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RADIMIR VIHER

The Consequences of Descartes’s Method

for Factorization of 4th Degree Polynomial

Posljedice Descartesove metode za faktorizaciju
polinoma 4. stupnja

SAZETAK

U &lanku je dan detaljan opis Descartesove metode za fak-
torizaciju polinoma &etvrtog stupnja (nad poljem R) koji
je dan u sljede¢em reduciranom obliku

Pa(x) = X* + apx® + a;x+ag = (X 4+ Ax+ B) (¢ +Cx+ D).

Nakon Sto je rijeSen sustav od Cetiri jednadzbe sa Cetiri
nepoznanice, koji slijedi iz gornjeg identiteta, dobiva se
sljedeéa kubna rezolventa Ps(t) = t3+ 2apt? + (a3 — 4ap)t —
a%, gdje je t=A2. Formulirana su i dokazana dva teorema.
U prvom se otkriva korespondencija izmedu tipova korijena
od P3(t) i od Py(x) dok se u drugom daje karakterizacija
tih tipova korijena od Ps(t).

Klju€ne rijeti: Descartesova metoda, faktorizacija, kubna
rezolventa, tipovi korijena, karakterizacija tipova korijena,
ravninske krivulje Cetvrtog reda

If we can find the roots of the equation
Pa(x) =agx? +agx® + apx® + agx+ag =0
aeR,i=1,2,34a4+#0, (1)

then we can also solve the problem of factorization of the
polynomial P4(x) over the field R. The history of the math-
ematics (see [1]) knows two basic methods for finding the
roots of (1) the Ferrari’s and Euler’s method. However, the
inverse reasoning is also true, if we know the factorization
of P4(x) over R then we can also find all roots easily by
solving two quadratic equations.

In the Descartes’s method (see [5]) for factorization of
P4(x) we can first suppose without losing generality that
as=1 and that a3=0. It is known that if az#0 then by

supstituting x=y—az/4 we get a'3 =0. Now we shall de-
scribe the method for factorization of the polynomial
P4(x) = X* + apx? + arx+ag = (X° + Ax+ B) (X’ + Cx+D), (2)

over R.
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From (2) we get the following system of nonlinear equa-
tions

A4+C=0
B+D+AC=a, 3)

AD+BC=az

BD = ag.

When we substitute C = —A in the second and the third
equation we get

B+D=A%+ay
—B+D=a;/A (4)
BD = ap.

Let us suppose that A0, then from the first and the second
equation we get easily

B A2+az_ﬂ

2 2A (5)
D:A2+a2 a1

2 2A°
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Finally, from (5) and from the last equation in (4) it follows
A® 4 2a,A% + (a5 —4apg) A —a = 0. (6)

After substituting t = A2 in (6), we get the following cubic
equation (resolvent)

t3 4 2a,t2 + (a5 —4ag)t —as = 0. 7)

Denote by Ps(t) the left side of (7). Since lim;_, 1. P3(t) =
+00 and P3(0) = —aZ, when a; #0, it follows that there is
a positive root of (7). Hence, there is a real root of (6) that
is different from zero, and we can calculate B and D using
the formulas (5). There is only the case a; =0 left to be
examined. Then we get the following system from (3)

A+C=0
B+D+AC=ay
AD+BC=0
BD = ap.
Analogously we get from (8)
B+D=A%+a,
A(D-B)=0 9)
BD = ag.

From the second equation in (9) we get A=0or D=B. If
A =0 we get from (9)

(8)

B+D=a
‘ (10)
BD = ap.
From (10) we get
_% . [%_
B > + 4 ao
(11)

and if a3—4ag >0 we have the complete solution of (8).
But when a3 —4ap <0, then evidently ap > 0 and we must
apply the second case D =B, which yields

D=B=.a
(12)
A= 2\/6._— ao.

Thus, we always have a nonnegative root of the equation
(6) and a complete solution of the system (3) in real num-
bers. There is only the equation (7) left to be examined.
Using the known substitution (see [4]) t =z—2a/3 we get
from (7)

2+pz+q=0, (13)
and the connection between p, g, ag, a1, az is

1
p=—4ap— =a3

3 (14)

— 8 2 2 3
q — gaoaz—al— Eaz.
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Leta; #0and

D= q;+g—j. (15)
It is known (see [3]) if D1 >0 then
z:\3/—g+\/D_1+3—g—\/D_1 (16)
is only a real root of (13), so that
t:\3/—2+\/D_1+\3/—g—\/D_—% 17)

is surely a positive root of (7). If D=0
23/-3 ifq<0

2=y ¥4 ifqg>0 (18)
0 ifg=0

is maximal nonnegative root of (13) (see [4]), so that
2ao

is surely a positive root of (7). If D1 <0, it can be shown,
that if

¢=arccos[—g(—%) g], (20)

then maximal real root of (13) is (see [4])

— /_E 9

z2=2 3cos?,. (21)
— _P 9_@

t=24/ 3 cos 373 (22)

is a positive root of (7). In all these cases

is a positive root of (6) and the other values of unknowns
of the system (3) are given by (5).

