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A fixed point theorem for multi-maps satisfying an
implicit relation on metrically convex metric
spaces

I. ALTuN? H. A. HANCER' AND D. TurkoGLU?

Abstract. In this paper, we give a fized point theorem for multi-
valued mapping satisfying an implicit relation on metrically convexr met-
ric spaces. This result extends and generalizes some fixed point theorem
in the literature.
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1. Introduction

Let (X,d) be a metric space. Then X is said to be metrically convex if for every
pair z,y € X,z # y, there is a point z € X such that d(z,y) = d(z, z) + d(z,y). We
need the following lemma in the sequel.

Lemma 1 [[1]]. Let K be a non-empty and closed subset of a metrically convex
metric space X. Then for any x € K and y ¢ K, there exists a point z € 0K such
that d(z,y) = d(z, z) + d(z,y), where OK denotes the boundary of K.

Let CB(X) denote the family of all non-empty closed and bounded subsets of
X. Denote for A, B € CB(X)

D(A, B) = inf{d(a,b) : a € A,b € B}, (1)
0(A, B) = sup{d(a,b) : a € A,b € B} (2)

and
H(A,B) = max{:ggd(x, B), Sggd(y, A)}. (3)
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Note that D(A, B) < H(A, B) < §(A, B). Function H is a metric on CB(X) and
is called a Hausdorff metric. It is well known that if X is a complete metric space,
then so is the metric space (CB(X), H).

Itoh [4] proved a fixed point theorem for non-self maps F' : K — CB(X) sat-
isfying certain contraction condition in terms of Hausdorff metric H on CB(X)
under the boundary condition F(0K) C K. Rhoades [7] generalized this result to
a wider class of non-self multi-maps on K. Recently Dhage [2] has proved a fixed
point theorem for non-self multi-maps on K satisfying a slightly stronger contrac-
tion condition than that in Rhoades [7] and under a weaker boundary condition.
In Section 2 of this paper we give an implicit relation and some examples for this
relation. In Section 3, we prove a fixed point theorem for non-self multi-maps on
K satisfying an implicit relation.

2. Implicit relation

Implicit relations on metric space have been used in many articles (see [3], [5], [6],
8)):

Let R4 be the set of all non-negative real numbers and let 7 be the set of all
continuous functions 7T : Ri — R satisfying the following conditions:

Ty : T(t1,...,t5) is non-decreasing in ¢; and non-increasing in ta, ..., t5.

T5 : there exist two constants a,b > 0, 2a + 3b < 1 such that the inequality

T (u,v,v,w,v+w) <0 (4)
implies v < max{(a + b)v + bw, (a + b)w + bv}.
Ts5: T(u,0,0,u,u) > 0,T(u,0,u,0,u) >0 and T(u,u,0,0,2u) > 0, Vu > 0.

Remark 1. Note that, if u = w in Ty, then the inequality T'(u, v, v, w, v+w) < 0
L a+b
implies u < mv.

Now we give some examples.

Example 1. Let T(t1,...t5) = t1 — amax{ta, t3,tsa} — Bt5, where o, B > 0 and
20+ 36 < 1.

Ty : Obvious. Ty : Let T'(u,v, v, w,w +v) = u — amax{w,v} — B(w+v) < 0. Thus

u < max{(a + B)v + pw, (o + B)w + Pv}. Tz : T(u,0,0,u,u) = T(u,0,u,0,u) =

u(l—a—p0) >0 and T(u,u,0,0,2u) = u(l—a—28) > 0,Vu > 0. Therefore T € T.
Example 2. Let T(t1,...,t5) = t; — mmax{to, t3,ta, 1t5}, where 0 <m < 1.

Ty : Obvious. Ty : Let T(u,v,v,w,w +v) = u — mmax{w,v} < 0. Thus u <
max{mw,mv} and so Ty is satisfying with a = m, b = 0. T3 : T(u,0,0,u,u) =
T(u,0,u,0,u) =T (u,u,0,0,2u) =u(l —m) > 0,Yu > 0. Therefore T € T.

Example 3. Let T(t1,...,t5) = t1 — (aty + Bts + vts), where o, 5,7 > 0,2 +
26+y<land o+ (3 —~2>0.

Ty : Obvious. Ty : Let T(u,v,v,w,w +v) = u — (av + fv + yw) < 0. Thus
u < (a+B)v+vyw < max{(a+ B)v+yw, (a+ B)w+~v} and so T is satisfying with
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a=a+0—v,b=7~.T3:T(u,0,0,u,u) =u(l—y) >0, T(u,0,u,0,u) =u(l—3) >0
and T'(u,u,0,0,2u) = u(l —«) > 0,Yu > 0. Therefore T € T.

