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If we can find the roots of the equation

P4 ü x ý0þ a4x4 ÿ a3x3 ÿ a2x2 ÿ a1x ÿ a0 � 0

ai
� R � i � 1 � 2 � 3 � 4; a4

�� 0 � (1)

then we can also solve the problem of factorization of the
polynomial P4 ü x ý over the field R. The history of the math-
ematics (see [1]) knows two basic methods for finding the
roots of (1) the Ferrari’s and Euler’s method. However, the
inverse reasoning is also true, if we know the factorization
of P4 ü x ý over R then we can also find all roots easily by
solving two quadratic equations.

In the Descartes’s method (see [5]) for factorization of
P4 ü x ý we can first suppose without losing generality that
a4 � 1 and that a3 � 0. It is known that if a3

�� 0 then by
supstituting x � y � a3 � 4 we get a �3 � 0. Now we shall de-
scribe the method for factorization of the polynomial

P4 ´ x µi¶ x4 · a2x2 · a1x · a0 ¶ ´ x2 · Ax · B µ ´ x2 · Cx · D µ�� (2)

over R.

From (2) we get the following system of nonlinear equa-
tions

A ÿ C � 0

B ÿ D ÿ AC � a2

AD ÿ BC � a1

BD � a0 	 (3)

When we substitute C � � A in the second and the third
equation we get

B ÿ D � A2 ÿ a2� B ÿ D � a1 � A
BD � a0 	 (4)

Let us suppose that A
�� 0, then from the first and the second

equation we get easily

B � A2 ÿ a2

2
� a1

2A

D � A2 ÿ a2

2
ÿ a1

2A 	 (5)
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Finally, from (5) and from the last equation in (4) it follows

A6 ÿ 2a2A4 ÿ ü a2
2 � 4a0 ý A2 � a2

1 � 0 	 (6)

After substituting t � A2 in (6), we get the following cubic
equation (resolvent)

t3 ÿ 2a2t2 ÿ ü a2
2 � 4a0 ý t � a2

1 � 0 	 (7)

Denote by P3 ü t ý the left side of (7). Since limt 
�� ∞ P3 ü t ý �ÿ ∞ and P3 ü 0 ý � � a2
1, when a1

�� 0, it follows that there is
a positive root of (7). Hence, there is a real root of (6) that
is different from zero, and we can calculate B and D using
the formulas (5). There is only the case a1 � 0 left to be
examined. Then we get the following system from (3)

A ÿ C � 0

B ÿ D ÿ AC � a2

AD ÿ BC � 0

BD � a0 	 (8)

Analogously we get from (8)

B ÿ D � A2 ÿ a2

A ü D � B ý � 0

BD � a0 	 (9)

From the second equation in (9) we get A � 0 or D � B. If
A � 0 we get from (9)

B ÿ D � a2

BD � a0 	 (10)

From (10) we get

B � a2

2
ÿ



a2
2

4
� a0

D � a2

2
� 


a2
2

4
� a0 � (11)

and if a2
2 � 4a0 � 0 we have the complete solution of (8).

But when a2
2 � 4a0 � 0, then evidently a0 � 0 and we must

apply the second case D � B, which yields

D � B ��� a0

A ��� 2 � a0 � a2 	 (12)

Thus, we always have a nonnegative root of the equation
(6) and a complete solution of the system (3) in real num-
bers. There is only the equation (7) left to be examined.
Using the known substitution (see [4]) t � z � 2a2 � 3 we get
from (7)

z3 ÿ pz ÿ q � 0 � (13)

and the connection between p � q � a0 � a1 � a2 is

p � � 4a0 � 1
3

a2
2

q � 8
3

a0a2 � a2
1 � 2

27
a3

2 	 (14)

Let a1
�� 0 and

D1 � q2

4
ÿ p3

27 	 (15)

