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Metoda stvaranja pravčastih ploha i njihovih
modifikacija

SAŽETAK

U članku je dana netradicionalna metoda za definiranje
pravčastih ploha.Ta metoda omogućuje jednostavnu kon-
strukciju izvodnica pravčaste plohe prvenstveno pomoću
računala, a ne samo u klasičnom smislu. Opisana
je metoda za definiranje i konstrukciju poznatih ploha,
ali i za modeliranje novih. Uvedeni matematički opis
omogućuje stvaranje interaktivnog modeliranja ploha
pomoću računala i vrlo brzi dizajn plohe te projekcije
njezinih odabranih dijelova. Slike prikazuju računalne
grafičke izlaze.

Ključne riječi: pravčaste plohe, razvojne plohe, vitopere
plohe

A Method for Creating Ruled Surfaces and its
Modifications

ABSTRACT

The paper presents a non-traditional method for defining
ruled surfaces. This method enables a simple construc-
tion of the ruled surfaces generating lines, not only with
the classical means, but first of all with a computer. The
method for defining and constructing known surfaces and
also modelling of new surfaces is described here. The in-
troduced mathematical description enables creation of the
interactive modelling of surfaces by using a computer and
very quick surface design and projection of its arbitrary
segments. The pictures are presenting the graphical out-
put from a computer.

Key words: developable surface, ruled surface, skew sur-
face

MSC 2000: 65D17, 51N05, 51N20

1 Definition of a ruled surface and construc-
tion of generating lines

We will work in the Euclidean spaceE3 and in the vec-
tor spaceV (E3) with the Cartesian coordinates system
〈O,x1,x2,x3〉 .
Let these vector functions be set:

y1(x1) = (x1,0, f (x1)), x1 ∈ I1,

y2(x2) = (0,x2,g(x2)), x2 ∈ I2 . (1)

Let the real functionsf andg in (1) be continuous and dif-
ferentiable on the intervalsI1 andI2. These intervals can
contain many points for which derivative of the functions
f andg are improper. Vector functions (1) describe curves
k1 ⊂ x1x3 andk2 ⊂ x2x3 . We assume that these curvesk1

andk2 are not intersected (Fig. 1).
Let the curvem be defined by the vector function (2) in the
planex1x2

Fig. 1

x(t) = (x(t),y(t),0), t ∈ I, (2)

where for anyt ∈ I is x(t) ∈ I1, y(t) ∈ I2 and
dx(t)

dt
= x′(t)

is a non-zero vector.
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Now, we will construct the generating linep in this way
(Fig. 1):

a) We choose a pointM on the curvem and mark its or-
thogonal projections to the axesx1 andx2 asK1 and
L1 .

b) PointsK andL are points located on curvesk1 and
k2 respectively, whileK1 andL1 are their orthogonal
projections to the planex1x2 .

c) The linep joins the pointsK andL.

The line p is a generating line of the ruled surfaceϕ and
with this method we would construct next generating lines
of the surfaceϕ .

2 Parametric representation of the ruled
surface ϕ

We obtain the coordinates of the pointsK andL with the
substitution of (2) to (1). Then

K = [x(t),0,F(t)] and L = [0,y(t),G(t)],

whereF(t) = f (x(t)) andG(t) = g(y(t)) .
Let the generating linep be defined for example by the
centre

S =
[

x(t)
2

,
y(t)
2

,
F(t)+ G(t)

2

]

of the line segmentKL and by the direction vector

p(t) =
1
2

(x(t),−y(t),F(t)−G(t)) . (3)

Then the ruled surfaceϕ has the following parametric rep-
resentation:

x1 =
x(t)
2

(1+ u),

x2 =
y(t)
2

(1−u),

x3 =
F(t)+ G(t)

2
+ u

F(t)−G(t)
2

,

t ∈ I, u ∈ R . (4)

Example 1: The surface of an elliptic movement

The vector functions (1) are

y1(x1) = (x1,0,q1), x1 ∈ R,

y2(x2) = (0,x2,q2), x2 ∈ R , (5)

whereq1 andq2 are non-zero constants fromR , q1 �= q2 .

Curvesk1 andk2 are lines,k1‖x1 andk2‖x2 . Let the curve
m become a circle defined by the vector function

x(t) = (acost,asint,0), t ∈ 〈0,2π〉 . (6)

The surfaceϕ defined in this way has the following para-
metric representation according to equation (4):

x1 =
acost

2
(1+ u),

x2 =
asint

2
(1−u),

x3 =
q1 + q2

2
+ u

q1−q2

2
,

t ∈ 〈0,2π〉, u ∈ R . (7)

In Fig. 2a the curvesk1, k2 andm are shown.
In Fig. 2b a surface segment, which is called the surface of
an elliptic movement is shown.

