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Aim To explore immunological properties of human um-
bilical cord blood-derived stromal cells (hUCBDSC) and 
their effect on xenogeneic immune cells in vitro.

Methods Immunological phenotype of freshly isolated 
and cryopreserved hUCBDSCs was evaluated by flow cy-
tometry. Xenogeneic splenic T-cells were stimulated by 
phytohemaglutinin A (PHA) or dendritic cells in the ab-
sence or presence of hUCBDSCs. T-cell proliferation was 
measured by cell counting kit-8 after 7-day incubation. The 
proportion of apoptotic cells and CD4+CD25+Foxp3+ reg-
ulatory T-cells (Tregs) was determined in T-cells activated 
by PHA in the absence or presence of hUCBDSCs by flow 
cytometry. Phenotype of dendritic cells, cultured alone or 
with hUCBDSCs, was analyzed by flow cytometry.

Results Levels of immune molecule expression on fresh-
ly isolated hUCBDSCs were as follows: human leukocyte 
antigen-I (HLA-I) (84.1 ± 2.9%), HLA-II (1.6 ± 0.3%), CD80 
(0.8 ± 0.1%), CD86 (0.8 ± 0.1%), CD40 (0.6 ± 0.1%), and CD40L 
(0.5 ± 0.1%), which was not influenced by cryopreservation. 
T-cell proliferation in the presence of hUCBDSCs was signif-
icantly lower than that of positive control. The coculture 
led to a 10-fold increase (from 1.2 ± 0.3% to 12.1 ± 1.4%, 
P < 0.001) in the proportion of CD4+CD25+Foxp3+ regu-
latory T-cells (Tregs) and a reversion of mature dendritic 
cells, as indicated by the down-regulation of major his-
tocompatibility complex (MHC)-II molecule (49.3% vs 
25.9%, P = 0.001), CD80 (47.2% vs 23.3%, P = 0.001), and 
CD86 (40.6% vs 25.1%, P = 0.002). When subjected to an-
nexin V binding and propidium iodide uptake assay, the 
hUCBDSCs did not show the ability to induce apoptosis of 
xenogeneic T-cells.

Conclusion These results demonstrate low immunoge-
nicity and immunomodulation effect of the hUCBDSCs. 
Reversion of mature dendritic cells and increase in Treg 
proportion, but not cell apoptosis, can possibly contribute 
to the suppression of xenogeneic T-cell proliferation by the 
hUCBDSCs.
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Adherent spindle-shaped, fibroblastoid cells were isolat-
ed from the bone marrow by Friedenstein (1) and others 
(2-4), and are also referred to as multipotent mesenchy-
mal stromal cells (MSC) (5) because of their self-renewal 
and multilineage differentiation capacity at the popula-
tion level. One of the main biological functions of bone 
marrow MSCs is to regulate proliferation, differentiation, 
and maturation of hematopoietic cells through cell-to-
cell interactions and secretion of cytokines and growth 
factors. Besides, MSCs also probably contribute to regu-
lation of maturation, proliferation, and function of lym-
phocytes and have been shown to participate in the pos-
itive selection of T lymphocytes in the thymus in murine 
models (6-10).

In fact, a variety of studies with human, baboon, and 
murine MSCs have demonstrated the inability of MSCs to 
elicit a proliferative response of allogeneic lymphocytes, 
but instead they showed the capability of MSCs to sup-
press T lymphocyte activation and proliferation in vitro 
when stimulated by alloantigens, mitogens, and CD3 and 
CD28 antibodies (11-17). Different mechanisms are pro-
posed to explain the suppressive effect of MSCs depend-
ing on the stimuli. Some animal models, related to allore-
active immunity, autoimmunity, or tumor immunity, have 
been established to examine the immunomodulatory 
function of MSCs in vivo. Graft vs host disease (GVHD), 
induced by donor T-cells, constitutes the most frequent 
complication after allogeneic hematopoietic cell trans-
plantation (HCT) (18,19). Early and repeated systemic ad-
ministration of ex-vivo expanded MSCs reduced the in-
cidence and severity of GVHD in mice (20). It was shown 
clinically that the infusion of MSCs was safe and effective 
in the treatment of GVHD (21,22). MSCs have been an at-
tractive candidate for cell therapy for GVHD.