It is known (see [3]) if D1 � 0 then

z � 3

� � q
2
ÿ � D1

ÿ 3

� � q
2
� � D1 (16)

is only a real root of (13), so that

t � 3

� � q
2
ÿ � D1

ÿ 3

� � q
2
� � D1 � 2a2

3
(17)

is surely a positive root of (7). If D1 � 0

z �������� �����
2 3� � q

2 if q � 0

3� q
2 if q � 0

0 if q � 0

(18)

is maximal nonnegative root of (13) (see [4]), so that

t � z � 2a2

3
(19)

is surely a positive root of (7). If D1 � 0, it can be shown,
that if

ϕ � arccos ��� q
2 � � 3

p � 3
2 � � (20)

then maximal real root of (13) is (see [4])

z � 2

� � p
3

cos
ϕ
3 	 (21)

Hence,

t � 2

� � p
3

cos
ϕ
3
� 2a2

3
(22)

is a positive root of (7). In all these cases

A � � t � (23)

is a positive root of (6) and the other values of unknowns
of the system (3) are given by (5).

Now we shall formulate and prove the theorem that gives
the correspondences between the types of roots of P4 ü x ý
and the types of roots of its cubic resolvent P3 ü t ý and a the-
orem that gives the characterizations for the types of roots
of P3 ü t ý . We have three main possibilities for the types of
roots of P3 ü t ý (see Figure 1.).

In the first case, P3 ü t ý has only one real nonnegative root
and two conjugate complex roots or one real nonnegative
root and one real negative double root.

In the second case, P3 ü t ý has one real nonnegative root and
two different real nonpositive roots.

12
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In the third case, P3 ü t ý has three real nonnegative roots
(the cases of double and triple roots are included in this
case).

Fig. 1a: 1st case

Fig. 1b: 2nd case

Fig. 1c: 3rd case

Theorem 1.

lst case  "! P4 ü x ý has two real and two complex roots

2nd case  #! P4 ü x ý has only complex roots

3rd case  "! P4 ü x ý has only real roots

Proof. Let P4 ü x ý have two real and two complex roots

P4 ü x ý �-ü x � x1 ý ü x � x2 ý ü x � a � bi ý ü x � a ÿ bi ý ��%$ x2 � ü x1
ÿ x2 ý x ÿ x1x2 & $ x2 � 2ax ÿ a2 ÿ b2 & ��%$ x2 � ü x1
ÿ a ÿ bi ý x ÿ ü a ÿ bi ý x1&$ x2 � ü x2
ÿ a � bi ý x ÿ ü a � bi ý x2& ��%$ x2 � ü x1
ÿ a � bi ý x ÿ ü a � bi ý x1&$ x2 � ü x2
ÿ a ÿ bi ý x ÿ ü a ÿ bi ý x2& 	

(24)

Let P4 ü x ý have only complex roots

P4 ü x ý �-ü x � a � bi ý ü x � a ÿ bi ý ü x � c � di ý ü x � c ÿ di ý ��%$ x2 � 2ax ÿ a2 ÿ b2 & $ x2 � 2cx ÿ c2 ÿ d2 & ��%$ x2 � ü b ÿ d ý ix ÿ ac � bd ÿ ü ad ÿ bc ý i &$ x2 ÿ ü b ÿ d ý ix ÿ ac � bd � ü ad ÿ bc ý i & ��%$ x2 � ü b � d ý ix ÿ ac ÿ bd ÿ ü bc � ad ý i &$ x2 ÿ ü b � d ý ix ÿ ac ÿ bd ÿ ü ad � bc ý i & 	
(25)

Let P4 ü x ý have only real roots

P4 ü x ý �-ü x � x1 ý ü x � x2 ý ü x � x3 ý ü x � x4 ý ��%$ x2 � ü x1
ÿ x2 ý x ÿ x1x2 & $ x2 � ü x3

ÿ x4 ý x ÿ x3x4 & ��%$ x2 � ü x1
ÿ x3 ý x ÿ x1x3 & $ x2 � ü x2

ÿ x4 ý x ÿ x2x4 & ��%$ x2 � ü x1
ÿ x4 ý x ÿ x1x4 & $ x2 � ü x2

ÿ x3 ý x ÿ x2x3 & 	
(26)

