into 
3 lithological members (Fig. 5; for explanation of 
symbols see Fig. 4), which comprise clastic intervals 
consisting of marls, silt- and sandstones as well as 
conglomeratic layers intercalated in the sandstone beds 
at the base of the upper member. The lower and upper 
members are characterized by rudist- and coral–rudist 
limestones, which are absent in the middle member of 
the Cardenas Fm. (MYERS, 1968).

3. LITHOLOGIES OF THE INVESTIGATED 
SECTION

The sediment succession investigated herein is 175 m 
thick and belongs to the upper member of the Cardenas 
Formation. The section is generally well exposed 
despite a few intervals that are partly covered by soil 
and calcretes (Fig. 6). Sedimentary rocks consist of 
interlayered marls, fine-grained sandstones, oolithic 
and bioclastic grainstones, and algal packstones. These 
sediments are described in detail below. In addition, 5 
units (u1–u5) with rudist and coral–rudist associations, 
intercalated with the clastic sediments, are described in 
the following sections.

The age of the section is considered to be Maastri-
chtian, based on the ammonite Sphenodiscus pleuri-
septa (CONRAD) found in the lower member of the 
Cardenas Fm. that is also exposed in the Arroyo de la 
Atarjea.

In the lower part of the section fine-grained sand-
stones are predominant and are intercalated with 

Fig. 1  Location of the investigated section in the Arroyo de la Atar-
jea riverbed (MYERS, 1968).

Fig. 2  Stratigraphy of the formations of the Cardenas area. The 
marls of the Mendez Formation interfinger with the mixed clas-
tic–carbonate units of the Cardenas Formation. The Cardenas 
Fm. overlies the shallow water carbonates of the Valles–San 
Luis Potosí carbonate platform (Tamasopo Formation). The 
Cardenas Fm. is covered by the red beds of the Tabaco Forma-
tion. Similar to the marl and limestone units of the San Felipe 
Formation, the age range and geologic context of the Tabaco 
Fm. is not well defined in central Mexico.
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1.5–6 m thick oolithic and bioclastic grainstones. The 
sandstone beds are between 20 cm and 3 m in thickness 
and characterized by lamination and cross-bedding. The 
sandstones are fine-grained calclithites (PETTIJOHN et 
al., 1984) and consist of more than 50% non-skeletal 
limestone clasts and abundant quartz clasts. The clasts 
are subangular to subrounded and well sorted. Matrix is 
absent. Generally, the sandstones are nonfossiliferous 
but two 3.5 cm and 0.5 m thick sandstone layers 
below unit u1 contain slightly fragmented radiolitids. 

A bioturbated horizon separates these sandstone layers 
from the overlying reef.

The bioclastic grainstones contain abundant coral, 
rudist (plagioptychids, radiolitids, hippuritids) and 
echinoderm fragments, benthic foraminifera (orbitoids, 
miliolids), dasycladaceans, and red algae as well as 
abundant non-skeletal carbonates and detrital quartz.

The allochems in the oolithic grainstones consist 
of superficial ooids with a radial microframe and 
coated grains, which are well rounded and sorted. The 
nuclei of the ooids are miliolid foraminifera, quartz 
fragments, and molluscan shells. Interstitial spaces of 
the components are filled by dog-tooth spar cement 
and blocky calcite cement. The uppermost 10 cm of the 
oosparite bank are bioturbated.

In the upper part of the section (from approximately 
15 m below unit u2 to the top) the faunal diversity 
increases comprising single individuals and clusters 
(4–5 specimens) of plagioptychids (Coralliochama 
sp.), non-rudist bivalves (e.g., Exogyra costata SAY, 
Pycnodonte mutabilis (MORTON), Lopha sp., Trigonia 
sp., Pholadomya sp., Cardium sp.), and gastropods 
(actaeonellids, turritellids). The sandstones are inter-
layered with 5 cm to 5 m thick beds of sandy marls and 
one algal packstone bed containing dasycladaceans, 
miliolid foraminifera, and detrital quartz. Between 
units u2 and u4 the sandstone layers are approximately 
5–10 cm thick and interlayered with thin-bedded 
(5–10 cm) sandy marls. Molluscan fragments, benthic 
foraminifera (orbitoids, miliolids), and dasycladaceans 
were observed in the sandstones. In the uppermost marl 
layers abundant ornamented ostracods were found.

