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Construction of D-Graphs Related to
Periodic Tilings

Konstrukcija D-grafova kod periodǐckih poploča-
vanja

SAŽETAK

U radu je dan algoritam koji teoretski omogućuje izvod-enje
metoda za klasifikaciju periodičkih popločavanja u svakoj
dimenziju. Pomoću toga se može provjeriti raniji rezulatat
dan u radu (e. g. [BM98, BM00]). Primjenom algoritma
prikazana je potpuna klasifikacija neizomorfnih trodimen-
zionalnih D−grafova s 5 elemenata.

Ključne riječi: Delaney-Dress simbol, popločavanje u
n-dimenzijama

Construction of D-Graphs Related to Periodic
Tilings

ABSTRACT

This paper presents an algorithm which allows to derive
classification methods concerning periodic tilings in any di-
mension, theoretically. By the help of this, one can check
former results of the topic (e. g. [BM98, BM00]). An
implementation of the algorithm yields the complete enu-
meration of non-isomorphic three-dimensional D−graphs
with 5 elements, given as illustration.
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1 Introduction

The paper contains the description of an algorithm by
which one can solve combinatorial classification prob-
lems for tilings in any dimension. The method is based
on the well-known concept of Delaney-Dress symbol (or
D−symbol, shortly, suggested by E. Moln´ar). This is noth-
ing but a concise representation of the combinatorics and
periodicity of a tiling. The symbol consists of a colored
graph (D−graph) and a matrix function. The theory has
been elaborated for the 2-dimensional case in more de-
tails (see e. g. [DS84], [DHZ92], [Hus93], [BH96]), how-
ever, beside results ([DHM93], [Mol96], [Del95], to name
a few) there are a lot of open questions in higher dimen-
sions.

In the following we shall briefly recall the points that are
necessary to understand the algorithm. Helping the visual
imagination we parallelly work out a spatial example.

Assume that a groupΓ acts from the right discretely on
a d−dimensional, simply connected manifoldX d in such
a way that one can find aΓ−equivariant cell decompo-
sition. That is, if we denote the set of cells byT , then
T = T γ := {Aγ : A∈ T } holds for allγ∈ Γ. The elements

of T are the so-calledcells. Every point ofX d belongs
to at least one tile and no two tiles have an inner point in
common. The points ofXd, belonging to exactly two tiles,
constitute the(d−1)-hyperfaces, orfacetsof T . By inter-
sections we consequently define(d−2)-faces,. . . , r-faces,
. . . , 1-faces oredges, then 0-faces orvertices, as usual for
compact (topological)d-politopes. The above pair(T ,Γ)
is calledequivariant tiling. In our examinations thesym-
metry groupΓ contains at leastd independent translations,
so it is alwaysperiodic.

Two tilings (T ,Γ) and (T ′,Γ′), will be considered equiv-
alent if they are topologically equivariant (homeomeric).
It means that there exists a homeomorphismψ that maps
T onto T ′ preserving all incidences of tiles,r-faces
(0≤ r ≤ d−1) such thatψ−1Γψ = Γ′.

Our Fig. 1 shows a periodic tiling of regular tetrahedra and
octahedra filling the Euclidean 3-space. The construction
can be derived from a particioned cube by reflecting it in
each of its faces, step by step. (See Fig. 2.) “Melting” tiles
together we may get octahedra from 8 corner tetrahedra. It
is easy to see that the (periodic) space groupFm3̄m=: Γ
acts on the tiles forming the pair (T ,Γ) to be equivariant.
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We can speak about the vertices, edges and faces of the
tetrahedra and octahedra in a usual sense.
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Fig. 1 The tiling can be constructed as follows. Take
first 8 regular tetrahedra in the position illustrated
above. Then extend the configuration with reflec-
tions on the planesA1A2O,B1B2O, the bisector
plane of the segmentA1A2 and the planes deter-
mined by the squares around. Finally we get a
tiling with regular tetrahedra and octahedra.

Fig. 2 Take a cube and a tetrahedron in it. In order to
get the tiling reflect the bodies in the faces of the
cube. The octahedra are divided into 8 smaller
simplices.