Although MSCs have also been isolated from other tis-
sues such as adipose tissue (23), placenta (24), amniotic 
fluid (25), and umbilical cord blood (26,27), most studies 
on immunomodulatory function focused on bone mar-
row MSCs. However, the bone marrow collection is an in-
vasive procedure and the number and expansion capac-
ity of bone marrow MSCs decline with age (28,29). Due to 
easy collection and younger age of donor cells, umbilical 
cord blood is one of the most attractive alternative sourc-
es of MSCs. Our laboratory has previously isolated a novel 
population of adherent fibroblast-like cells from human 
umbilical cord blood (hUCB) CD34+cells, called hUCB-de-
rived stromal cells (hUCBDSCs) and confirmed their sup-
portive effect on hematopoiesis in vitro (30).

Previous studies have usually investigated human MSCs-
allogeneic immune cell reaction in vitro (11,14,31-33). To 
test the feasibility of replacing human immune cells with 
xenogeneic counterparts in vitro is of significance in es-
tablishing an animal model for further in vivo study of im-
munological properties of human MSCs, such as their in-
hibitory effect on GVHD. In the present study, we focused 
on immunological properties of hUCBDSCs and their ef-
fect on xenogeneic immune cells and demonstrated that 
hUCBDSCs suppressed xenogeneic T-cell activation in-
duced by mitogen PHA and dendritic cells, in addition to 
its low immunogenicity per se, such as the lack of human 
leukocyte antigen-II (HLA-II) and some costimulator ex-
pression.

Material and methods

Isolation and expansion of hUCB-derived stromal 
cells

Full-term hUCB samples were harvested with informed 
consent of the mother. This study was approved by the lo-
cal ethics committee. Cell culture was carried out as de-
scribed in our previously published study (30).

Purification of T-cells from mouse spleen

Single-cell suspension of C57BL/6(H-2b/b) mouse spleen 
was prepared by gentle grinding and filtering through ny-
lon mesh (40-µm diameter pores). Following the lysis of 
red blood cells with Tris-NH4Cl solution, splenocytes were 
resuspended in separation buffer (phosphate buffered sa-
line, 0.5% bovine serum albumin, and 2mM disodium eth-
ylenediamine tetraacetate). T-cells were enriched (>95% 
purity) by means of pan-T-cell isolation kits (Miltenyi Bio-
tec, Auburn, CA, USA).

Cell cryopreservation and thawing

hUCBDSCs in log phase growth were suspended in cul-
ture medium containing 10% v/v dimethylsulfoxide and 
transferred to 1-mL cryovials. The cryovials were placed 
at 4°C for 30 minutes, at -20°C for 30 minutes, and at -
70°C overnight. Next morning, cells were stored in liq-
uid nitrogen. For cell resuscitation, cells were rapidly 
thawed in a water bath at 37°C and transferred into a 
centrifugation tube containing 8-mL culture medium. 
After centrifugation and removal of supernatant, cells 
were resuspended in 3-mL culture medium and cul-
tured continually.
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Induction of dendritic cells from mouse bone marrow

Dendritic cells from mouse bone marrow were obtained 
according to methods reported by Lutz (34). Femurs 
and tibias of 6 to 12-week-old female C57BL/6 or C57BL/
6 × BALB/c F1(H-2b/d) mice were removed aseptically. The 
bone marrow was flushed with incomplete RPMI1640 us-
ing a syringe with a 0.45-mm diameter needle and washed 
once. Bone marrow leukocytes were seeded at about 
2 × 106 per 100-mm dish in 10mL complete RPMI1640 me-
dium containing 20 ng/mL recombinant mouse granulo-
cyte-macrophage colony-stimulating factors (rmGM-CSF 
Peprotech/Tebu, Frankfurt, Germany). Ten-milliliter fresh 
medium was added at day 3. At day 6 and day 8, half of the 
medium was changed. In some experiments, lypopolisac-
charide (5 µg/mL; Sigma, Poole, UK) was added for another 
48 hours to stimulate the maturation of dendritic cells.

