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REVIEW

New mathematical techniques have contributed substantially to the improvement of the geophysical

prospecting methods, like traveltime seismic tomography. Thanks to these new techniques, the time to solve

an inverse problem has been reduced dramatically making seismic tomography applicable to a great number

of problems even in three dimensions. New raytracing and wavefront techniques provide a more flexible

parameterization. Advancement from the least squares technique to today’s back-projection method’s, for

example, has improved tomographic methods.
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INTRODUCTION

What does tomography mean as a word? Its origin is

found in the Greek word “tomo”, which means slice.

Therein lies the basic idea: if we take many 2-D slices, ac-

cording to the central slice theorem28, we can reconstruct

the whole 3-D image of an object. Thanks to the same

theorem, we can easily construct 2-D sections from 1-D

lines, which can be measured in experiments.

Seismic travel time tomography can be defined as the

reconstruction of the Earth’s velocity model, using the

seismic waves travel time deviations from a reference ve-

locity model, better known as starting or background

model. A starting model is an initial guess, an estimate of

a velocity model. Seismic tomography as we know it to-

day originated in 1974 as “3-D inversion”. At first, seis-

mologists were very skeptical about the new method and

its results. The whole attitude changed dramatically in

the mid-1980’s, when iterative methods were intro-

duced, to facilitate the calculation of large and sparse

matrixes that occurred from the seismological data.6,23

Believability in the method was linked to the first global

tomographic results9,37,11,which correlated satisfactory

with the geoid. As credibility of the method grew seismol-

ogists renamed “3-D inversion” to what is known today as

seismic tomography.

We can classify seismic tomography in two main

categories; travel time and amplitude tomography. In this

paper we will focus only on travel time tomography.

Regarding the nature of the seismic waves, travel time

tomography can be divided into refraction, reflection and

diffraction tomography. Referring to the source, whether

it is a natural earthquake or a shot, we carve up tomogra-

phy into passive and active tomography, respectively.

Seismic tomography is an imaging technique that uses

seismic waves generated by earthquakes and explosions

to create computer-generated, three-dimensional images

of Earth's interior. This is how seismologists infer the

different layers in the Earth. How is this done? The time

it takes for a seismic wave to arrive at a seismic station

from an earthquake can be used to calculate the speed

along the wave's ray path. By using first arrival times of P

waves recorded by seismic stations all over the world,

scientists are able to define slower or faster regions deep

in the Earth

The simplest case of seismic tomography is to estimate

P-wave velocity. Several methods have been developed for

this purpose, e.g., refraction traveltime tomography, fi-

nite-frequency traveltime tomography, reflection

traveltime tomography, waveform tomography.36

To obtain a higher-resolution image one has to abandon

the infinite-frequency approximations of ray theory that

are applicable to the time of the wave 'onset' and instead

measure travel times (or amplitudes) over a time window

of some length using cross-correlation. Finite-frequency

tomography takes the effects of wave diffraction into ac-

count, which makes the imaging of smaller objects or

anomalies possible.24

The raypaths are replaced by volumetric sensitivity

kernels, often named 'banana-doughnut' kernels in

global tomography, because their shape may resemble a

banana, whereas their cross-section looks like a

doughnut, with, at least for direct P and S waves, zero

sensitivity of the travel time on the geometrical ray path.

In finite-frequency tomography, travel time and

amplitude anomalies are frequency-dependent, which

leads to an increase in resolution.

To exploit the information in a seismogram to the full-

est, one uses waveform tomography. In this case, the

seismograms are the observed data. In seismic explora-

tion, the forward model is usually governed by the acous-

tic wave equation. This is an approximation to the elastic

wave propagation.36 Elastic waveform tomography is

much more difficult than acoustic waveform tomogra-

phy. The acoustic wave equation is numerically solved by

some numerical schemes such as finite-difference and fi-

nite-element methods. In global tomography the inverse

problem for elastic waves can be handled by adjoint

methods.

PARAMETERIZATION

Lets consider two closely spaced points in the medium;

the inverse of the local wavespeed associated with these
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points is the slowness. There are three kinds of slowness

models: homogeneous and heterogeneous cells (2-D) or

blocks (3-D) of constant slowness values and rectangular

grids with slowness values assigned to the grid points

with different interpolation schemas to specify the values

between the grid points. In general, the use of cells is the

most common parameterization but it is facing difficul-

ties, since the sharp boundaries between the cells cannot

be resolved. As for the grid parameterization, a fine regu-

lar and irregular grid parameterization exist. The former

parameterization is the purely tomographic approach

while the latter one is closer to forward modelling. Regu-

lar grid has the advantage of simplicity but it can cause

over-parameterization when high resolution is required.

Recent studies are focused on irregular grid using

Delaunay triangles or Veronoi polygons to avoid such

problems.4,41 The travel time for a ray is:

� �T s V r s� � 1/ d (1)

where V(r) is the unknown velocity for the ray-path S.