Now we define theformal barycentric subdivisionof T
in the usual way: For everyr−dimensional constituent
of T (r = 0, . . . ,d) we choose an interior point, called
r-center ofT (r = 0, . . . ,d). Consider a fixed tile, one of
its (d− 1)-faces; an incident(d− 2)-face, . . . , finally an
incident vertex. These(d+1) centers form the vertices of
a d−dimensional simplex. Other sequence ofr−centers
leads to other simplex in the tile. Using the method for
every tile we finally get the barycentric subdivision made
up by simplices calledchambers. The chamber-system is
denoted byC . Every chamber has ani-faceopposite to its

i−vertex (i ∈ I := {0, . . . ,d}). It is obvious that for every
chamberC1 ∈ C there exists exactly one chamberC2 such
that theiri−face is common. In this case we say thatC1 and
C2 arei−adjacentor i−neighbors. These adjacencies im-
ply the so-calledadjacency operationsσ i for i = 0, . . . ,d:

σi : C → C , C �→ σiC

that maps everyC∈ C onto itsi-neighbor.

The adjacency operations form a free Coxeter group:

ΣI := 〈σi
∣∣1 = σiσi = σ2

i : i = 0, . . . ,d〉
that acts transitively from the left onC , if Γ acts from the
right, by our convention.

Our Fig. 3 illustrates how the barycentric subdivision can
be built up from the given tiling. As an interior point
of an r−face we have chosen the midpoint for every
r ∈ {0,1,2,3}.
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Fig. 3 Take the centers of the two solids (O1 andO2), the
centers of two faces (T1 andT2), the midpoints of
edges (M1 andM2) and two vertices in common
(C,D). The barycentric simplices areO2T1M2C,
O1T1M2C, O1T2M2C, O1T2M1C, O1T2M1D, num-
bered as 1, 2, 3, 4, 5, respectively, in Fig. 5.
O2M2CD is the fundamental domain ofFm3̄m.

Note that the chamber systemC can always be constructed
in a way compatible with the action ofΓ on T , and sup-
pose in the following that this is the case. Take a chamber
C∈ C and form itsorbit by Γ:

CΓ := {Cγ : γ∈ Γ} .

Our Fig. 4 a−d try to visualize the different simplex orbits
by equally coloring theΓ−equivalent chambers. To avoid
any confusion we restrict our attention just to a small part
of the tiling.

22



KoG•6–2002 A. Bölcskei, M. Szél-Koponyás: Construction ofD-Graphs Related to Periodic Tilings

4a

4b

4c

4 d

Fig. 4 Take first the 5 simplices above and let actFm3̄m
on them. The polyhedra which can be mapped
onto each other are colored in the same way. Step
by step we have filled the cube. By reflections we
can develop the tiling further.

Fig. 3 shows a polyhedronO2M2CD containing barycen-
tric simplices of each kind. This reflection simplex
O2M2CD can serve as a fundamental domain forΓ. By
the so-called Poincare-algorithm one can confirm that the
corresponding symmetry group is justFm3̄m (for more de-
tails, see e. g. [Mol83]).

Let D := C/Γ be the set of different chamber orbits under
Γ and letDk be any orbit (1≤ k≤ n, nown= 5). Anyγ∈ Γ
mapsi-neighbors ontoi-neighbors, hence the operationsσ i

commute withΓ onC , for anyi. Thus we can introduce the
concept ofi-adjacencies of Dk’s: Dj andDk arei-adjacent
or i-neighbor iff for anyCj ∈ Dj there existsCk ∈ Dk such
thatCk = σiCj holds.

The setD and the mappingsσi define a finite, connected,
(d+1)-colored graph in which the nodes refer to the orbits
and two nodes are linked by ani-colored edge (i = 0, . . . ,d)
if the corresponding orbits arei-neighbors. Such a graph
is called aDelaney-Dress graph (diagram)or shortlyD-
graph. Of course,D = σiD is also possible, in this case we
get ani−loop.

In Fig. 5, where the loops are not indicated, we can see the
D−graph of our spatial example from which the Reader
may identify the correspondence between colors and num-
berings.
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Fig. 5 TheD-graph of our example. The loops are not
indicated. The colors and numbers are in corre-
spondence with the numbers of matrices and with
Fig. 4.

For shortDk will simply be denoted byk,(k = 1,2, . . . ,5)
in the following.

Let us introduce a matrix function(mi j ) : D → NI×I in the
following way. For anyD ∈ D let

mi j (D) := min
{

m
∣∣(σ jσi)mC = C, C∈ D ⊂ C

}
,

(0≤ i ≤ j ≤ d).