Proliferative assays and mixed lymphocyte reaction

Splenic T-cells (1 × 105) from C57BL/6 mouse were seeded 
in triplicates onto 96-well plates in 200 µL complete RPMI 
1640 medium in the absence or presence of mitogen phy-
tohemaglutinin A (PHA; 10 µg/mL). hUCBDSCs were add-
ed in decreasing concentrations (105, 104, 103). After 7-day’s 
culture, cell proliferation was determined by cell counting 
kit-8 (Dojindo Laboratories, Kumamoto, Japan,). Briefly, 20 
µL CCK-8 solution was added to each well, which was then 
incubated for another 4 hours. Optical density (OD) val-
ues were tested at wavelength of 450 nm by a microplate 
reader.

In mixed lymphocyte reaction (MLR) experiment, splenic 
T-cells (1 × 105) from C57BL/6 mouse were incubated with 
mature dendritic cells (1 × 105) from C57BL/6 × BALB/c F1 
mouse bone marrow in a final volume of 200 µL per well 
in 96-well plate. Coculture with dendritic cells from syn-
geneic mouse was used as control. Stimulator dendritic 
cells were irradiated with 30 Gy of 60Co gamma radiation. 
hUCBDSCs were added in decreasing concentrations (105, 
104, 103). Cell proliferation was measured by CCK-8 after 7-
day incubation.

Cell coculture

Splenic T-cells from C57BL/6 mouse (1 × 106 per well) were 
plated into 12-well plates with PHA (10 µg/mL) in the ab-
sence or presence of hUCBDSCs (1 × 106 per well). At least 3 
different human samples were used. Five days later, nonad-
herent cells were collected for determination of apoptotic 

T-cells and CD4+CD25+Foxp3+ regulatory T-cells (Tregs) us-
ing flow cytometry.

Mature bone marrow-dendritic cells, induced as men-
tioned above, were cultured alone or with hUCBDSCs 
from at least 3 different human samples. A series of surface 
markers on bone marrow-dendritic cells, including CD11c, 
MHC class II CD80, and CD86 were analyzed by flow cy-
tometry on day 5.

Flow cytometry

Cells were collected, washed, and resuspended in phos-
phate-buffered saline. Then, they were incubated at 4°C 
for 30 minutes with the following conjugated monoclonal 
antibodies: FITC anti-human HLA-I, FITC anti-human HLA-II, 
FITC anti-human CD80, PE anti-human CD86, FITC anti-hu-
man CD40, FITC anti-human CD154, FITC anti-mouse MHC 
class II, FITC anti-mouse CD3, FITC anti-mouse CD80, FITC 
anti-mouse CD86, and PE anti-mouse CD11c (anti-HLA an-
tibodies from BD Pharmingen, San Diego, CA, USA, and all 
others from eBioscience, San Diego, CA, USA). Equal aliq-
uots of cells were labeled with isotype monoclonal anti-
bodies to determine nonspecific reaction. Finally, cells 
were washed and assayed in a flow cytometer.

For determining of Tregs, cells were incubated with PE anti 
mouse-CD4 and Alexa Fluor®488 anti mouse CD25 (eBio-
science) at 4°C for 30 minutes. Then, cells were washed, 
fixed, permeabilized, and stained with APC anti-mouse 
Foxp3 using APC anti-mouse Foxp3 staining set (eBio-
science).

An annexin V binding and propidium iodide uptake assay 
(R&D Systems) was employed for apoptosis analysis. Briefly, 
the cells were washed once with “binding buffer” and then 
incubated with FITC labeled annexin V for 15 minutes in 
the dark at room temperature. Cells were washed once, re-
suspended in 0.5 mL binding buffer, counterstained with 
propidium iodide, and analyzed by flow cytometry.

Statistical analysis

Comparisons of 2 means were determined by t-test and 
multiple comparisons of means were determined by Tukey 
honestly significant difference test and Tamhane T2 of post 
hoc comparisons. Data were shown as mean ± standard 
deviation. Statistical significance level was set at P-values 
lower than 0.05. SPSS, version 13.0 (SPSS Inc., Chicago, IL, 
USA), was used to process the data.
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Results

Immunophenotype of hUCBDSCs

Immunogenicity-associated surface markers HLA-I and HLA-
II, as well as immune reaction-related costimulators CD80, 
CD86, CD40, and CD154 (CD40L), were analyzed on the suc-
cessfully isolated hUCBDSCs from 5 different full-term hUCB 
samples. hUCBDSCs on passages 3-4 showing homogene-
ous spindle-shaped morphology were readily subjected to 
flow cytometry analysis. The results showed that 84.1 ± 2.9% 
of stromal cells expressed HLA-I, but there was nearly no ex-
pression of HLA-II (1.6 ± 0.3%). The levels of costimulator ex-
pression were as follows: CD80 (0.8 ± 0.1%), CD86 (0.8 ± 0.1%), 
CD40 (0.6 ± 0.1%), and CD40L (0.5 ± 0.1%) (Figure 1).