First, we shall prove the ”only if” direction. Let P4 ü x ý have
two real and two complex roots. Then we have the first row
in the factorizations (24) and the remaining three rows we
get by considering all possibilities of factorizations with
two quadratic polynomials having a unit as a leading coe-
ficient (regardless of it having real coeficients or complex
coeficients). These possibilities are closely connected with
the roots of the Descartes’s cubic resolvent P3 ü t ý , because
t � A2, where A is a coeficient of x in one of these two
quadratic polynomials (no matter which one, because they
differ only in the sign). As the sum of these two coefi-
cients of x is the same in all those possibilities and de facto
represents the coeficient of x3 (which is zero), we get an
important relation

x1
ÿ x2
ÿ 2a � 0 	 (27)

Now, we shall consider two cases x1 � x2 and x1
�� x2. In

the first case, we obtain x1
ÿ a � x2

ÿ a � 0, from (27) and
finally, from this one and from (24), it follows

ü A2 ý 1 � 4a2 � 0; ü A2 ý 2 ' 3 � � b2 � 0 	 (28)
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Thus � b2 is a double root of P3 ü t ý in the first case. In the
second case from (27) we obtain

x2
ÿ a � � ü x1

ÿ a ý 	 (29)

From (29) we conclude that x1
ÿ a

�� 0 and x2
ÿ a

�� 0, be-
cause on the contrary, (29) leads to x1

ÿ a � x2
ÿ a � 0 or

equivalently to x1 � x2, which is a contradiction. Thus, in
the second case we obtain from (24)

ü A2 ý 2 ' 3 �¯ü x1
ÿ a ý 2 � b2 ( 2b ü x1

ÿ a ý i 	 (30)

That means ü A2 ý 2 ' 3 is a pair of conjugate complex numbers
(because b

�� 0 and x1
ÿ a

�� 0).

Now, let P4 ü x ý have two pairs of conjugate complex num-
bers. It means that in (25) b and d are different from zero,
which implies that

ü b ÿ d ý 2 �� ü b � d ý 2 	 (31)

From (25) and (31) we get easily

ü A2 ý 2 � � ü b ÿ d ý 2 ��¯ü A2 ý 3 � � ü b � d ý 2 	 (32)

Thus, ü A2 ý 2 ' 3 are different nonpositive real numbers, and
ü A2 ý 1 � 4a2 is evidently a nonnegative real number.

Finally, let P4 ü x ý have only real roots. From (26) it is easy
to see that ü A2 ý 1 ' 2 ' 3 � 0.

We shall furthermore prove the ”if” direction. If we want to
prove that the first case implies P4 ü x ý having two real roots
and a pair of conjugate complex roots we suppose the op-
posite, that the first case holds and for example P4 ü x ý has
two pairs of conjugate complex roots. We have proved be-
fore that if P4 ü x ý has two pairs of conjugate complex roots,
then it implies the second case. As the first and the second
case are mutually exclusive cases, we come to a contradic-
tion. The same type of a proof is valid if we suppose that
the first case holds and P4 ü x ý has four real roots. Hence,
the exclusive property of the cases is the main tool in all
remaining proofs.

Q.E.D.

Theorem 2.

1st case  #!
D1 � 0

or ü D1 � 0 and ü a2
2 � 4a0 � 0 or ü a2

2 � 4a0 � 0 and a2 � 0 ý�ý�ý
or ü D1 � 0 and a2

2 � 4a0 � 0 and a2 � 0 and a1
�� 0 ý

2nd case  "!
ü D1 � 0 and ü a2

2 � 4a0 � 0 or ü a2
2 � 4a0 � 0 and a2 � 0 ý�ý�ý

or ü a1 � 0 and a2
2 � 4a0 � 0 and a2 � 0 ý

3rd case  "! D1 ) 0 and a2
2 � 4a0 � 0 and a2 ) 0 	

(33)

Proof.