It is easy to see that in a tiling this function has the proper-
ties 1-5:

1. mii (D) = 1;

2. mi j (D) = mji (D);

3. mi j (D) = mi j (σiD) = mi j (σ j D);

4. mi j (D) = 2, if |i − j|> 1;

5. mi j (D) > 2, if |i − j|= 1 in the usual tilings.
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Here we give the matrix functionm in our example:

m(1) = m(2) = m(3) =




1 3 2 2
3 1 3 2
2 3 1 6
2 2 6 1


 ,

m(4) = m(5) =




1 3 2 2
3 1 3 2
2 3 1 4
2 2 4 1


 .

A pair (D;m), consisting of a finite, connected, colored

D-graph and the matrix function fulfilling the properties

1-5, is called ad-dimensional Delaney-Dress symbol, or

shortlyD-symbol.

Two D-symbols(D;m), (D ′;m′) are calledisomorphicif

there exists a bijectionπ : D → D ′ such thatσk (Dπ) =
(σkD)π moreover,m′

i j (D
π) = mi j (D) hold for anyD ∈ D,

0≤ k≤ d, 0≤ i ≤ j ≤ d.

The following basic lemma provides the advantages of

D-symbols concerning classification problems :

Lemma 1 Two tilings (T ,Γ) and (T ′,Γ′) are equivari-

antly equivalent (homeomeric, or lying in the same home-

omorphism equivariance class), if and only if the corre-

sponding D-symbols(D;m)and (D ′;m′) are isomorphic.

[Dre87]

Analogously as before, we can introduce other important

matrix functionsr andv:

r : D → NI×I ri j (D) := min
{

r : (σ jσi)r D = D
}

for anyD ∈ D, (0≤ i ≤ j ≤ d); and

v : D → NI×I vi j (D) := mi j (D)/ri j (D),

where the above division is meant for the elements of ma-

trices.

These functions have the following values in our example

(Fig. 5).

r(1) =




1 1 1 2
1 1 1 2
1 1 1 3
2 2 3 1


 , r(2) =




1 1 2 2
1 1 3 2
2 3 1 3
2 2 3 1


 ,

r(3) =




1 3 2 1
3 1 3 2
2 3 1 3
1 2 3 1


 , r(4) =




1 3 2 2
3 1 3 2
2 3 1 1
2 2 1 1


 ,

r(5) =




1 3 2 2
3 1 1 1
2 1 1 1
2 1 1 1


 ;

v(1) =




1 3 2 1
3 1 3 1
2 3 1 2
1 1 2 1


 , v(2) =




1 3 1 1
3 1 1 1
1 1 1 2
1 1 2 1


 ,

v(3) =




1 1 1 2
1 1 1 1
1 1 1 2
2 1 2 1


 , v(4) =




1 1 1 1
1 1 1 1
1 1 1 4
1 1 4 1


 ,

v(5) =




1 1 1 1
1 1 3 2
1 3 1 4
1 2 4 1


 .

It is easy to see thatr andv have the properties 1-3 of the
matrix functionm, as well. We emphasize that 4 and 5 do
not necessarily hold butr i j has to be the divisor ofmi j . Par-
ticularly, ri j (D) = 1 or 2, if |i − j| > 1. This observation
has a basic role in the following algorithm and results in
theorems 1 and 2.

2 An algorithm for creating D-graphs

The point of this section is to describe an algorithm by
that we can deriveD-graphs for any number of nodes in
any dimension. On the one hand the method provides us
checking previously published results ([BM98, BM00] -
made by hands, in a different way), on the other hand we
get new results given at the end of the paper.

In order to constructD-graphs firstly we describe them
algebraically. Let be given aD-graph. Suppose that the
nodes have already been numbered. Any adjacency oper-
ation (or, the set ofi-colored edges of the graph) refers to
an involutive permutation. Thisi−permutation will be en-
coded by a sequence ofn :=

∣∣D∣∣ numbers as follows: the
j-th number forσi expresses the number of the node with
whom the node numberj is i−adjacent, i. e. is linked by an
i−colored edge. Letan denote the number of all involutive
permutations ofn elements.
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For calculation ofan we have the formulas:

a0 = 1,a1 = 1,a2 = 2

and forn≥ 3:

an = an−1+(n−1)an−2, i. e.

an = 1+
n

∑
k=1

(2n)(2n−1) . . .(2n− [2k−1])
2kk!

.

The complexity ofan is at mostO(n
n
2 ).

Proof Pick out a node. If it is adjacent to itself (loop),
then we havean−1 permutations. If it is adjacent to
any other node, then we havean−2 permuatations for the
(n−1) possibilities each. The second formula comes from
combinatorics easily.