Cell cryopreservation is a necessary procedure for assuring 
off-the-shelf availability of stromal cells. However, there re-
mains the issue of biological properties of stromal cells after 
cryopreservation-thawing cycle (35). The hUCBDSCs that 
had been stored in liquid nitrogen were subjected to im-
munophenotype analysis and there was no significant dif-
ference in the expression of immune molecules between 
freshly isolated and cryopreserved hUCBDSCs (Table 1).

hUCBDSCs suppressed xenogeneic T lymphocyte 
proliferation stimulated by PHA or dendritic cells

The purity of isolated splenic T-cells achieved 96.3 ± 3.5%, 
when using CD3 as an index. To test the ability of T-cell pro-

liferation, hUCBDSCs were cocultured with splenic T lym-
phocytes from C57BL/6 mouse, while PHA-stimulated T 
lymphocytes were used as positive control. After 7-day co-
culture, OD-value indicated that T-cell proliferation in the 
presence of hUCBDSCs was significantly lower than that 
of PHA-stimulated T-cells (P = 0.001) and was comparable 
to that of control T-cells without stimulation. PHA-stimu-
lated T-cell proliferation decreased correspondingly with 
the increased ratios of cocultured stromal cells to T-cells 
(Figure 2A).

In MLR experiment, allogeneic mature dendritic cells from 
C57BL/6 × BALB/c F1 mouse strongly stimulated prolifera-
tion of splenic T-cells from C57BL/6 mouse, compared with 
syngeneic mature dendritic cells. When hUCBDSCs were 
added at 0-day at different concentrations, T-cell prolifera-

Table 1. Comparison of immune molecule expression in freshly 
isolated and cryopreserved human umbilical cord blood-derived stromal 
cells (hUCBDSC)

Immune Percentage of positive cells (%)

molecules freshly isolated with cryo-thaw cycle P*

HLA-I 84.1 ± 2.9 87.3 ± 3.0 0.063
HLA-II   1.6 ± 0.3   1.7 ± 0.1 0.281
CD80   0.8 ± 0.1   0.9 ± 0.1 0.108
CD86   0.8 ± 0.1   0.9 ± 0.1 0.085
CD40   0.6 ± 0.1   0.5 ± 0.1 0.182
CD40L   0.5 ± 0.1   0.4 ± 0.1 0.291
*Student t-test.

Figure 1.

Expression of immunological cell surface markers on human umbilical cord blood-derived stromal cells (hUCBDSC). Most hUCBDSCs expressed human leukocyte antigen-l 
(HLA-I), whereas negative for HLA-Il antigens and costimulators such as CD80, CD86, CD40, or CD154. Solid curves represented staining with antigen specific antibodies, and 
dotted curves were used as isotype-matched negative control. The result showed was a representative of five independently tested samples.
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tion induced by allogeneic mature dendritic cells was in-
hibited in a stromal cell concentration-dependent manner 
(Figure 2B).

All of the above mentioned results suggest that the addi-
tion of hUCBDSCs in in vitro culture did not evoke xenoge-
neic T-cell proliferation; on the contrary, it suppressed the 
proliferation induced by PHA or allogeneic dendritic cells.

Proportion of Tregs and apoptosis in T-cells cocultured 
with hUCBDSCs

To determine whether the suppressive effect of hUCBDSCs 
was associated with the induction of T-lymphocyte ap-
optosis, the percentage of apoptotic T lymphocytes was 
evaluated by flow cytometry after T lymphocyte coculture 
with stromal cells for 5 days. The result showed there was 
no significant difference in the proportion of apoptotic 
cells between T lymphocytes alone and cocultured T-cells 
(1.7 ± 0.2% vs 1.5 ± 0.1%, P = 0.100).