Fig. 2a

Fig. 2b
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3 The section of the surface ϕ by the plane
x1x2

If the curvek3 is the section of the surfaceϕ by the plane
x1x2, (x3 = 0), then we get its parametric representation
from (4)

x1 =
G(t)x(t)

G(t)−F(t)
, x2 =

−F(t)y(t)
G(t)−F(t)

, x3 = 0, t ∈ I . (8)

If for any t ∈ I is

G(t) = F(t), (9)

then the corresponding generating linep‖x1x2 and its in-
tersection point with the planex1x2 is a point at infinity.

The section of the surfaceϕ of elliptic movement by the
planex1x2 (from the example 1 according to (8)) has the
following parametric representation

x1 =
aq2

q2−q1
cost, x2 =

−aq1

q2−q1
sint,

x3 = 0, t ∈ 〈0,2π〉. (10)

This section is the ellipsek3 with the centre in the origin of
the coordinate system, values of the semiaxes are∣∣∣∣ aq2

q2−q1

∣∣∣∣ and

∣∣∣∣ aq1

q2−q1

∣∣∣∣ .

In the case when the equation (9) expresses identity for the
interval I all generating lines of the surfaceϕ are parallel
to the planex1x2 and the section of the surface by the plane
x1x2 cannot be described by equations (8).

If we choose the vector functions (1) as

y1(x1) = (x1,0, f (x1)), x1 ∈ I1,

y2(x2) = (0,x2, f (x2)), x2 ∈ I1, I1 = I2 (11)

and the curvem is a line parametrized by the vector func-
tion

x(t) = (t,t,0), t ∈ R, (12)

thenF(t) = G(t) = f (t).

The ruled surfaceϕ has the following parametric represen-
tation according to (4):

x1 =
t
2
(1+ u),

x2 =
t
2
(1−u),

x3 = f (t), t ∈ I1, u ∈ R (13)

and it is a cylindrical surface. Its generating lines are par-
allel to the planex1x2 . The curvesk1 andk2 are congruent.
Revolving the curvek1 about the axisx3 by the angle 90o

we would get the curvek2 .

The sectionk3 of the cylindrical surface (13) by the plane
x1x2 is composed from the surface generating lines. Their
number is equal to the number of common points of the
curvek1 and the axisx1 .

Example 2: Circular cylindrical surface

Curvesk1 and k2 are semicircles with centresS1 ∈ x1 ,
S2 ∈ x2, with the same radiusr and |OS1| = |OS2| = p .
The semicircles are parametrized by the vector functions

y1(x1) =
(

x1,0,
√

r2− (x1− p)2

)
,

x1 ∈ 〈p− r, p+ r〉,

y2(x2) =
(

0,x2,
√

r2− (x1− p)2

)
,

x2 ∈ 〈p− r, p+ r〉, 0 < p− r .

The surfaceϕ is a half of the circular cylindrical surface
which has the following parametric representation accord-
ing to (13)

x1 =
t
2
(1+ u),

x2 =
t
2
(1−u),

x3 =
√

r2− (t − p)2,

t ∈ 〈p− r, p+ r〉, u ∈ R . (14)

Fig. 3a illustrates curvesk1 , k2 , m , and the section of
the surface by the planex1x2 which is created by linesl1
andl2 .

In Fig. 3b the segment of the circular cylindrical surface is
shown.

Fig. 3a

Fig. 3b
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4 Developable and skew surfaces ϕ

The generating line of the surfaceϕ is defined by choice
of the parametert ∈ I. When we substitute the parametric
representation (2) of the curvem to the vector functions
(1) and differentiate the vector functions (1) according to
argumentt, then we get:

y′1(t) = x′(t)

(
1,0,

[
d f (x1)

dx1

]
x1=x(t)

)
and

y′2(t) = y′(t)

(
0,1,

[
dg(x2)

dx2

]
x2=y(t)

)
.

These vector functions for chosent ∈ I are defining the di-
rection vectors of the tangent lines of curvesk1 andk2 . To
make the generating line of the surfaceϕ torsal, vectors
y′1(t) , y′2(t) and (3) must be linearly dependent. From this
condition we get equation:

x′(t)y′(t)
(

F(t)− x(t)
[

d f (x1)
dx1

]
x1=x(t)

−
(

G(t)− y(t)
[

g(x2)
dx2

]
x2=y(t)

))
= 0. (15)

If the equation (15) is identity on the intervalI, the surface
ϕ is created by torsal lines only and it is a developable sur-
face. If the equation (15) is not identity, the surfaceϕ is a
skew surface on which torsal generating lines can exist.