P3 ü t ý � t3 ÿ 2a2t2 ÿ ü a2
2 � 4a0 ý t � a2

1

P �3 ü t ý � 3t2 ÿ 4a2t ÿ a2
2 � 4a0

P � �3 ü t ý � 6t ÿ 4a2 	 (34)

Since in the third case all roots are real (double and triple
roots are included in that case) it is equivalent to D1 ) 0
(see [3]), but all roots are not only real, but all roots are
nonnegative, which is equivalent to D1 ) 0 and both roots
of P �3 ü t ý are nonnegative. This last statement is equivalent
to D1 ) 0 and P �3 ü 0 ý � a2

2 � 4a0 � 0 and P � �3 ü 0 ý � 4a2 ) 0.

Since in the second case all roots are real and different (ex-
cept in one special case which will be soon considered),
which is equivalent to D1 � 0, but as two roots are nonposi-
tive and one nonnegative we conclude that either P �3 ü t ý has
one root negative and one root positive or both roots are
nonpositive and different. The first case is equivalent to
D1 � 0 and P �3 ü 0 ý � a2

2 � 4a0 � 0. The second case is equiva-
lent to D1 � 0 and P �3 ü 0 ý � a2

2 � 4a0 � 0 and P � �3 ü 0 ý � 4a2 � 0.
It remains only to consider the special case of the second
case. In that special case one root of P3 ü t ý is negative
and two other roots are equal to zero. It is equivalent to
P3 ü 0 ý � � a2

1 � 0 (thus a1 � 0) and one root of P �3 ü t ý is neg-
ative while the other is zero. It is equivalent to a1 � 0 and
P �3 ü 0 ý � a2

2 � 4a0 � 0 and P � �3 ü 0 ý � 4a2 � 0.

Since in the first case we have two quite different possi-
bilities, we shall first consider the first possibility in which
only one root of P3 ü t ý is real and nonnegative. That first
possibility is equivalent to D1 � 0 (see [3]). In the second
possibility we have one double negative real root and one
nonnegative real root. It is equivalent to D1 � 0 (see [3])
and at least one root of P �3 ü t ý is negative. That is equivalent
to D1 � 0 and one root of P �3 ü t ý is negative while the other is
positive or both roots of P �3 ü t ý are nonpositive and different.
That means in the first case D1 � 0 and P �3 ü 0 ý � a2

2 � 4a0 � 0
or in the second case D1 � 0 and P �3 ü 0 ý � a2

2 � 4a0 � 0 and
P � �3 ü 0 ý � 4a2 � 0. But we need to separate this second case
additionally in two cases to make a distinction between it
and a special case of the second case (see remark 1. and
remark 2.).

Q.E.D.

Remark 1. It is easy to see that conditions a1 � 0 and
a2

2 � 4a0 � 0 imply D1 � 0.

Remark 2. To make a distinction between the following
two possibilities (see Figure 2.) we introduce these condi-
tions in order to characterise the first case and the second
case.

14
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1

Fig. 2a: 1st case D1 � 0 � a1
�� 0, P *3 ü 0 ý � a2

2 � 4a0 � 0,
P * *3 ü 0 ý � 4a2 � 0.

Remark 3. Ewerywhere in (33) the symbol ”or” is used

only in the exclusive sense. Although the characterization

of the first case and of the second case is quite complicated,

their main parts are not so complicated (the main parts are

those in which possibility D1 � 0 is excluded). Hence, the

main part of the first case is D1 � 0 and the main part of

the second case is D1 � 0 and (a2
2 � 4a0 � 0 or (a2

2 � 4a0 � 0

and a2 � 0)). These main parts, especially in the second

case, are of considerable importance in the theory of plane

quartic curves.

Fig. 2b: 2nd case a1 � 0, P *3 ü 0 ý � a2
2 � 4a0 � 0,

P * *3 ü 0 ý � 4a2 � 0.
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[3] B. PAVKOVIĆ, D. VELJAN, Elementarna matematika
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