4. RUDISTS AND CORALS OF 
THE CARDENAS FORMATION

Since BÖSE (1906) documented rudist species of 
the Cardenas Formation in his monograph, they have 
been the object of numerous articles (e.g., BÖSE & 

Fig. 3  Palaeogeography of the Gulf of Mexico in the Late Creta-
ceous (modified after PINDELL et al., 1988, and SOHL et al., 
1991). The mixed clastic–carbonate sediments of the Cardenas 
Formation and the marls of the Mendez Formation were depos-
ited in the foreland basin east of the Sierra Madre Oriental. In 
southern Mexico the rudist-bearing Yucatan carbonate platform 
developed. 

Fig. 4  Explanation of lithological 
and fossil symbols used in the 
following Figures (Figs. 5–8, 
10, 11). 
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CAVINS, 1927; MYERS, 1968; MUELLERRIED, 
1930; ALENCASTER et al., 1999; SCHAFHAUSER 
et al., 2002). In addition, they are also well-known from 
the Caribbean region (CHUBB, 1971; MITCHELL, 

2002; STEUBER, 2002; STEUBER et al., 2002) as 
well as from coeval sediments of Chiapas in southern 
Mexico (ALENCASTER, 1971) and the Yucatan 
carbonate platform in Guatemala (SCOTT, 1995; 
STEUBER, 2002). Their taxonomy was described 
in detail by many authors, including BÖSE (1906), 
MYERS (1968), and ALENCASTER (1971). In 
contrast, the coral fauna of the Cardenas Fm. is nearly 
unknown. A list of all coral species collected during this 
field work from several outcrops of the upper member 
of the Cardenas Fm. is presented in Table 1. 

5. RUDIST ASSOCIATIONS WITHIN 
THE CARDENAS FORMATION

One layer comprising individuals or clusters of radio-
litids (r1) and 23 coral–rudist reefs (r2–r24) is exposed 
in the investigated section of the Cardenas Formation 
(Figs. 6–8, 10). The reefs are concentrated in 5 lime-
stone units (Fig. 6): unit u1 encompasses radiolitid 
assemblage r1 and coral–rudist reef r2 (Fig. 7), unit u2 
reefs r3 and r4 (Fig. 8), unit u3 reefs r5–r8 (Fig. 8), unit 
u4 reefs r9–r15 (Fig. 8), and unit u5 reefs r16–r24 (Fig. 
10). In general, the number of units and their thickness 
increase towards the top of the section (Fig. 6). Within 
each unit, reef-thickness ranges from 0.5 to 2 m. 
Towards the tops of units u3, u4, and u5 reef thicknesses 
decrease gradually. The reefs are separated by marls, 
sandy marls or fine-grained sandstones. Generally, the 
unsorted bioclasts and the well preserved fossils in the 
reef limestones indicate autochthonous embedding of 
the coral–rudist reefs. In the following description we 
group rudist and coral–rudist associations of similar 
character and distinguish four different types: radiolitid 
assemblages, mixed coral–rudist reefs, coral-dominated 
reefs, and hippuritid-dominated reefs.

Fig. 5  Schematic illustration of lithology, lithostratigraphic units 
and faunal content of the Cardenas Formation as described by 
MYERS (1968) (for explanations of symbols see Fig. 4).