Example 4. Let T(t1,...t5) = t1 — ate — B max{ts,ts} — vt5, where a, 5,7 >0
and 2o+ 20 + 3y < 1.

Ty : Obvious. Ty : Let T'(u,v,v,w, w+v) = u—ov—Fmax{w,v} —y(w+v) <O0.
Thus v < max{(a+ 8+ y)v + fw, (o + B+ v)w + fv} and so Ty is satisfying with
a=a+0+vb=7v T5:T(u,0,0,u,u) = T(u,0,u,0,u) =u(l—F—7v) >0 and
T(u,u,0,0,2u) = u(l —a —2v) > 0,Yu > 0. Therefore T € T.

3. Main result

Now we give our main theorem.
Theorem 1. Let (X,d) be a metrically convex complete metric space and K a
non-empty closed subset of X. Let F': K — CB(X) be a multi-map satisfying

T(§(Fx, Fy),d(z,y), D(z, Fz), D(y, Fy), D(z, Fy) + D(y, Fx)) <0, (5)

for all x,y € K, where T € T. Further, if Fx NK # ¢ for each v € 0K, then F has
a fized point p € K such that Fp = {p} and F is continuous at p in the Hausdorff
metric on X.

Proof. Let be arbitrary and consider a sequence {z,} in K as follows: Let
xo = x and take a point x; € Fxg N K if FzgN K # ¢. Otherwise choose a point
r1 € 0K such that

d(zo, ) = d(zo, 1) + d(z1, 27) (6)

for some 2} € Fro C X\ K. Similarly, pick 25 € Fo1 N K if Fz1 N K # ¢, otherwise
choose a point x9 € 9K such that

d(x1,25) = d(z1,12) + d(z2, 25) (7)
for some 24, € Fzq; C X\K. Continuing this way we have
Tni1 € Fry N K if Fxy N K # ¢, (8)
or x,+1 € 0K satisfying
A(n, Tns1) + A1, 1) = A, Thy) (9)

for some z;,,, € F, C X\K.
By the construction of {z,,} we can write

{z,} =PUQ CK, (10)

where
P={z,€{zp}: 2y € Frn_1} (11)

and
Q={zn €{an}: 2, €0K, 2, ¢ Fr,_1}. (12)
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Then for any two consecutive terms x,, zn+1 of the sequence {z,}, we observe
that there are only the following three possibilities:

(1) Tpy Tnt1 € P,

(ii) zp, € P, xpy1 € Q, and

(131) Ty, € Q, Tpy1 € P.

First we show that {x,} is a Cauchy sequence in K. Now for any z,,z,+1 €
{zn}, we have the following estimates:

Case 1: Suppose that z,,x,+1 € P. Now since x,,_1,z, € K, we can use the
inequality (5), then we have

T(§(F$n717FfL‘n)7d($n717xn)7D(xnthxnfl)a

D(@n, Fn), D(2n1, Fn) + D(@n. Fan 1)) < 0 (13)

and so

T(d(l’n, xn+1)a d(xn—la xn)a d(xn—la J?n), d(l’n, xn—‘—l)a d(xn—la l'n)—Fd(l’n, $n+1)) S 0.
(14)
From Remark 1 there exist two constants a,b > 0, 2a+3b < 1 such that d(z,, pt1) <

a+b a+b
md(acn_l,xn), where 70

Case 2: Let x, € P and 2,41 € Q. Then d(z,,nt1) + d(Tpy1,2,,1) =
d(xn,x, ) for some x| € Fx,. Clearly,

{d(xman)

< % since 2a + 3b < 1.

d(xnv x/n—o—l)
; (15)

<
< (Fxnflann)

d(xm x’/ﬂ+1 )

Now following arguments similar to those in Case 1, we obtain

d(wn, o ,,) < ‘%Zd(xn,l,xn). (16)
From (15) and (16) it follows that
b
A, 11) < TopdlEn 1, 0). (17)

Case 3: Suppose that =, € @ and z,4+1 € P. Note that then x,_; € P and
there is a point 2/, € F,,—1 such that

d(Tp—1,2n) + d(xp, x)) = d(xp_1,,). (18)
Now,
d($n,$n+1) S d(l’n,ﬂiln) + d(l’;,]}n_._l)
< d(zp-1,2)) +6(Fzp_1,Fxy,). (19)

On the other hand, since z,_1,x, € K, we can use inequality (5), then we have

T(§(F"L‘n717Fxn)7d(xn717xn)7D(xnthxnfl%D(xnann)a

D(2n1, Fn) + D(wns Fn 1)) <0. 20
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Thus we have
T(d(ﬂfln,$n+1),d($n_1,J?n),d(J?n_l,J?/n),d(Jin,xn_H),
d(p—1,Tnt1) + d(xn,z))) < 0.
Using (18) we have
T(d(xln’xn-‘rl)ad(xn—laxln)ad(xn—lax,n)ad(xnaxn—i-l)a
d(xnfhxn) + d(xnvxn+1) + d($N7x/n)) S 0

and so
T (d(.’IJ{r” xn+l)a d(xnfh .’L'{n), d(xnfh .’L'{n), d(.’IJ»,“ xn+l)7
d(xn—1,20) + d(Tn, Tni1)) < 0.