The proportion of Tregs plays an important role in down-
regulating T lymphocyte response to stimulus. To test if 

the suppressive effect of hUCBDSCs on T lymphocytes 
was achieved through changing the proportions of T-cell 
subsets, T-cells that had cocultured with hUCBDSCs for 5 
days were analyzed. There was a significant increase in the 
proportion of Tregs (12.1 ± 1.4% vs 1.2 ± 0.3%, P < 0.001) 

Figure 2.

Effect of human umbilical cord blood-derived stromal cells (hUCBDSC) on xe-
nogeneic T-cell response in vitro. (A) T-cells were cultured alone (T) or with 
hUCBDSCs (T+UBC). PHA-stimulated T-cell proliferation as showed in positive 
control (T+PHA). PHA-induced T-cell proliferation was inhibited proportionally to 
the fraction of added hUCBDSCs (hatched bars). (B) Allogeneic dendritic cells-in-
duced T-cell proliferation was also suppressed by hUCBDSCs. Allogeneic dendritic 
cells-stimulated T-cell without hUCBDSCs served as positive control (pos) and syn-
geneic dendritic cells-stimulated T-cell served as negative control (neg). Allogeneic 
dendritic cell-stimulated T-cell proliferation was inhibited proportionally to the frac-
tion of added hUCBDSCs (hatched bars). Data are shown as mean±SD of tripli-
cates of 3 separate experiments using at least 3 different human samples. Asterisk 
indicates P < 0.01 vs PHA or allogeneic dendritic cells-stimulated T-cell.

Percentage of Tregs in T-cells cultured alone or with human umbilical cord blood-
derived stromal cells (hUCBDSC). The proportion of Tregs in T-cells was evaluated 
by flow cytometry from 3 experiments using at least 3 different human samples. 
Flow profile from one experiment was shown. It was indicated that there was a sig-
nificant increase in the proportion of Treg in the presence of hUCBDSCs (12.3% vs 
1.2%). T-cells alone (left); cocultured T-cells (right).

Figure 3.

Figure 4.

Immunophenotype of mature bone marrow-dendritic cells cocultured with human 
umbilical cord blood-derived stromal cells (hUCBDSC). CD11c is known as a mark-
er for murine dendritic cells. Mature bone marrow-dendritic cells, cultured alone or 
with hUCBDSCs, were stained simultaneously against CD11c (PE) and respec-
tively in combination with MHC class II, CD80, or CD86 (FITC). The percentage of 
double positive cells was detected by flow cytometry. Results represented one of 
3 independent experiments using at least 3 different human samples. Mature den-
dritic cells alone (blank bars); mature dendritic cells cocultured with hUCBDSCs 
(hatched bars). Asterisk indicates P < 0.01 vs mature dendritic cells alone.
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when T-cells were stimulated by PHA in the presence of 
hUCBDSCs compared with control (Figure 3).

Effect of hUCBDSCs on mature bone marrow-dendritic 
cells

Mature dendritic cells are the most potent stimulus to T-
cell response. In order to examine whether hUCBDSCs in-
directly suppressed allogeneic dendritic cell-induced T-cell 
proliferation via dendritic cells, the immunological phe-
notype changes of mature bone marrow-dendritic cells 
were determined by flow cytometry after coculture with 
hUCBDSCs for 5 days. The results showed that the MHC-
II molecule expression on mature bone marrow-dendrit-
ic cells was significantly down-regulated (49.3 ± 2.9% vs 
25.9 ± 4.1%, P = 0.001). Expression of other costimulato-
ry molecules, including CD80 (47.2 ± 3.1% vs 23.3 ± 4.3%, 
P = 0.001), and CD86 (40.6 ± 2.6% vs 25.1 ± 3.1%, P = 0.002), 
was also suppressed (Figure 4).

Discussion

We demonstrated that the hUCBDSCs constitutively ex-
pressed HLA-I but not HLA-II and other costimulators, 
which was not influenced by cryopreservation, a com-
mon procedure in cell manipulation in clinic. In addition, 
hUCBDSCs did not elicit xenogeneic T-cell proliferation; in-
stead, they suppressed the T-cell reaction in response to 
PHA or dendirtic cells. Generation of Tregs and reversion 
of mature dendritic cells, rather than induction of apopto-
sis of T-cells, might account for the possible mechanisms 
for the suppression of xenogeneic T-cell proliferation by 
hUCBDSCs.

