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ZVONKO CERIN

Triangles from the Feuerbach Triangle

Trokuti iz Feuerbachovog trokuta
SAZETAK

U ¢lanku dokazujemo Zetiri neobi¢na teorema o Feuerba-
chovom trokutu A4ByCy zadanog trokuta ABC kome su
vrhovi u totkama Ay, By, i Cq gdje pripisane kruZnice
dotitu izvana kruZnicu devet totaka. Ti rezultati odnose
se na problem odredivanja trokuta XYZ za koje ¢e seg-
menti AgX, BgY, i C4Z biti stranice trokuta. Pronadeno je
pet trokuta XYZ (uklju€ujuéi i degenerirani trokut u to&ki
D gdje upisana kruZnica iznutra dodiruje kruZnicu devet
to¥aka) pridruZenih trokutu ABC takvih da segmenti AgX,
BqY, i C4Z nikada nisu stranice bilo kakvog trokuta. Na
pozitivnoj strani, otkrivena su tri trokuta XYZ takva da su
segmenti AgX, BqY, i C4Z uvijek stranice nekog trokuta.
Dokazi se provode &istom algebarskom metodom upotre-
bom analiticke geometrije ravnine. Takoder se pokazuje
kako se ti i njima sli¢ni rezultati mogu otkriti pomocu
ratunalnog programa Geometer's Sketchpad (Geometrova
Crtanka).

Kljuéne rijeti: trokut, upisana kruZnica, pripisane
kruZnice, kruZnica devet tofaka, Feuerbachov trokut, cen-
tralne tocke trokuta, Feuerbachova totka, Geometer's
Sketchpad

1 Introduction

Recall the construction of a triangle ABC whose sides are
three given segments a, b, and ¢ (see Figure 1). First pick
a point B in the plane and select a point C on a circle with
centre at B and radius a. Then draw circles with centres at
B and C and radii ¢ and b. Intersections of these two circles
determine two possibilities for the third vertex A. Hence,
there is only one solution when we require that going from
Ato B and then to C is in the counterclockwise direction.

The condition for the existence of solutions is that the in-
equalities a < b+c, b<c+a, and c <a+b hold. Since
a, b, and c are positive, this condition is equivalent
with the requirement that T[a] > 0, where [a] is a short
notation for the triple (a,b,c) and T[a] is the prod-
uct (a+b+c)(b+c—a)(c+a—b)(a+b—c) which ex-
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pands to 2 (b?c? +c?a® +a?b?) — (a*+b*+c*). When it
is positive, T[a] is equal to 16 times the square of the area
S of ABC.

C

Fig. 1 Construction of a triangle from three segments.

Y
:

The function T can be therefore utilised to decide when
three segments are sides of a triangle. These three seg-
ments could be given in myriad of ways. One of the most
natural is to take them as segments PX, QY, and RZ joining
corresponding vertices of triangles PQR and XY Z (see Fig-
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ure 2(a)) or as segments PW, QW, and RW joining vertices
of a triangle PQR with a point W (see Figure 2(b)). We
write XYZ € Q(PQR) and W € Q(PQR) when T[PX] >0
and T[PW] > 0, respectively.

Fig. 2 (a) Triangles from segments joining vertices with
vertices.
(b) Triangles from segments joining vertices with
a point.
(c) The triangle from the medians.

For example, if A, B, and Cpy, are midpoints of sides BC,
CA, and AB of the base triangle ABC, then the statement
that (the complementary triangle) AyBCr is in Q(ABC) is
equivalent to the well-known fact that medians AAn, BB,
and CCy, are sides of a triangle.

The simplest proof of ApBrCm € Q(ABC) is based on the
Figure 2(c) from [3, p. 282]. The segments AU and BU
are parallel to AB, and AAn, so that the triangle BBU has
medians as sides.

Another entirely algebraic proof that is equally sim-
ple if we do it with a computer requires first to
find lengths of medians AAm, BBm, and CCy and
then to show that T[AAm]>O0. Since 2AAn is
equal v/2b2+2c2—a?, and 2BB;, and 2CC, are
V2c2+2a2—b? and v2aZ+2b%Z—c?, we easily find
T[AAR] = % S%>0.