Now we give rough estimates foran.

an = an−1+(n−1)an−2

= an−2+(n−2)an−3+(n−1)an−2

= nan−2+(n−2)an−3

nan−2 < an < n(an−2 +an−3) < 2nan−2.

If n is odd (n= 2t +1), then

a2t+1 > (2t +1)a2t−1 > .. .

· · · > (2t +1)(2t−1) . . .

1︷︸︸︷
a1 =

(2t +1)!
2t t!

,

and analogously

2t(2t +1)!
2tt!

> a2t+1.

If n is even (n= 2t), then

a2t > 2ta2t−2 > · · · > 2t(2t−2) . . .
2︷︸︸︷
a2 = 2tt!,

and

22t−1t! > a2t , respectively.

By the Stirling-formula
(
t! ≈ ( t

e)
t
√

2πt)
)

we get:

(2t +1)2t+1

ttet+1

√
2t +1

t
> a2t+1 >

(2t +1)2t+1

(2t)tet+1

√
2t +1

t
,

and(
4t
e

)t √πt
2

> a2t >

(
2t
e

)t √πt
2

.

From these estimates we see thatan = O(n
n
2 ), indeed.

Remark The above calculations give us just a rough
asymptotics foran. There are several conjectures of
E. Makai concerning this problem. In his opinion

an =
n

n
2

e
n
2

e
√

n+o(1) or, even betteran ≈ c
n

n
2

e
n
2

e
√

n√n.

Here we sketch the main steps of our algorithm. In this ap-
proach the candidates of aD-graph are represented as or-
dered(d+1)-tuples of involutive permutations. The num-
ber of entries depends on the dimensiond of the tiling.
Having all the possible(d + 1)-tuples we exclude those
ones which do not provide connectedD-graph, and for
which the propertyr i j (D) = 1 or 2 does not hold. Since
many different(d + 1)-tuple can describe the same graph
(according to the numberings) at the end we have to choose
representants. More precisely the algoritm will be the fol-
lowing.

ALGORITHM

Assume that theD-graph to be constructed hasn nodes and
dimensiond, i. e.d+1 colors.

• Construct first thean involutive permutations for a
given fixed numbering and order them (e. g. lexico-
graphically).

• Subsequently form ordered(d+1)-tuples of involu-
tive permutations in such a way that the(i + 1)-th
element of a(d+1)-tuple can not be less than the
i-th element according to the order above. (We do
not need the(d+1)-tuples as a set!) Therefore the
(d+1)-tuples themselves are ordered.

• Consider a(d+1)-tuple and decide whether it is
connected. If no, then step back and form the next
(d+1)-tuple. If yes, then step further.

• Take an element of the symmetric groupSn,
conjugate all the involutive permutations of the
(d+1)-tuple and order them. If this latter one is
less then the original(d+1)-tuple of permutations
(according to the ordering of(d+1)-tuples), then
continue from the previous item. If no then choose
another element ofSn, step by step. If no derived
(d+1)-tuple is less than the original one, then store
it and continue from the previous item. At the end
we have a set of(d+1)-tuples that will be called the
set of representants.
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• Choose a representant and permute all thed + 1
involutive permutations in it. In any case check
whether the square of the product of two permuta-
tions standing on thek-th and(k+2)-th places is the
identity. If this property holds for all the products,
we store the representant, otherwise continue with
another representant.

• Work with this subset of representants further and
adopt to them a procedure similar to that before two
items. However, there is a big difference, namely the
(d+1)-tuples are not ordered more. In this way one
have to compare the conjugate in question to each of
the stored(d+1)-tuples. Having used up all the el-
ements ofSn finally we get the representants of non-
isomorphicd-dimensionalD-graphs withn nodes.

Theorem 1 Using the ALGORITHM one can construct all
the non-isomorphic D-graphs with n nodes and of dimen-
sion d.

Proof Using lexicographic ordering for permutation
(d+1)-tuples (by that of the involutive permutations) we
could considerably reduce the number of cases to be
treated with. E. g. if all the involutive permutations of a
(d+1)-tuple are different, then it is enough to check the
connectedness of just one(d+1)-tuple instead of(d+1)!
ones. The involutive permutations are made inductively, as
in the proof of Lemma 2 above. The connectedness proce-
dure is the following.