HCT serves as the most effective treatment for high risk 
hematological malignancies (36). HLA-matched, related, or 
unrelated donors are the most suitable donors for HCT. But 
not all patients have available a suitable HLA-matched re-
lated or unrelated donor, and sometimes such donor cells 
cannot be provided timely for patients with aggressive 
malignancy. Recently, much attention has been focused 
on haploidentical stem cell transplantation, in which more 
than 90% patients share with their family donor 1 HLA hap-
lotype for HLA-A, B, C, and DR but not the other. GVHD, a 
major cause of mortality and morbidity after HCT, is closely 
related to the degree of HLA incompatibility (36,37). Hence, 
GVHD remains a major obstacle for application of haploi-
dentical stem cell transplantation. Our laboratory has been 
exerting efforts to reduce GVHD syndrome in clinical ap-
plication of haploidentical stem cell transplantation. We 

isolated hUCBDSCs from hUCB CD34+cells and confirmed 
their similar characteristics with MSCs in morphology and 
surface markers (30). Preliminary studies have shown that 
co-transplantation of hUCBDSCs could promote engraft-
ment of donor hematopoietic cell in mouse haploidenti-
cal stem cell transplantation model (not published). The 
benefit from co-transplanted hUCBDSCs suggests that 
hUCBDSCs may not be immunologically rejected, instead 
they probably help hematopoietic cell settle down in a way 
that is still unclear. By paying more attention to hUCBDSCs-
xenogeneic immune cells reaction in vitro, this study ob-
tained evidence for the application of the hUCBDSCs in 
mouse GVHD model associated with haploidentical stem 
cell transplantation and for treatment potential against 
GVHD as observed in MSCs.

In contrast to bone marrow, hUCB has many advantages: 
an easy and safe procurement, high frequency of immature 
stem and progenitor populations, the rapid availability of a 
cryopreserved off-the-shelf product, which is processed 
and quality controlled, and a reduced risk of immunologi-
cal reactions (38). hUCB has been clinically considered as 
an alternative source of hematopoietic stem cells (HSC) for 
transplantation. Another population of non-hematopoi-
etic cells in hUCB, constituting the microenviroment of 
HSCs, becomes more attractive in basic and transplanta-
tion research. Simmons et al (39) revealed that a subpopu-
lation of bone marrow CD34+ cells comprising multipotent 
CFU-F activity (39,40) and depletion of CD34+ cells did not 
enhance the frequency of MSCs in umbilical cord blood 
(41). Our laboratory reported successful isolation of spin-
dle-shaped fibroblastoid cells from CD34+ cells combining 
Dexter culture, called hUCBDSCs, and demonstrated its he-
matopoiesis-supporting property in vitro (30). It needs to 
be further investigated whether these differently named 
cells are the same population or have a common progeni-
tor with HSCs.

We demonstrated that hUCBDSCs expressed high levels of 
HLA-I and negligible levels of HLA-II and other costimula-
tors, which was similar to MSCs isolated from other sources. 
This immunological property was maintained after cryop-
reservation, which would make hUCBDSCs of substantial 
clinical interest. hUCBDSCs were not able to induce prolif-
eration of xenogeneic T-cells from mouse in vitro. Accord-
ingly, human MSCs did not induce xenoreactivity in vitro 
in previously unexposed immunocompetent SD rats, al-
though these cells had been rejected when transplanted in 
rats (42). But in another study, human MSCs showed long-
term engraftment after intrauterine transplantation in im-
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munocompetent sheep (43). This suggests that hUCBDSCs 
present tolerance to xenogeneic T-cell response at least in 
vitro, probably due to lack of HLA-II expression and insuffi-
cient costimulator signals, as described for human MSCs.