Dictuophyllia conferticostata (VAUGHAN,1899)
Cladocora jamaicaensis VAUGHAN, 1899
Cladocora gracilis (D’ORBIGNY, 1850)
Antiguastrea cellulosa (DUNCAN, 1863)
Multicolumnastraea cyathiformis (DUNCAN, 1865)
Placocoenia major FELIX, 1903
Siderastrea vancouverensis VAUGHAN, 1923
Siderastrea adkinsi (WELLS, 1934)
Actinhelia elegans (GOLDFUSS, 1826)
Meandrophyllia oceani (FROMENTEL, 1873)
Dermosmiliopsis orbignyi ALLOITEAU, 1952
Trochoseris catadupensis VAUGHAN, 1899
Cyathoseris formosa D’ACHIARDI, 1875
Actinacis parvistella OPPENHEIM, 1930
Actinacis haueri REUSS, 1854
Goniopora sp.

Table 1  Coral species collected from the upper member of the 
Cardenas Formation.
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5.1. Radiolitid assemblages

In the investigated section the lowermost rudist-bearing 
bed (r1) is approximately 1 m thick and contains single 
specimens or clusters of small radiolitids, which reach 
maximum heights of approximately 5 cm (Fig. 7). The 
sediment consists of a radiolitid floatstone with pack-
stone matrix that contains rare benthic foraminifera 
(rotaliidae, miliolidae), coralline algae as well as 
fragments of echinoderms. The bioclasts are unsorted 
and angular, suggesting only minor current energy. 
Rudists are not in life position, but parautochthonous 
embedding is suggested by the low degree of shell 
fragmentation.

5.2. Coral–rudist reefs

The majority of the reefs in the Cardenas Formation 
are mixed coral–rudist reefs (r2–r4, r6, r7, r10–r14) 
(Figs. 7–8). Their thickness ranges from 0.5 to 2 m. 
Upsection, in units u3 and u4, the reefs continuously 
decrease in thickness. Reefs r3 and r4 are laterally 
exposed. They are lens-shaped biostromes and reach 
lateral extensions of approximately 14 m. Within the 
units the reefs are separated by marls, sandy marls or 
fine-grained sandstones. The latter contain abundant 
actaeonellid gastropods. In unit u3 plagioptychids are 
also very common.

Generally, this reef-type contains a diverse coral–
rudist fauna. The rudists are dominated by radiolitids 
(T. floriformis, Bournonia cardenasensis (BÖSE), 
Biradiolites sp.) and plagioptychids (Coralliochama 
gboehmi BÖSE, Coralliochama sp.), but hippuritids 
(Hippurites muellerriedi TRECHMANN, Hippurites 
ceibarum MUELLERRIED) were also observed, which 
occur in thickets of more than 10 species. The radiolitid 
Tampsia and plagioptychid Coralliochama reach maxi-
mum heights of approximately 40 cm. Hippuritids are 
up to 15 cm in height. The coral fauna encompasses 
columnar, massive, and encrusting growth-forms. 
Species comprise abundant Multicolumnastraea cya-
thiformis as well as Siderastrea adkinsi, Actinhelia ele-
gans, Cladocora gracilis, Dictuophyllia conferticostata, 
Dermosmiliopsis orbignyi, Placocoenia major, Acti-
nacis parvistella, and Actinacis haueri. In reef r2 a 
large number of Neithea, a non-rudist bivalve, settled 
onto the corals. The reef fauna of the coral–rudist 
reefs is generally well preserved and appears in growth 
position. Only in reef r6 and on the top of r2 rudists and 
branched corals are reworked but still well preserved 
and unfragmented, thus indicating the absence of 
significant transport. Upsection from the reworked 
layer of r6, the prior reef fauna is reestablished. In thin 
sections coralline algae frequently encrust both rudists 
and corals, whereas hippuritid shells suffered strong 
bioerosion. 