The equation (15) of the surface of an elliptic movement
has the form:

a2(q1−q2)sint cost = 0, t ∈ 〈0,2π〉.

Then the lines for parameterst = 0, π/2, π, 3π/2 are tor-
sal lines located in the planesx1x3 andx2x3 .

In the case when the cylindrical surface has the parametric
presentation (13) we can simply verify that the equation
(15) is an identity and the cylindrical surface will be a de-
velopable surface. The intersection pointsK1 andL1 of the
line l1 with the semicirclesk1 andk2 from the example 2
(Fig. 3a) are examples of points in which derivative of the
functions f and g is improper. The tangent lines of the
curvesk1 andk2 in the pointsK1 andL1 are parallel with
the axisx3 . Analogously for the linel2 .

5 Continuity between the surfaces ϕ and
skew surfaces

Continuity between the mentioned ruled surfacesϕ and
skew surfaces, which are defined by three basic curves, is
clearly seen on the surface of an elliptic movement. If the

section of the surfaceϕ by the planex1x2 is the curvek3 ,
then it is possible to define the surfaceϕ by basic curves
k1 , k2 andk3 . The generating lines of the surfaceϕ are
lines intersecting the basic curves.

6 Envelope of orthographic views of the
ruled surface generating lines in the plane
x1x2

Generating lines of the ruled surface are orthogonally pro-
jected to the planex1x2 and parametric representation of
these orthographic views can be given by the first two
equations in (4) without the parameteru:

y(t)x1 + x(t)x2− x(t)y(t) = 0, t ∈ I . (16)

The equation (16) is the equation of a one-parametric line
system and its envelope can be found by differentiating of
the equation (16) according to parametert:

y′(t)x1 + x′(t)x2− x′(t)y(t)− x(t)y′(t) = 0. (17)

From the equations (16) and (17) we get:

x1 =
x2(t)y′(t)

x(t)y′(t)− x′(t)y(t)
,

x2 =
−y2(t)x′(t)

x(t)y′(t)− x′(t)y(t)
,

x3 = 0, t ∈ I . (18)

If an envelope exists and it is a curve marked asm ′, then
the equations (18) are its parametric representation. The
points for whichx(t)y′(t)− x′(t)y(t) = 0 do not have to be
necessarily troublesome points. This problem will be not
investigated here.

The envelopem′ depends only on the curvem, what is evi-
dent from the equations (18) and the geometric view, too.

If the curvem is a circle parametrized by the function (6),
then according to (18) the envelopem ′ has the following
parametric representation:

x1 = acos3 t, x2 = asin3 t, x3 = 0, t ∈ 〈0,2π〉, (19)

the curvem′ is an asteroid (Fig. 4a).
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’

Fig. 4a

’

Fig. 4b

Orthographic views of the cylindrical surface generating
lines (example 2) in the planex1x2 are examples for the
one-parametric system of lines which has not any enve-
lope.

7 Modification of the method for the cre-
ation of ruled surfaces

The idea described above allows us to define and create
ruled surfaces by a method which we could call dual for
defining and creating the surfacesϕ . The surface is de-
fined by the curvesk1 andk2 which are parametrized by the
functions (1). Let the curvem ′ be without singular points
in the planex1x2 . Tangent lines of the curvem ′ create a
one-parametric system of lines. LetK1 andL1 be the inter-
sections of one tangent line (which is the intersecting line
with the axesx1 andx2 too) of the one-parametric system
with the axisx1 andx2 . We can construct the surface gen-
erating linep by means of pointsK1 andL1 with the same
method as in the first part (see Fig. 1).

Example 3:

Let the surfaceϕ be defined by curvesk1 andk2 , which
are parametrized by the vector functions (5) and the curve
m′ ⊂ x1x2 is a parabola expressed by parametric represen-
tation

x1 = − 1
2p

t2, x2 = t, x3 = 0, t ∈ R .

The vector function

y(v) =
(
− 1

2p
t2− 1

p
tv, t + v,0

)
, v ∈ R (20)

of the parameterv describes the system of tangent lines to
the parabolam′ for any value of parametert ∈ R (Fig. 4b).

The intersections of the tangent lines with the axesx1 and
x2 are the pointsK1 andL1 with the following coordinates

K1 =
[

1
2p

t2,0,0

]
and L1 =

[
0,

t
2
,0
]

. (21)

The coordinates of the pointsK andL are

K =
[

1
2p

t2,0,q1

]
and L =

[
0,

t
2
,q2

]
.