In MLR experiment, T lymphocytes (responders) and den-
dritic cells (stimulators) were isolated and induced from 
C57BL/6(H-2b/b) mouse and C57BL/6 × BALB/c F1(H-2b/d) 
mouse, respectively, which share only 1 haplotype, to mim-
ic GVHD occurring in haploidentical stem cell transplan-
tation. In contrast to other in vitro studies, non-irradiated 
hUCBDSCs were added into MLR, considering that irradia-
tion probably alters the biological activity of hUCBDSCs 
and their interaction with T-cells. The results showed that 
hUCBDSCs possessed the ability of inhibiting, in a cell dose-
dependent manner, xenogeneic T-cell proliferation in re-
sponse to PHA or dendritic cells, even with a small ratio (1 
hUCBDSCs:100 lymphocytes). This result is in disagreement 
with Blank’s report (12), which showed that inhibitory effect 
of MSCs could not be observed with ratio of 1 MSCs:100 
lymphocytes. Our xenogeneic model may account for the 
difference better than their allogeneic model.

T-cell unresponsiveness in the presence of hUCBDSCs is 
mainly attributed to peripheral clonal deletion (44) and sup-
pression/regulation (45) mechanisms. Many studies found 
that MSCs had no effect on apoptosis of T-cells (12,46,47), 
expect 1 study which showed apoptosis of T-cells induced 
by MSCs due to the conversion of tryptophan to kynure-
nine (48). In agreement with the majority of studies, we 
found that the proportion of apoptotic T-cells in the pres-
ence of hUCBDSCs was comparative to that of control, in-
dicating that peripheral clonal deletion mechanism could 
not account for the observed xenogeneic T-cell inability. 
CD4+Tregs, constitutively expressing CD25 and Foxp3, have 
been isolated from the thymus and periphery of mice, rats, 
and humans (49-51). These cells suppress activation and 
proliferation of T-cells in vitro and prevent development of 
autoimmune diseases when transplanted in animal experi-
ments (52-58). Their main function in vivo is probably to 
regulate homeostatic proliferation of the peripheral T-cell 
pool (59). It has been demonstrated that the population of 
CD4+CD25+ regulatory cells was increased in PBMCs stimu-
lated by mitogen in the presence of MSCs (31,33), however, 
one study showed that MSCs still can inhibit the prolifera-
tion of T-cells after depletion of CD4+CD25+ regulatory cells 
(17). In these experiments, regulatory cells were evaluated 
as CD4/CD25 double positive cells, which is not accurate 
considering that the transcription factor Foxp3 is the most 
specific marker of Tregs (60-62). So, we evaluated Tregs in 

T-cells as CD4+CD25+Foxp3+cells. When cocultured with 
hUCBDSCs, the percentage of Tregs in T-cells stimulated by 
PHA was significantly enhanced. The results suggest that 
hUCBDSCs inhibited xenogeneic T-cell proliferation in vitro 
probably through induction of Tregs differentiation, as ob-
served in allogeneic setting, although the function of Tregs 
has not yet been demonstrated.

Dendritic cells, the most potent antigen-presenting cells 
with capacity to stimulate naive and memory T-cells, play a 
key role in the initiation of primary immune responses and 
in tolerance, depending on the activation and maturation 
stage. Mature dendritic cells induce immunogenic T-cell re-
sponses, whereas immature or semi-mature dendritic cells 
result in tolerance (63-65). MSCs prevented differentiation 
of monocyte and CD34+ cells into CD1a+ dendritic cells, and 
dendritic cells generated in the presence of MSCs showed 
no up-regulation of HLA-DR and other costimulatory mole-
cules, resulting in impaired function to induce activation of 
T-cells (66-68). We demonstrated that hUCBDSCs also had 
the capacity to reverse xenogeneic mature dendritic cells 
to immature dendritic cells, of which MHC II and costimula-
tory molecules, including CD80 and CD86, are down-regu-
lated. This may be another reason for the immunosuppres-
sive effect of hUCBDSCs on xenogeneic T-cells.

In conclusion, hUCBDSCs, in addition to its low immuno-
genicity per se, suppressed xenogeneic T-cell activation in-
duced by mitogen PHA and dendritic cells, probably due to 
increased Tregs proportion and reversed mature dendritic 
cells. The effect of hUCBDSCs on xenogeneic immune cells 
was similar to that of human MSCs on allogeneic immune 
cells. It is possible to further study immunomodulatory ef-
fects of hUCBDSCs on the prevention of GVHD in animal 
model, serving as a substitute for human GVHD associated 
with haploidentical stem cell transplantation.
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