We want to determine V(r) from N travel time measure-

ments. Let To be the travel time for the starting model:

� �T s V r s
0 0 0

1� � / d (2)

Whether we are not sure about the estimate of the start-

ing model we can use a tau-p method from picked arrival

times to form a reliable starting velocity model.2 Using

Fermat.s principle, we can ignore the true ray-path and

use the ray-path of the starting model instead of it. The

delay time is:

� � � � � ��T T T s V r s s V r s s V V s� � � � � � �� ��0 0 0 0 0
1 1 1 1/ / / /d d d

� � � �� �� � �� s V r V r s
0 0

2

� d (3)

where:

� � � � � ��V r V r V r� �
0

(3a)

Equation (3) comprises a linear system of equations,

which can be changed in such a way to become more suit-

able for computer processing. We parameterize the me-

dium with I interpolation functions hi, which is the basis

of the subspace of the Hilbert space of all possible mod-

els V(r):

� � � �� �V r h r
k

k

k
� 	 (4)

where k spans the integers from 1 to I, and function �k

is the weight of the function hk. Considering a cell-

parameterization we have:

hi (r)=1, if r in cell I and

hi (r)=0, anywhere else (5)

Equation (3) can now be defined as:

� � � �
 �� � �T s V r h r s A
k k

k

ik

k

k
� � ��	 	0 0

2

1/ d (6)

where:

� � � �
 �A s V r h r s
ik k

� �� 0 0 2
1/ d (6a)

Equation (6) can be formulated for each shot in a ma-

trix form and in terms of slowness as:

Ms t� (7)

Where s is the slowness vector, t the time vector and M

is the matrix of lij, where lij is the length of the i-th

ray-path through j-th cell.

SOLUTION

Foremost, we have to calculate the matrix elements Aik,

which implies the finding of the ray-path. Two methods

are commonly used in seismic tomography to find the ray

path: ray-tracing and wavefront methods. The two-point

ray-tracing finds ray-paths along which seismic energy is

propagating and calculates the travel time. For a layered

media, rays are traced by solving the differential equa-

tions with a Runge-Kutta predictor-corrector scheme. To

define in a better way the ray geometry and the slowness,

we mainly have two methods: shooting and bending, in-

spired both from ray-tracing. The former is based on

continuous iterations until the end of a ray to meet a limit

condition or by interpolating between close rays using

hermite cubic interpolation.7 The latter uses a

parameterization for a ray-path by the support points Vi

of a third order B-spline. The location of the ray is a func-

tion of the four nearest points:

� �Q u b V b V b V b V
i i i i

� � � �� � � � �2 2 1 1 0 1 1
(8)

Where b1 depends on u, 0 
 u 
 1, and is known for the

different values of u. A conjugate gradient method33 is

needed to find which of the support points V1 minimizes

the time given by (1). Èervený5 uses the quadratic slow-

ness, 1/V2, instead of slowness since it offers the simplest

analytical solution in inhomogeneous medium. Latter

techniques pored over the drawbacks of ray-tracing in-

cluding the works of Zelt and Ellis49 who invented a

ray-tracing technique with a trapezoidal parameteri-

zation providing a rapid traveltime calculation and of

Sethian and Popovici34 who presented the fast marching

technique that can model turning rays, but with unsatis-

factory accuracy.

The wavefront (surfaces of equal travel time) methods

are alternative techniques to ray-tracing. This method

determines minimum ray-paths and traveltimes by ex-

panding a wavefront in the whole model. Recent ad-

vances in the ray-tracing methods have mainly been

focused on wavefront methods rather than ray-tracing,

for two basic reasons: ray-tracing is valid only for smooth

velocity structures and it is significantly slower than any

wavefront method. Vidale43,42 modified the wavefront

method and the eikonal equation solver introducing a fi-

nite difference procedure, to propagate traveltimes

through a uniformly sampled grid. The eikonal solver

finds the wavefront that forms concentric shells about

the source and conducts the ray-paths from their shape.

A defect of Vidalia’s method27 is that it fails when velocity

contrasts are of the order of

u u
2 1

2/ � (9)

(Hole et al.14 modified Vidalia’s algorithm to a more

rapid algorithm using variable grid spacing. SPR, for
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Shortest Path Ray-tracing, developed primarily by

Saito32,31 and Moser20, expands the wavefront in the en-

tire velocity network being in that way more stable to ve-

locity contrasts. Zhang, et al.53,54 developed a SPR

method with a graphic template that allowed only

straight rays within a constant cell, calculating rapidly

and with good accuracy ray-paths and traveltimes on a

large number of grids. In the wavefront construction44,45

the entire wavefront is represented by a triangular mesh

providing good accuracy but implying time-consuming

calculations. GRT, for grid ray-tracing55, combines the

advantages of both wavefront construction and fast

marching, by tracing rays within a local grid. GRT is

about 8 times faster than any wavefront method. The

main shortcoming of the wavefront methods is that they

used to calculate only first arrivals. Moser20, Hole and

Zelt13 and Zhang and Toksöz54 modified the method to

calculate also latter arrivals.