The present article takes in problems shown in Figures
2(a) and 2(b) for the triangle PQR the Feuerbach triangle
A4ByCq of a given triangle ABC and searches for triangles
and points in Q(A4B4Cq) or its complement among var-
ious triangles and points naturally associated to ABC. If
you wonder what is so special about the Feuerbach trian-
gle, keep in mind that some of the most beautiful theorems
in triangle geometry have been proved about it in the last
250 years and that our results below show surprising role
of this triangle even in such a basic question as when three
segments are sides of a triangle. The surprise comes from
the black and white nature of our results: from segments
joining vertices of AgB4Cq with vertices of some triangles
we always get a triangle while there are triangles when we
never get a triangle in this way. An interesting recent arti-
cle about the Feuerbach triangle is [6].
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Fig. 3 The nine-point circle is touched from outside by
the excircles at vertices of the Feuerbach triangle
and from inside by the incircle at the Feuerbach
point of ABC.

The vertices Ag, Bg, and Cq4 of the Feuerbach triangle are
points in which the excircles ka, kp, and k¢ touch from
outside the circumcircle kg of the complementary triangle
AmBmCm. The circle kg is also known as the nine-point
circle because it goes through the midpoints Ap, Bm, and
Cm of sides, the feet Ao, Bo, and C, of altitudes, and the
midpoints A¢, B¢, and Cs of segments joining the ortho-
centre H (concurrence point of altitudes) with vertices A,
B, and C.

The above statement about excircles touching the nine-
point circle from outside is just a part of the famous Feuer-
bach theorem from 1834 which also established that the
incircle ky makes a touch with the nine-point circle from
inside at the so called Feuerbach point D of ABC (see [3]
and Figure 3 above).

2 Statement of Theorems

In order to describe our main results we need the triangle
ApBCp at points of contact of the incircle with sides of
ABC and the triangle An,BnCy, at points of intersection of
internal angle bisectors with sides of ABC (i. e., the in-
touch triangle (cevian triangle of the Gergonne point) and
the incentral triangle (cevian triangle of the incentre)).
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Theorem 1 In every triangle ABC it is impossible to con-
struct a triangle from segments AgD, B4D, and C4D join-
ing the vertices of its Feuerbach triangle with its Feuer-
bach point.

In our notation, this theorem simply claims that
D ¢ Q(ABC) holds for every triangle ABC. The next theo-
rem is a similar statement for four triangles.

Let Ay, Bg and Cg denote points diametrically opposite on
the nine-point circle to the points A, Bs and Cs.

Theorem 2 In every triangle ABC it is impossible to con-
struct a triangle from segments AgX, BqY, and C4Z when
XYZ is AxByCx forx € {g,m,n, p}.

The next two theorems are different because they describe
situations when segments to vertices of the Feuerbach tri-
angle are always sides of a triangle.

Theorem 3 If the triangle ABC is not isosceles, then the
segments AgAo, BgBo, and C4Cy joining the vertices of its
Feuerbach triangle with the vertices of its orthic triangle
AoBoCo are sides of a triangle.

Let Ag, Bq and Cq denote points diametrically opposite on
the nine-point circle to the midpoints Am, Bm and C, of
sides.

Theorem 4 In every triangle ABC, the segments joining
the vertices of its Feuerbach triangle A4B4Cqy with the ver-
tices of either its Euler triangle A;B¢Cs or the antipodal
AqBqCq of its complementary triangle AmBmCr, are sides
of an acute triangle.

3 Theorems and the Geometer’s Sketchpad

In this section we shall explain how one can discover and
check our theorems using the computer software the Ge-
ometer’s Sketchpad. This program allows one to explore
properties of geometric objects and constructions in a dy-
namical fashion because it remembers relationships and
readjusts all calculations as you move objects around (on
the screen).

Let us first describe how to make a script test . gss which
will test if segments PX, QY, and RZ from Figure 2(a)
are sides of a triangle. For this one must draw this figure,
measure lengths of these segments, and calculate T [PX].
Hide everything except the vertices and the calculation, se-
lect with Shift key all visible objects (one can do this also

with Ctrl+a), and then use Work menu to make the script.
In applying script test . gss one must select six points in
correct order. Its action will give a value of the function
T for segments joining corresponding vertices of two tri-
angles. As we move points around we must look whether
this value is positive. Then the segments are sides of a
triangle. On the other hand, when this value is zero or neg-
ative, then the segments are not sides of a triangle. The
same test applies to the situation of Figure 2(b). Simply
select the point W three times.