Take the(d+1)-tuple in question. Consider the first num-
ber in every involutive permutation. Now we have the
numbers of those nodes with whom the first node is linked
at all. Take these new numbers (if they exist) and collect
the numbers from the involutive permutations which stand
on the places whose number is as much as these new num-
bers. Continue this procedure until new numbers appear. If
we get all the numbers, then the(d+1)-tuple is connected,
otherwise not.

However, since the numbers of the nodes were fixed, it
is possible that different(d+1)-tuples describe the same
graph. The fourth item of the algorithm provides us to
avoid this phenomenon. It is easy to see that each renum-
bering can be presented by a permutation fromSn. Conju-
gating the involutive permutations, we have another invo-
lutive ones, according to the change of numbering. Using
the fact that each graph has a a minimal(d+1)-tuple ac-
cording to the ordering, it is enough to find this minimal

one. At the end of the procedure we get the representants
of connected graphs of each kind.

Beside the advantages of the ordering of(d+1)-tuples
there is a huge disadvantage, too. That is, the adjacency
operations of a graph ought to be distinguished. It means
that we have to take into consideration any coloring of the
edges, any sequence of the(d+1) involutive permutations
of any representant.

Since the product of adjacencies refers algebraically to the
product of permutations we can apply the previously men-
tioned restriction (r i j (D) = 1 or 2, if |i − j| > 1) by com-
paring the square of any(d+1)-tuple with the identity.

Finally, since we fail the restriction of being ordered we
have to search for the representants, again.

In this way the proof of the algorithm is complete. We
mention that this relatively complicated structure of the al-
gorithm seems to be the most effective in practice.

The complexity of our algorithm is at mostO(nd n
2 ),

asymptotically.

We have implemented our algorithm to computer. We
found the earlier results of [BM98] and [BM00] correct.
As a new result we get the complete enumeration of the
3-dimensionalD-graphs with 5 barycentric simplex orbits.

Theorem 2 The number of non-isomorphic 3-dimensional
D-graphs with 5 simplex orbits is 33. The table below con-
tains the permutation description of them. (The permu-
tations refer to the adjacency operations in the following
order: σ0,σ1,σ2,σ3.)

12345,12345,13254,2143512345,13254,21435,12345
13254,21435,12345,1234512345,12354,21435,13245
12345,13245,21435,1235412354,21435,13245,12345
13245,21435,12354,1234512345,12354,21435,13254
12345,13254,21435,1235412354,21435,13254,12345
13254,21435,12354,1234512345,12354,42513,13254
12345,13254,42513,1235412354,42513,13254,12345
13254,42513,12354,1234512345,21435,12354,34125
21435,12354,34125,1234512345,13254,21435,13254
13254,21435,13254,1234512345,13254,21354,14523
12345,14523,21354,1325413254,21354,14523,12345
14523,21354,13254,1234512345,13254,21435,14523
13254,21435,14523,1234512354,12435,13245,21345
12354,12435,13254,2134521345,13254,12435,12354
12354,43215,21354,1324512354,45312,13245,21354
21354,13245,45312,1235412354,14523,21354,13254
13254,21354,14523,12354
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We mention that the introductory example of tiling of
regular octahedra and tetrahedra is just of the type
12354,12435,13245,21345 (No. 30 in the table) which
has Euclidean realization with the earlier described func-
tion m.

We hope that our algorithm can further be developed in
a reasonable way for more number of orbits or for higher
dimensions.
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tion äquivarianter Pflasterungen,Mitteilungen aus dem
Math. Seminar Giessen164 (1984), Coxeter-Festschrift

[Hus93] D. H. Huson: The generation and classification of
tile-k-transitive tilings of the Euclidean plane, the sphere
and hyperbolic plane,Geom. Dedicata47 (1993), 269–
296.

[Mol83] E. Molnár: KonvexeFundamentalpolyeder und
einfache D-V-Zellen f¨ur 29 Raumgruppen, die Coxetersche
Spiegelungsuntegruppen enthalten.Beitr. Algebra u. Ge-
ometrie14 (1983), 33–75.

[Mol96] E. Molnár: Discontinuous groups in homoge-
neous Riemannian spaces by classification ofD−symbols,
Publicationes Math. Debrecen49 (1996) 3-4, 265–294.

Attila Bölcskei

Dept. of Geometry, TU Budapest

H-1521 Budapest

e-mail: bolcskei@math.bme.hu

Mónika Szél-Koponyás,

Dept. of Geometry, TU Budapest

H-1521 Budapest

e-mail: mszel@freemail.hu

27