The solution of the equation (7) is challenging. With real

data there always exists possibility that no ray crosses a

cell (an ill-posed system). The other problem is the

amount of data that we use in iterative solution tech-

niques or inversion. Early tomographic methods used

exact least squares techniques to solve the resulting sys-

tem of equations, but model limitations (due to the re-

strained computer capabilities) on the order of 1 000

unknowns were coming up. This number is not that large

or as much of a concern today, e.g. the tomographic anal-

ysis of Zelt and Barton47 involves more than 50 000

travel times. To surpass these obstacles, iterative matrix

solvers were introduced. McMehan18 and Neumann-

Denzau and Behrens22, improved an older iterative

method of Kaczmarc and renamed it to ART, for Alge-

braic Reconstruction Technique. This method was badly

conditioned and extremely slow for seismic tomography.

Gilbert10 invented a more efficient method, named SIRT,

for Simultaneous Iterative Reconstruction Technique.

Both ART and SIRT are mainly applicable when pixels or

voxels (the three dimensional analog of pixels) are used

as the basis function (5). Both of these techniques use

backprojection in an iterative manner to solve the system

of equations. Backprojection is an iterative process to es-

timate the average slowness. Instead of backprojecting

travel time residuals along ray-paths, other formulations

backproject phase residuals along wavepaths35 which

take into account the finite frequency effects in travel

time data.

In order to reconstruct velocities and interfaces we

solve the regularized inverse problem. The

trial-and-error forward modelling is a time-consuming

and laborious process which fails to provide an estimate

of parameter uncertainty and resolution, as inversion

does. In general, the non-linear system of equations (7) is

being linearized, considering that the velocity structure is

divided into a reference or starting model, that is as-

sumed to be known, and an unknown perturbation,

which is considered as very small. When the model is

non-linearized, the solution will be independent of the

model parameterization, so we apply the Tikhonov

method40 in order to reconstruct the model with a

Laplacian operator. Broadly speaking, for a regularised

problem we can invert various types of data, e.g. reflec-

tion, refraction, crosswell, both refraction and reflection

data, known as joint inversion, for better performance

and various types of model parameters (e.g. slowness, re-

flector geometries). The aim of the regularized inversion

is to minimize a tradeoff parameter concerning the data

misfit. In early tomographic problems fitting data was

the major care, but recent studies prove that we can fit

data to any small misfit magnitude according to the con-

straints of the model parameters, although the solution

may not be physically consistent.38 Given that a crucial

demerit of inversion is its nonuniqueness30, which leads

to multiple solutions of the problem, the main concern is

how to obtain a stable and unique solution that doesn't

provide unneeded structures. Fitting travel times with a

least squares criterion can't always provide the best solu-

tion, although the vast majority of the tomographic meth-

ods implement some variant of the principal least-square

method, by selecting a model that minimizes a certain

measure of travel time error, e.g. the damped

least-squares technique17, the conjugate gradient meth-

ods, the biconjugate gradient algorithm25,26 etc. Another

approach54 is to regularize average slowness (traveltime

divided by ray-length) and apparent slowness (traveltime

derivative with respect to surface distance) than

traveltimes or to apply smoothness constraints or deriv-

ative operators to find the simplest structure that fits the

data under a given tolerance.

A generally accepted opinion is that 2-D seismic inver-

sion can give an incorrect picture of the subsurface21 so

3-D inversions are needed in order to put up a better im-

age. In the last two decades, three dimensional seismic

methods have been developed but early studies,

(Thurber39, Kanasewich and Chiu15,) faced many prob-

lems due to limitations in computer resources and data

coverage. Zelt47 (1994) inverted simultaneously refrac-

tion and reflection travel time data in order to provide a

three dimensional starting model. The recent develop-

ments in 3D refraction methods48,3,8,12 have partially

solved many problems of the past, but there is still a long

way to go, e.g. difficulties still occur when large velocities

contrasts exist, wavespeeds cannot be resolved reliably

in the main refractor.16

CONCLUSIONS

With the help of new mathematical techniques, seismic

tomography has been evolved to a widely used technique

covering a broad range of applications from global to-

mography to near surface geophysics. The basis of a

tomographic problem is the inversion of a matrix. The re-

quested precision as well as today’s technical needs de-

mand us to solve systems of the order of more than, e.g.

10 000 unknowns. The inversion of such matrices can-

not be reliably handled with conventional techniques, so

new inversion techniques like, e.g. SIRT, have been intro-

duced. Today, to deal with similar problems, modern

backprojection techniques are used. Lately, many efforts

have been focused on more advanced methods, like the

inversion using genetic algorithms.
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