The next task is to make scripts for all points and triangles
which appear in our theorems. Of course, some of them,
like h.gss for the orthocentre of a triangle or tr_m.gss
for the complementary triangle of a triangle, are straight-
forward. Others, like d.gss for the Feuerbach point of a
triangle and tr_d. gss for the Feuerbach triangle of a trian-
gle, are a bit tricky. It would be wrong to use Figure 3 and
the Feuerbach theorem because the Geometer’s Sketchpad
has difficulties in finding intersections of two circles and
for it touching point is always a pair of points.

A way out from these difficulties is to construct these
points from their trilinear coordinates i.e., from any
triple of real numbers proportional to their distances
from sidelines of the base triangle.  We shall il-
lustrate this by describing the script d.gss for the
Feuerbach point D. It is well-known (see referen-
ces [4] and [2] and section 6 below) that D has
trilinears t;=1-—cos(B—C), t,=1-—cos(C—A), and
tc = 1 —cos(A — B) and that the actual distance of D from
BC is da = 2Sta/(taBC +t,CA +t:AB) while dy and d¢
have similar expressions.

Draw a triangle ABC and rotate points C and A around
points B and C for 90 degrees in the counterclockwise di-
rection to get points C’ and A’. Calculate sides BC, CA,
and AB, angles A, B, and C, and distances d4 and dy. Then
dilate points C’' and A’ with respect to centres B and C for
marked ratios Ad,/BC and Ad,/CA to get points C” and
A", where A is the product of signs of angles A, B, and C.
Finally, D will be the intersection of parallels through C”
and A” to BC and CA (see Figure 4). Hide everything ex-
cept A, B, C, and D, select with Shift these four points, and
use the Work menu to make the script. Its action produces
the Feuerbach point of a triangle whose vertices have been
selected.

For the Feuerbach triangle we must know that trilinears of
Aqg are —sin?(B55), cos?(532), and cos?(25B), and that
trilinears of By and Cq are their cyclic permutations. In
section 5 below we shall show how one can compute these
trilinears.
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Fig. 4 Sketch explaining the script d.gss for the Feuer-
bach point of a triangle.

How does one check the claim D ¢ Q(ABC) from the The-
orem 1? Well, draw ABC, use tr_d.gss and d.gss to get
its Feuerbach triangle A4B4Cq and its Feuerbach point D,
and then apply test.gss to compute the triangle test for
the triple [AgD]. As we move the point C around the value
of the test is never positive so that these segments are never
sides of a triangle. The arguments for other our claims are
analogous.

Of course, computer software like the Geometer’s Sketch-
pad can only help us to discover theorems and quickly
eliminate false conjectures but they can not give us (for
now) mathematically sound proofs. For one thing, the Ge-
ometer’s Sketchpad has limited precision so that no point
is determined precisely. Therefore, how can we expect
to prove something about the Feuerbach triangle when we
don’t even know the position of its vertices?

This is a nice example showing the need for rigour in math-
ematical proofs and for work we are going to do below in
proving our theorems. Our idea is to use analytic geom-
etry in the plane and position the base triangle in the co-
ordinate system so that most calculations are rather simple
especially when done with software using symbolic com-
putation (like Maple, Mathematica, and Derive) which is
nowadays quite common.

4 Placement of ABC

We shall position the triangle ABC in the following fash-
ion with respect to the rectangular coordinate system in
order to simplify our calculations. The vertex A is the
origin with coordinates (0, 0), the vertex B is on the x-
axis and has coordinates (rh, 0), and the vertex C has co-
ordinates (gqr/k,2fgr/k), whereh= f4+g, k= fg—1,
p=f2+1,q=12—-1s=¢’+1,t=0g2—1,u=f4+1,
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v=g*+1, andw= f —g. The three parameters r, f, and
g are the inradius and the cotangents of half of angles at
vertices A and B. Without loss of generality, we can as-
sume that both f and g are larger than 1 (i. e., that angles
A and B are acute).

Nice features of this placement are that most important
points related to the triangle ABC (including all central
points from Table 1 in [4]), have rational functions in f,
g, and r as coordinates and that we can easily switch from
f, g, and r to side lengths a, b, and ¢ and back with substi-
tutions

_rfs rgp

= b:T’ c=rh,
_(b+c)®—a®  (a+c)®-b* _ /T([a)
VT[] 97 VT([@) = 2(a+b+c)

Moreover, since we use the Cartesian coordinate system,
computation of distances of points and all other formulas
and techniques of analytic geometry are available and well-
known to widest audience. A price to pay for these conve-
niences is that symmetry has been lost.