Clinger morphotypes (SKELTON & GILI, 1991) 
of plagioptychids build the pioneer fauna at the base 
of reefs r3 and r4 (Fig. 9). They settled in scour marks 

Fig. 6  Lithologic succession and fossil content of the investigated 
section of the Cardenas Formation. The section contains 5 lime-
stone units illustrated separately in Figs. 7, 8, 10. The whole 
sedimentary succession is interpreted as a transgressive facies 
sequence that consists of 8 deepening-upward (D1–D8) and 4 
shallowing-upward (S1–S4) facies sequences (for explanation 
of symbols see Fig. 4).
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that are incised into the underlying sandstones and 
might have provided a stable substrate for the overlying 
reef-fauna. Reef sediment consists of coral–rudist 
rudstones with packstone and wackestone matrix that 
contains unsorted and angular fragments of rudists, 
corals, gastropods, and non-rudist bivalves as well 
as detrital quartz. Microfossil constituents comprise 
abundant dasycladaceans, ?gymnocodiaceans, and ben-
thic foraminifera (miliolids and rotaliids) as well as 
coralline algae and ostracods with articulated valves. 
In addition, rodoliths are abundant components in the 
packstones and wackestones of reef r2 and present 
nuclei of radiolitid and plagioptychid fragments. 

5.3. Coral-dominated reefs

The reefs r17–r24 in the uppermost section (unit u5) are 
dominated by corals (Fig. 10). Upsection, reef-thickness 
decreases from 1–2 m at the base to 15–40 cm at the 
top. The 9 reefs are separated by layers of marls, which 
are 1–25 cm in thickness.

The number and diversity of rudists in coral-domi-
nated reefs is considerably lower than in the underlying 
coral–rudist reefs (r1–r16). The rudist fauna consists of 
radiolitids (Biradiolites sp.), plagioptychids, and sparse 
hippuritids (e.g., H. ?perkinsi). Rudists are small and 
reach up to 10 cm in height. Although the diversity of 
corals is very low, they are the main reef builders. The 
coral fauna is conspicuously dominated by columnar 

and ramose growth forms of the species M. cyathiformis 
and D. conferticostata, but massive growth forms of the 
species A. cellulosa also occur. Numerous specimens 
of Neithea were found on top of the corals and are 
characteristic components of the coral-dominated reefs.

The matrix of the reef bafflestone consists of pack-
stone with abundant miliolid foraminifera, dasyclada-
ceans, and rare fragments of gastropods. Abundant 
ostracods and miliolid foraminifera were found in the 
interlayered marls.

5.4. Hippuritid-dominated reefs

Reefs r5, r8, r9, r15 and r16 (Figs. 8, 10) are between 
20 cm and 1 m thick and characterized by the abun-
dance of hippuritids and the absence of radiolitids. 
10–15 cm thick marl and sandstone layers separate 
these hippuritid-dominated reefs from coral–rudist or 
coral-dominated reefs (Figs. 8, 10). The sandstones 
upsection from reef r5 and below reef r8 contain 
abundant actaeonellids (Fig. 8), whereas a 10 cm thick 
marl layer overlies reef r16 (Fig. 10).

Except for the absence of radiolitids the faunal 
composition is similar to the coral–rudist reefs. The 
rudist fauna is exclusively composed of hippuritids 
(H. ceibarum, Hippurites sp.) and plagioptychids 
whereas coral species are generally the same as in the 
coral–rudist reefs. Reef sediment is also similar to the 

Fig. 7  Detailed illustration of limestone unit u1 (see also Fig. 6). 
The section contains 1 radiolitid assemblage (r1) and 1 mixed 
coral–rudist reef (r2). The sedimentary succession includes 1 
deepening-upward (D1) and 1 shallowing-upward sequence 
(S1) that are also illustrated in Fig. 6 (for explanation of symbols 
see Fig. 4).