The surface parametric representation according to (4) has
the following form:

x1 =
t2

4p
(1+ u),

x2 =
t
4
(1−u),

x3 =
q1+ q2

2
+ u

q1−q2

2
,

t ∈ R, u ∈ R . (22)

The set of pointsM which are projected orthogonally to
the pointsK1 andL1 on the axesx1 andx2 can be parame-
terized according to (21) by the function

x(t) =
(

t2

2p
,

t
2
,0

)
, t ∈ R .

The pointsM are therefore located on the parabolam which
is the generatrix of the ruled surfaceϕ constructed by the
method described in the first part.

The both modifications of the presented method are illus-
trated in Fig. 4b showing the construction of the surfaceϕ
projected orthogonally to the planex1x2. A similar con-
struction can be seen in Fig. 4a, where the curvem is a
circle and the curvem′ is an asteroid.
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Description of the surfaceϕ construction is shown in
Fig. 5a. The segment of the surface is shown in Fig. 5b.

Fig. 5a

Fig. 5b

The section of the surfaceϕ by the planex1x2 has the fol-
lowing parametric representation according to (8):

x1 =
q2

2p(q2−q1)
t2, x2 =

−q1

2(q2−q1)
t, x3 = 0, t ∈ R ,

the curvek3 is a parabola.

The equation (15) has the form

1
2p

t(q2−q1) = 0

and therefore the surface has only one torsal basic line cor-
respondent to the parametert = 0 .

Now we will show some examples of the surfacesϕ.

Example 4: Conical surface

The vector functions (1) are

y1(x1) = (x1,0,q1), x1 ∈ R,

y2(x2) =
(

0,x2,
1

2p
x2

2 + q2

)
, x2 ∈ R .

The curvek1 is a line, the curvek2 is a parabola. Let the
curvem be a line parallel to the axisx2 defined by the vec-
tor function

x(t) = (k, t,0), t ∈ R, (23)

wherek is a non-zero constant from R (Fig. 6a).

The surfaceϕ has the following parametric representation
according to (4):

x1 =
k
2
(1+ u),

x2 =
t
2
(1−u),

x3 =
2p(q1+ q2)+ t2

4p
+ u

2p(q1−q2)− t2

4p
,

t ∈ R, u ∈ R . (24)

Fig. 6a
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Fig. 6b

It is evident that the surfaceϕ is a conical surface with a
vertex in the pointK, so this surface is developable. In this
case the equation (15) is an identity, because in the vector
function (23) is x′(t) = 0 for all t ∈ R . The segment of
the surface is illustrated in Fig. 6b.

We could construct generating lines by the means of a one-
parametric system of lines in the planex1x2 , too. In this
case, the system of lines would be a pencil of lines with
the centre in the pointK1 (without the linem). The linep1

is one line from the pencil of lines (see Fig. 6a). This is
nothing new for us, it is a classical construction of conical
surface generating lines.

Example 5: Frezier’s cylindroid

The vector functions (1) are

y1(x1) =
(

x1,0,
√

r2− (x1− p)2

)
,

x1 ∈ 〈p− r, p+ r〉, 0< p− r,

y2(x2) =
(

0,x2,
√

r2− (x2− p)2+ q

)
,

x2 ∈ 〈p− r, p+ r〉,

whereq is a non-zero constant from R.

The curvesk1 andk2 are semicircles as in the example 2 for
the cylindrical surface, but the circlek2 is translated by the
translation vector(0,0,q). The curvem is a line defined by
the vector function (12), Fig. 7a.

This surface is so called Frezier’s cylindroid and its seg-
ment is shown in Fig. 7b. The surface is a skew surface
which has two torsal generating lines. The equation (15)
has the form

√
r2− (t − p)2+

t(t − p)√
r2− (t − p)2

=
√

r2− (t − p)2+ q+
t(t − p)√

r2− (t − p)2

and this is fulfilled only for the pointst = p± r, in which
derivative of the functionsf and g is improper. Ortho-
graphic views of torsal lines in the planex1x2 are the lines
l1 andl2 (Fig. 7a).

It is possible to construct cylindroid generating lines anal-
ogously using the one-parametric system of lines as at a
conical surface. It this case the system of lines is parallel
to the linel1.

Fig. 7a

Fig. 7b

At the end of this paper there are illustrated two compli-
cated surfaces (see Figs 8 and 9). The segment of the
surface demonstrated in Fig. 8 is defined by curvesk1 , k2

andm , where the curvek1 is the Witch of Agnési, k2 is
a parabola and the curvem is an epicycloid. In Fig. 9 is a
segment of the surface for which the curvek1 is a parabola,
the curvek2 is Witch of Agnési and the curvem is a circle
with its centre in the origin.
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Fig. 8 Fig. 9
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