The third advantage of the above position of the base tri-
angle is that we can easily find coordinates of a point with
given trilinears. More precisely, if a point P with coordi-
nates x and y has projections P,, Py, and P; onto the side
lines BC, CA, and AB and A = PPy/PPy and p = PPy /PP,
then

2fghr

gh(pu+a)r y=
fsSAu+gpu+hk’

T TSAH+gpU+hK

This formulas will greatly simplify our exposition because
there will be no need to give explicitly coordinates of
points but only its trilinear coordinates. For example,
the centre Ae of the A-excircle ky obviously has trilinears
—1:1:1. Then we use the above formulas with A = —1
and p = 1 to get the coordinates (r f gh/k, rgh/k) of Ac in
our coordinate system.

5 Computation of coordinates of points

In this section we shall explain how to compute coordi-
nates of all points from statements of our theorems.

Let | be the incenter of ABC. Then the inner angle bisec-
tors Al and Bl and the external angle bisector at the vertex
B have equations

e : x—fy=0, e: X+gy—hr=0,

e3: gXx—y—ghr=0.

The solution of equations e; and e, will give us coordinates
(fr,r) of the incenter | while the solution of e; and e3 de-
termines the coordinates Ac(f ghr/k, ghr/k) of the center
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of the A-excircle. Hence, the equations of the incircle and
the A-excircle are

et (x— {02+ (-2 =17,

) fghr 2 ghr 2_ ghr 2
= (=) (-5 - (%)

Fig. 5 Lines and circles used for the computation of coor-
dinates.

On the other hand, since the midpoints of sides have coor-
dinates

A r(fs+2gq) fgr
m 2k I k I

it is easy to compute coordinates

E (r(ft+3gq) r((k+2)2—wz)>

4k ’ 8k

prs

of the center of the nine-point circle and its radius TR It

follows that the nine-point circle has the equation

o (X_ r(ft:k3gq))2+ (y_ r((k+3(2—w2))2

_ (Prsy?

= (5c)
The equations es and es have only one solution which
Ua - Va
kma’ kmg
Aq of the A-excircle and the nine-point circle, where
Ua=ghr(fqs+6gq+4fg?), va=2ghr(k+2)? and
ma = ps+8(k+s). In an analogous way one can com-

. UV Ue V.
pute coordinates | ——, — ) and [ —<, - ) of the
kmg’ kmp M¢™ Mc

determines coordinates of the touching

other two vertices Byq and Cq4 of the Feuerbach triangle,
where up=hr(qs+ 6fgq—4f2), vp=2fhr(k+2)?
mp=ps+8(k+q), uc=gr(3qs+6fgq+ 4g°—4q),
Ve =—2fgrw? andm¢ = ps+8fgk.

Similarly, the equations e4 and es have only one solution
. . . Up V
which determines coordinates —0, —2), of the touch-
Mo Mo
ing point D of the nine-point circle and the incircle, where

Uup=r(fqs—6gq+4f),vo=2rw? and mp= ps—8k.

We can now compute the trilinear coordinates of D as fol-
lows. The third trilinear coordinate of D is proportional to
Vo/mg (the ordinate of D is its distance from AB). On the
other hand,

1—cos(A—B) =2sin? (%)

2 (B* — A*)? _2w?
(B* —A*)?+(1+B*A*)*  ps’

where A* =cot(A/2)=f and B* =cot(B/2) =g. But,
ps/mo represented in terms of a, b, and c is easily seen
to be symmetric, so that the third trilinear of D is in-
deed 1 — cos(A — B). The other two are 1 — cos(B — C) and
1—cos(C —A). We can verify this using the transfer for-
mulas from trilinears to our coordinates.

6 Proof of D ¢ Q(A4B4Cy)

With the standard formulad (P, Q) = v/(p—q)2+ (x—Y)2
for the Euclidean distance between points P(p,x) and

Q(q,y), we find

= Prslisl oo prslisl o prsiw
k. /Moma’ k. /Momp’ /MomMe’

for distances from points Ay, Bg, and C4 to the
point D, where ia=ft—2g and i, =gq—2f. Hence,
T[A4D] = —32 p*ris*w?i2iZmy /(k*m2mZm2), where my
is the following polynomial

(k+2)(2k 4+ 1) h® 4+ k (4k®+ 43k? + 68k + 32) h*
+k%(2k? + 11k +8)(k®+ 14k + 16) h® + k.