Now we shall formulate and prove the theorem that gives
the correspondences between the types of roots of P4(x)
and the types of roots of its cubic resolvent Ps(t) and a the-
orem that gives the characterizations for the types of roots
of P3(t). We have three main possibilities for the types of
roots of P3(t) (see Figure 1.).

In the first case, P5(t) has only one real nonnegative root
and two conjugate complex roots or one real nonnegative
root and one real negative double root.

In the second case, P3(t) has one real nonnegative root and
two different real nonpositive roots.
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In the third case, Ps(t) has three real nonnegative roots
(the cases of double and triple roots are included in this
case).
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Fig. 1a: 1st case
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Fig. 1b: 2nd case
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Fig. 1c: 3rd case

Theorem 1.

Ist case <= P4(x) has two real and two complex roots
2nd case <= P4(x) has only complex roots

3rd case <= P4(x) has only real roots

Proof. Let P4(x) have two real and two complex roots

Pa(x) = (X—X1) (X—X2) (x—a—bi)(x—a+bi)=
= [x% — (X1 + X2) X+ X1%2] [X2 — 2ax+ &%+ b?] =
= [¥* — (X1 4 a+bi) X+ (a+bi)xq]

[x? — (x24+a—bi)x+ (a—bi)xg] =
= [x? = (x1+a—bi)x+ (a—bi) x]
[X* — (x2+a+ bi) X+ (a+bi)x].

N

( (a
—( (
—( (
—( (
(24)

Let P4(x) have only complex roots
Pa(x) = (x—a—Dbi) (x—a+bi) (x—c—di)(x—c+di)=
= X2 — 2ax + a4+ b?| [x? — 2cx + ¢* + d?] =
= [x*— (b+d)ix+ac—bd+ (ad + bc)i

]

[x?+ (b4 d)ix+ac —bd — (ad + bc)i] =
=[x*— (b —d)ix+ac+bd+ (bc — ad)i]
[x? + (b—d)ix+ac +bd+ (ad — be)i].

(25)

Let P4(x) have only real roots

Pa(X) = (X —X1) (X —X2) (X —X3) (X —X4) =
= [X® = (X1 4 X2) X+ X1X2] [X2 — (X3 + Xa) X + XaXa] =
=[x = (X1 4 X3) X + X1X3] [X2 — (X2 + Xa) X + XoXa] =

= [x% — (X1 + X4) X + X1X4] [X2 — (X2 4 X3) X+ X2X3].
(26)

First, we shall prove the "only if” direction. Let P4(x) have
two real and two complex roots. Then we have the first row
in the factorizations (24) and the remaining three rows we
get by considering all possibilities of factorizations with
two quadratic polynomials having a unit as a leading coe-
ficient (regardless of it having real coeficients or complex
coeficients). These possibilities are closely connected with
the roots of the Descartes’s cubic resolvent Ps(t), because
t =A?, where A is a coeficient of x in one of these two
quadratic polynomials (no matter which one, because they
differ only in the sign). As the sum of these two coefi-
cients of x is the same in all those possibilities and de facto
represents the coeficient of x> (which is zero), we get an
important relation

X1 +X2+2a=0. (27)

Now, we shall consider two cases x; =Xz and X1 #x2. In
the first case, we obtain x;+a=x2+a=0, from (27) and
finally, from this one and from (24), it follows

(A%)1=4a" > 0; (A%)2,3=—b*<0. (28)
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Thus —b? is a double root of Ps(t) in the first case. In the
second case from (27) we obtain

Xo+a=—(x1+4). (29)

From (29) we conclude that x;+a# 0 and x2+a#0, be-
cause on the contrary, (29) leads to x;+a=X2+a=0 or
equivalently to x1 =X», which is a contradiction. Thus, in
the second case we obtain from (24)

(A%)23 = (x1+a)2—b?+2b(x1 +a)i. (30)

That means (A2)2,3 is a pair of conjugate complex numbers
(because b0 and x1+a#0).