Fig. 8  Detailed illustration of units u2–u4, (see also Fig. 6). The 3 
units contain 9 coral–rudist reefs (r3, r4, r6, r7, r10, r11, r12, 
r13 and r14) and 4 hippuritid-dominated reefs (r5, r8, r9 and 
r15), and include 3 deepening-upward (D4–6) and 2 shallowing-
upward (S2, S3) sequences that are also illustrated in Fig. 6 (for 
explanation of symbols see Fig. 4).
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coral–rudist reefs, except for the absence of coralline 
algae and ostracods.

6. DEPOSITIONAL ENVIRONMENT 
OF THE CARDENAS FORMATION

Rudist and coral–rudist associations of the Cardenas 
Formation developed in areas of low water energy and 
on soft substrates, indicated by low fragmentation of 
the fauna and by the angular and unsorted bioclasts 
in the wackestones and packstones. The abundance of 
dasycladacean algae and miliolid foraminifera in the 
sediments suggest rudist and coral growth in lagoonal 
environments. High-energy events produced reworked 
layers of rudists and corals (e.g., r2, r6, r17; Figs. 7, 8, 
10).

In the lower part of the section, a high input of 
terrigenous clastic sediments is indicated by the abun-
dance of sandstone units which prevented the deve-
lopment of extended reefs. Only clusters of small 
radiolitids developed and corals are completely absent. 
Moreover, the radiolitid-bearing sandstone units below 
the radiolitid assemblage r1 are also devoid of coral 
fragments. Radiolitids might have been able to sustain 
changes in water chemistry, salinity, and aerial exposure 
(KAUFFMAN & SOHL, 1973), thus indicating a near-
shore environment for these assemblages, possibly 
in the upper subtidal area of restricted lagoons. This 
theory is also supported by the presence of laminated 
and cross-bedded sandstones below these units which 
are interpreted as shoreface zone deposits (TUCKER, 
1990a). 

In the upper part of the section the decreasing 
number of sandstone units indicates less influence 
of clastic sediments resulting in the development 
of abundant diverse mixed coral–rudist reefs (Figs. 
6, 8). The diverse coral fauna indicates stenohaline 
conditions and deeper waters than is suggested by the 
radiolitid assemblage below. Nevertheless, the mixed 

coral–rudist and coral-dominated reefs developed in 
shallow water environments or even in open lagoons, 
which is indicated by the presence of abundant miliolid 
foraminifera and dasycladacean algae. In the coral-
dominated reefs, the absence of detrital quartz and the 
predominance of columnar and ramose corals indicate 
low water energy (CHAPPELL, 1980) and reef growth 
in sheltered lagoonal areas, which were not influenced 
by the input of clastic sediments (GÖTZ, 2001).

In the hippuritid-dominated reefs (r5, r8, r9, 
r15, r16; Figs. 7–8, 10) the absence of ostracods and 
radiolitids suggests that this reef type reflects the 
deepest environments of all reefs in the investigated 
section. They correspond to the hippuritid reefs descri-
bed from the mixed siliciclastic–carbonate units of the 
Gosau basin in Austria, where hippuritid-dominated 
reefs grew on the inner shelf (SANDERS & BARON-
SZABO, 1997; SANDERS & PONS, 1999). Also, on 
the Turonian–Upper Santonian Adriatic Carbonate 
Platform hippuritid reefs occur in the deeper parts of 
the outer platform (MORO, 1997). The actaeonellid-
bearing sandstones that are intercalated with the 
hippuritid-dominated reefs and the mixed coral–rudist 

Fig. 9  Clinger morphotypes (SKELTON & GILI, 1991) of plagiopty-
chids build the pioneer fauna at the base of reef r3. They settled 
in scour marks that are incised into the underlying sandstone 
units.

Fig. 10  Detailed illustration of limestone unit u5 (see also Fig. 6). 
The unit contains 8 coral–rudist reefs (r17–r24) and 1 hippuritid-
dominated reef (r16) and includes 1 deepening-upward (D8) 
and 1 shallowing-upward (S4) sequence that are also illustrated 
in Fig. 6 (for explanation of symbols see Fig. 4).
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reefs might represent mobile sand bodies that separated 
the lagoonal from inner shelf environments (SANDERS 
& PONS, 1999). 