Since the expression mj is clearly positive (recall that
h > 2 and k > 0), we conclude that T[A4D] is never pos-
itive so that the segments Ay4D, By4D, and Cy4D can not be
sides of a triangle regardless of the shape of the triangle
ABC.
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7 Proof of AnBmnCm ¢ Q(A4B4Cy)

In the same way as above we can compute distances of
points Ag, Bg, and C4 from the midpoints of sides Am, Bm,
and Cp,.

Ap — llalm2 _ lin|m2
dAm k\/m—aa m k\/m—ba
m ry/ps
CdCm = [w]ma 2, mp= Tvpe
/Mc 2

and find T[A¢Am] = —2p?ris?w?izi2ms/(k*mZmZm32),
where mz is the polynomial

k(2k—3)h®
+ (k—2)(4k®+ 19k*> — 56k + 36) h*
+ (k—2)?(2k? + 3k — 6)(k?* + 10k — 8)h?+ (k= 2)".

Since m3 becomes a polynomial with all coefficients posi-
tive after the substitutions f = 1+ f’ andg = 1+ ¢’ (recall
that f > 1 and g > 1 and thus f’ > 0 and g’ > 0), we con-
clude that T [AgAn] is never positive so that the segments
AdAm, BgBm, and C4Cy also can not be sides of a triangle
for any triangle ABC.

8 Remarkson proofs of remaining cases

The proofs of the remaining six cases are almost identical
to the case with midpoints of sides. The only difference
is that polynomials corresponding to the polynomial m3
become far more complicated and difficult to write down.
This is even more so for polynomials that we obtain af-
ter the above substitutions because they have hundreds (up
to 570) terms. It is now clear that our method of proof is
almost impossible without use of computers. Also, in or-
der to check our claims in the rest of the paper, the reader
should make a try with some package for symbolic compu-
tation (like Maple, Mathematica, or Derive). We shall only
give some expressions that can serve as pointers to all those
who will attempt such a work-out. Therefore, this paper is
an example of a new type of articles in mathematics which
can be fully appreciated only by those readers that are will-
ing to read it interactively. The standards for exposition of
such papers is only emerging so that our presentation might
appear unusual or inadequate to some readers.

The author does not rule out the possibility that our results
have much simpler proofs with traditional geometric meth-
ods. Hence, our paper and its approach might challenge
readers to think of such old-fashioned proofs for Theorems
1-4.
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9 Proof of Theorem 3

Points Ao, Bo, and C, are projections of the vertices A, B,
and C onto the opposite sides BC, CA, and AB. Hence, we
get

2
Ay <4g hr’ 29hrt)’

52 52
hg?r 2fhqr gqr
o (5 ) ()

The distances of points Ag, By, and Cq4 from the points Ao,
Bo, and C, are

hr|ft—2 -
AdAOZM’ ByB, = | NM199-2fIV5
VSMa Ky/PMp
_ fgr{w|,/ps
CaCo =4 e

Then T[AgAo] = r*w?iZiZms/(k* p?s?mZmZm2), where
my= 5/ okikh? with A\j=12,84,2,0,0,0,0 for
i=0,1,...,7andk; is a (product of) polynomial(s) in the
variable k represented as sequences (ao, . . ., an) of their in-
teger coefficients as follows:

ko | 4(1,1)3

ki | (512,1024,600, 136, 35)

ko | 2(1,1)(8192,32768,52224,44032, 23422,
9332,2631,331)

ks | (32768,229376,666624,1056768,1002704,
583760, 203133, 38174,2845)

Ka | (16384,147456,563200, 1200128, 1564604,
1277204,636048, 176284, 20820)

ks | (512,6144,22360,37624,33077, 15050, 2845)

ke ((452,1916, 3150, 2364, 662)

k7 |(5,7)(7,5).

For example, polynomials ko and ke are 4(k+1)% and
662k* 4 2364 k> + 3150k? + 1916k + 452.

The above is the first example of our method of writing
down in compact form rather lengthly polynomials like
m4. We simply write in parenthesis their coefficients in the
increasing order starting with the trailing coefficient and
since ours are polynomials in variables h and k we give
polynomials of k as coefficients of powers of h.

The polynomial my has all coefficients positive so that
the triangle test T [AgAo] is always positive unless ABC is
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isosceles when it is zero. It follows that segments AgAo,
ByBo, and C4C, will be sides of a triangle for any triangle
ABC which is not isosceles.