Now, let P4(x) have two pairs of conjugate complex num-
bers. It means that in (25) b and d are different from zero,
which implies that

(b+d)?# (b—d)>% (31)
From (25) and (31) we get easily
(A%)2=—(b+d)?# (A%)3 = —(b—d)> (32)

Thus, (A?),,3 are different nonpositive real numbers, and
(A?)1 =4a? is evidently a nonnegative real number.

Finally, let P4(x) have only real roots. From (26) it is easy
to see that (A%)1,2,3>0.

We shall furthermore prove the if” direction. If we want to
prove that the first case implies P4(x) having two real roots
and a pair of conjugate complex roots we suppose the op-
posite, that the first case holds and for example P4(x) has
two pairs of conjugate complex roots. We have proved be-
fore that if P4(x) has two pairs of conjugate complex roots,
then it implies the second case. As the first and the second
case are mutually exclusive cases, we come to a contradic-
tion. The same type of a proof is valid if we suppose that
the first case holds and P4(x) has four real roots. Hence,
the exclusive property of the cases is the main tool in all
remaining proofs.

Q.E.D.

Theorem 2.

1st case <—
D1>0

or (D1 =0and (a3 — 4ag < 0 or (a5 — 4ap > 0 and az > 0)))

or (D1 =0anda3 —4ag = 0and a, > 0 and a; # 0)
2nd case <—

(D1 < 0and (a3 — 4ag < 0 or (a3 —4ap > 0 and ap > 0)))

or (a; =0and a3 — 4ap = 0 and ap > 0)
3rd case <= D; < 0and a§—4ao >0andap <0.
(33)
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Proof.
P3(t) = t3+ 2a,t? + (a3 — 4ag)t — a2
P3(t) = 3t% + 4ast + a3 — 4ap (34)

P; () = 6t + 4ay.

Since in the third case all roots are real (double and triple
roots are included in that case) it is equivalent to D1 <0
(see [3]), but all roots are not only real, but all roots are
nonnegative, which is equivalent to D1 <0 and both roots
of Pé(t) are nonnegative. This last statement is equivalent
to D1 <0 and P4(0) =a3—4ag >0 and P (0) =4a, < 0.

Since in the second case all roots are real and different (ex-
cept in one special case which will be soon considered),
which is equivalent to D3 < 0, but as two roots are nonposi-
tive and one nonnegative we conclude that either Pé(t) has
one root negative and one root positive or both roots are
nonpositive and different. The first case is equivalent to
D1 <0and Py(0)=a3—4ag < 0. The second case is equiva-
lent to D1 < 0 and Py(0) =a3—4ap >0 and P (0) =4a,>0.
It remains only to consider the special case of the second
case. In that special case one root of Ps(t) is negative
and two other roots are equal to zero. It is equivalent to
P3(0) = —a? =0 (thus a; = 0) and one root of Pé(t) is neg-
ative while the other is zero. It is equivalent to a; =0 and
P3(0) =aZ—4ap=0 and P (0) =4ay>0.

Since in the first case we have two quite different possi-
bilities, we shall first consider the first possibility in which
only one root of Ps(t) is real and nonnegative. That first
possibility is equivalent to D1 > 0 (see [3]). In the second
possibility we have one double negative real root and one
nonnegative real root. It is equivalent to D3 =0 (see [3])
and at least one root of Pé(t) is negative. That is equivalent
to D1 =0 and one root of Pé(t) is negative while the other is
positive or both roots of P;(t) are nonpositive and different.
That means in the first case D1 =0 and P5(0) =a3—4ag <0
or in the second case D1 =0 and P(0) =a3—4ap >0 and
Pé' (0)=4a,>0. But we need to separate this second case
additionally in two cases to make a distinction between it
and a special case of the second case (see remark 1. and
remark 2.).

Q.E.D.

Remark 1. It is easy to see that conditions a; =0 and
a5—4ap=0imply D;=0.

Remark 2. To make a distinction between the following
two possibilities (see Figure 2.) we introduce these condi-
tions in order to characterise the first case and the second
case.
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Fig. 2a: 1st case D1 = 0,a; # 0, P4(0) = a3 —4ap =0,
PY(0) = 4az > 0.
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Remark 3. Ewerywhere in (33) the symbol "or” is used
only in the exclusive sense. Although the characterization
of the first case and of the second case is quite complicated,
their main parts are not so complicated (the main parts are
those in which possibility D3 =0 is excluded). Hence, the
main part of the first case is D1 >0 and the main part of
the second case is D1 <0 and (a3—4ap < 0 or (a3—4ap>0
and az > 0)). These main parts, especially in the second
case, are of considerable importance in the theory of plane
quartic curves.
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Fig. 2b: 2nd case a; = 0, P4(0) = a3 —4ap =0,
P/(0) = 4a, > 0.
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