In the Cardenas Fm. plagioptychid rudists are 
not restricted to reefal limestones. They occur in life 
position with a diverse molluscan fauna in marls and 
sandstones. The clinger plagioptychids, Coralliochama, 
form a pioneer fauna at the base of the coral–rudist 
reefs r3 and r4 in scour marks that are incised into 
the underlying clastic units. Plagioptychids also 
occur within mixed coral–rudist, coral-dominated, 
and hippuritid reefs. However, radiolitid-assemblages 
are devoid of plagioptychids. This indicates that 
plagioptychids tolerated input of terrigenous clastic 
sediment into their habitat, but on the other hand they 
were probably less tolerant to changes in salinity and 
temperature.

7. FACIES DEVELOPMENT WITHIN 
THE SECTION

Environments of rudist- and coral–rudist associations 
are similar in the investigated section, but allow 
definition of 8 deepening (D1–D8) and 4 shallowing-
upward sequences (S1–S4) (Fig. 6). Reef thickness 
decreases in transgressive intervals and increases in 
regressive sequences (Figs. 8, 10). We grouped these 
facies sequences in 4 idealized sedimentary cycles, 
comprising 2 deepening- and 2 shallowing-upward 
cycles (Fig. 11). In the section most of the cycles are 
incomplete. Unfortunately, the composition of these 
idealized cycles is obscured by sandstone units (e.g., 
D3, D7 – Fig. 6). The sand derived from the uplifting 
Sierra Madre Oriental to the west and was episodically 
transported into the Cardenas area, where these beds are 
superimposed on the cyclic background sedimentation.

The first idealized deepening-upward cycle (Fig. 
11a) consists of basal cross-bedded and laminated 
calclithites of the shoreface which pass into lagoonal 
radiolitid assemblages, that are in turn overlain by 
oolithic grainstones. The well-rounded and sorted ooids 
indicate shallow water depths and form oolite bars that 
were deposited seaward of the lagoons on the inner 
shelf (TUCKER, 1990b, c). This cycle type occurs in 
the lowermost part of the section and is represented by 
facies sequences D1 and D2 (Fig. 6). The sequences 
are separated from the following cycles by bioturbated 
horizons. 

The second type of deepening-upward cycle (Fig. 
11b) is represented by facies sequences D3–8 (Figs. 6, 
8, 10) and comprise cross-bedded shoreface calclithites 
which pass into lagoonal marls or limestones, which 
contain miliolid foraminifera and dasycladacean algae. 
Upsection they are overlain by coral–rudist associations 
(coral–rudist, coral-dominated or hippuritid-dominated 
reefs) passing into thin bedded marls and sandstones, 
which are rich in gastropods (turritellids), plagiopty-

chids (Coralliochama sp.), and non-rudist bivalves. 
Our interpretation is that these interlayered marls and 
sandstones represent the deepest part of the depositional 
area and were deposited on the inner shelf indicated by 
the diverse molluscan fauna, sparse miliolid foramini-
fera, and the absence of calcareous algae. 

The abundance of sandstones makes interpretation 
of facies sequence D3 difficult. Limestones containing 
rudist fragments, miliolid foraminifera, and dasycla-
dacean algae are interpreted as the talus of rudist 
dominated lagoonal assemblages. The diverse fauna 
in the uppermost part of the sequence is similar to the 
inner shelf fauna described above from the deepening-

Fig. 11  Idealized sedimentary cycles observed in the investigated 
section (Fig. 6). Frequently, however, these cycles are incom-
pletely developed and obscured by sandstone units (see text). 
In the right column, facies are marked that occur in the deepen-
ing- and shallowing-upward sequences of the investigated sec-
tion (for explanation of symbols see Fig. 4).
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upward cycle (Fig. 11b). The lack of coral-rudist reefs 
may be due to the high input of clastic sediments, 
which was indeed tolerated by the inner shelf fauna 
comprising gastropods, plagioptychids, and non-rudist 
bivalves. Therefore, we interpret this sequence as a 
transgressive succession, which passes from lagoonal to 
inner shelf environments like the idealized deepening-
upward cycle of Fig. 11b.