10 Proof of A;BiCs € Q(AgByCq)

Points A¢, B¢, and Cs are midpoints of the segments AH,
BH, and CH, where H is the orthocenter of ABC. Since H
has coordinates (gqr/k, qrt/2k), we get

r grt r(2gg+ ft rt
Af<gq g)) ((gq )q>7

2k 4k 2k 74k

aqr r((k+2)2—-w?)
Ct (T 4k >

Hence, the distances AgAf, BgBf, and C4Ci are
MsMeg//Ma, MsM7//Mp, and msmg/,/Mc, where

ms =r./PS/(4K), me = qs+4fg+4g?
m;=pt+4fg+4f2 andmg=qt+4f2g2

We obtain T[AgA¢] = p?rts?mg/(256k*m2mZm2),
wheremg = 58 ki kM h? with A; = 11,6, 4,2,1,0,0,0,0
fori=0,...,8and

ko | (4,3)2(128, 256, 152, 27)

ki |8(32768,172032,377344,454400,332544,154112,
44938, 7632, 585)

ko | 4(131072,966656,2772992,4162560, 3627008,
1897856,589452,100840, 7341)

ks | 8(32768,319488,1248256,2487808,2785280,
1809408, 670562, 130568, 10415)

ka | 2(32768,434176,1930240, 3859968, 3956992,
2140648,572816,58393)

ks | (4096,120832, 706560, 1445888, 1323504,
550912, 83320)

ke | (6144,66048,142608,112992,29364)

k7 | (2736, 7488,4680)

ke | (243).

The polynomial mg has all coefficients positive so that the
triangle test T [AgA+] is always positive. It follows that seg-
ments AgA¢, BqB+, and Cy4Cy will be sides of a triangle for
any triangle ABC.

In order to show that the triangle with sides AgAg,
ByB, and C4Cs is acute recall that the triangle ABC
is acute, right, or obtuse if and only if the product
Ula] = (b®+c? —a?)(a? —b?+c?)(a® +b?—c?) is pos-
itive, zero, or negative (see [1]). Here, this prod-
uct is U[AgAf] = p*rés*migmiymio/ (4096 kS m3m3m3),
where the polynomials mig, m11, and mi2 become poly-
nomials in f’ and g’ with all coefficients positive after the
substitution f =1+ f’andg=1+4¢'".

11 Other proofsand extensions

We leave proofs of AgBqCqe Q(AgB4Cq) and
AxByxCx ¢ Q(Ag4B4Cyq) for x = p, n, g to the reader because
they are almost identical to the above proofs. The point
here is not that our method is elegant or simple (in the
traditional sense), but that the same method applies to all
cases.

Another method of proof of our theorems is to express
everything in terms of the side lengths a, b, and c. For
the Theorem 1 and the part of Theorem 2 for AnBCm,
the triangle test is easily seen to be always negative.
For other cases the procedure is to write the numerator
of the triangle test in terms of the three basic symmet-
ric polynomials in variables a, b, and ¢ and then use
the fact [5, p. 7] that they are roots of the polynomial
x3—20x%24 (024 r(r+4R))x—4rRa, where ¢ is the
semi-perimeter, r is the inradius, and R is the circumradius.
In this way we obtain a polynomial in o with coefficients
polynomials in r and R. Now using the Euler inequality
R > 2r and the fundamental inequalities between o, r, and
R (see [5, Chapter I]) in each case we can argue that the
triangle test function is either always positive or is never
positive. However, without some help from computers this
approach is also difficult.

We close with the following claims which are possible
projects from geometry of triangles. Our method with
polynomials applies here too.

When ABC is not equilateral, then the centre of the Kiepert
hyperbola [2] has the same property as D in Theorem 1.

When ABC is not quite special, then the centre of the
Jarabek hyperbola, which goes through the vertices A, B,
C, the orthocentre H, and the circumcentre O has the same
property as D in Theorem 1.

When ABC is not isosceles, then the segments DAp, DBy,
and DCy, are always sides of an obtuse triangle.

When ABC does not have angles of either 1t/3 or 211/3 ra-
dians, then the segments DA¢, DB+, and DCs are always
sides of a triangle.
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The segments XAq, Y By, and ZCq4 are never sides of a tri-
angle, where X, Y, Z are second intersections of DAy, DBy,
and DCq with the incircle. The same is true for segments
XD, YD, and ZD.

An interesting project is to decide which central points X
of the triangle ABC have the property that the segments
XAg, XBg, and XCy are always (never) sides of a triangle.

Dr. sc. Zvonko Cerin

Department of Mathematics
University of Zagreb
e-mail: cerin@math.hr
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