At its base, the first idealized type of shallowing-
upward cycle (Fig. 11c) consists of hippuritid-domi-
nated reefs from the inner shelf, which are overlain 
by actaeonellid sand bar deposits. Upsection mixed 
coral–rudist reefs of the inner lagoon follow. 

The second type of shallowing-upward cycle (Fig. 
11d) occurs only in the uppermost rudist unit u5 (Figs. 
6, 10) and differs from the shallowing-upward cycle 
described above by the lack of sand bar deposits. 
Coral-dominated reefs grew in sheltered areas with less 
sediment input (see chapter 6): actaeonellid-bearing 
sand bar deposits are replaced by marls. 

Shallowing-upward cycles commonly terminate in 
layers containing reworked reef fauna (S2, S4; Figs. 8, 
10). We interpret these reworked layers as having been 
derived from reefs situated above the storm wave base, 
which were therefore subject to erosion. 

The investigated section of the Cardenas Fm. 
consists of interlayered fine-grained sandstones, marls, 
and limestones. In the lower part of the section, sedi-
ments of the shoreface and lagoonal sediments are 
predominant and are represented by cross-bedded and 
laminated sandstones, and radiolitid assemblages. In 
the upper part of the section the number of sandstone 
units decrease, whereas limestone units are abundant. 
In addition, units of marl layers occur, which contain 
a diverse inner shelf fauna, indicating a general 
deepening-upward trend from the base of the section 
towards the top. Such transgressive phases together 
with the low sediment input permitted the development 
of the diverse coral–rudist reefs in the Cardenas area.

8. CONCLUSIONS

The investigated section of the upper Cardenas 
Formation is of Maastrichtian age and comprises a 
transgressive sequence that consists of sandstones, 
marls, and limestones. The limestone units contain 
4 types of rudist and coral–rudist associations. 
Radiolitid assemblages were deposited in restricted 
lagoons. Mixed coral–rudist and coral-dominated reefs 
developed in open stenohaline lagoons. Reefs domi-
nated by corals are indicative of sheltered areas with 
less input of clastic sediments. Hippuritid-dominated 
reefs grew seaward of the lagoons on the inner shelf. 
Only plagioptychids occur in both the coral–rudist 
associations and the clastic sediments of the outer 
shelf, but are absent in the radiolitid assemblages of 
restricted lagoons. Plagioptychids were able to live in 

environments strongly influenced by changing sediment 
input, but were probably less tolerant to salinity or 
temperature changes of the seawater. 

The investigated transgressive sequence encom-
passes several deepening- and shallowing-upward 
facies sequences, which can be grouped in idealized 
types of deepening- and shallowing-upward cycles. 
The deepening-upward cycles pass from cross-bedded 
sandstones of the shoreface into calcareous algal or 
radiolitid dominated limestones and marls of restricted 
lagoons. They are in turn overlain by lagoonal 
coral–rudist associations and marls of the outer shelf 
containing diverse molluscan assemblages (gastropods, 
plagioptychids and non-rudist bivalves). 

The shallowing-upward cycles consist of basal 
hippuritid-dominated reefs that pass into actaeonellid 
sand bar deposits or marls, which are overlain by coral–
rudist reefs.

This cyclic background sedimentation was obscured 
by the episodic input of clastic sediments derived 
from the uplifting Sierra Madre Oriental to the west. 
This sediment input decreases in the upper part of 
the transgressive sequence, resulting in an increasing 
number of coral–rudist reefs. So rudist reefs of the 
Cardenas Formation flourished in times of low sediment 
input during transgressive phases. 
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