From T5 there exist two constants a,b > 0, 2a + 3b < 1 such that
(a+ b)d(xp_1,.) + bd(Tp, Tni1),
< n .
) < max { (a4 b)d(zn, 2ni1) + bd(zn_1,2),)

Therefore using (19) we have

/ (a +b)d(zp_1,2,) + bd(xpn, Tnt1),
) < dlznmssa) e DN o) TR 2

Now from (16) in Case 2 applied to n — 1, we have

d(xn—la J?{n) S ;_l—_kzd(xn—% xn—l)

and hence from (25)

a+b
d(xn7xn+l) S —d($n72axn71)

1—-0
(a+0)?

+ max 1-b
(a +b)d(zp, Tpi1) +

d($n727 xnfl) + bd(x'ru xn+l)a
b(a +b)
1-9

d(xn—Qa xn—l)

(a+b)(1+a+d)
1-b
(a +b)d(zp, Tpy1) +

d(xnf% xnfl) + bd(xna xn+1)7
(L+b)(a+0b)
1-0

= Imax
d(xn—Q ) xn—l)

This implies
(a+b)(L+a+b) (1+b)(a+Db)

d(xp, Tnt1) < max{ Yd(zp—2,Tn-1).

21

(27)

(1-0)2 "1-0b)(1—a-0b)
Note that ¢ = max{ (a—i—l()i(i—;)—)g—i—b)’ (1%;’)—)2%;?}))} < 1. To see this,

2a + 3b < 1 yields

a+b<1l—2b—a
=a+b+ab+b2<1—2b—a+ab+b?
(@a+0b+ab+b%)

1—2b—a+ab+ b2
(a+b)(1+0b) -

(1-b)(1—a-0)
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Similarly, again from 2a + 3b < 1 we have

1>3b
3.
2 1-b
=1> ! +l
2(11— b) . 4
1 (29)
1 —— 4+ )=
=1> (1 — + 2)2
L1 1 +a—|—b)a—|—b
ATa+Darb)
+a+b)(a+
=1 .
e
Now for any n € N, we have
d(an, Toant1) < qd(Ton—2,72,) < q"d(z0, 21). (30)
Since n is arbitrary, one has
d(Xp, Tnt1) < ¢"d(xo,x1). (31)

Then from Cases 1-3, it easily follows that {z,} is a Cauchy sequence in K. As K
is closed, it is complete and hence lim, x,, = p exists. We show that p is a fixed
point of F. Without loss of generality, we may assume that z,,1 € Fx,, for some
n € N. Then using (5) we have

T(6(Fxn, Fp),d(zn,p), D(zn, Fxyn), D(p, Fp), D(xn, Fp) + D(p, Fay)) <0, (32)

and letting n — oo we have

T(D(p, Fp),0,0, D(p, Fp), D(p, Fp)) < 0. (33)

From T3 we have D(p, Fp) =0 and so p € Fp.
Further, we have

T(0(Fp, Fp),d(p,p), D(p, F'p), D(p, F'p), D(p, F'p) + D(p, F'p)) < 0, (34)

and so
T(6(Fp, Fp),0,0,0,0) <0. (35)

Again from T; and T5 we have §(Fp, Fp) = 0 and so Fp = {p}.
To show the uniqueness of p, let ¢(# p) be another fixed point of F. Then

T(0(Fp, Fq),d(p,q), D(p, Fp), D(q, Fq), D(p, Fq) + D(q, F'p)) <0,  (36)

and so
T'(d(p,q),d(p,q),0,0,2d(p,q)) < 0. (37)

Again from T3 we have p = q.
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Finally, we prove the continuity of F' at p. Let {z,} C X be any sequence such
that 2z, — p as n — co. Now

T(0(Fzn, Fp),d(zn,p), D(2n, Fzy), D(p, Fp), D(2n, Fp) + D(p, Fz,)) <0 (38)
and letting n — oo we have

T(lim H(Fzy, F'p),0,lim H(Fp, Fz,),0,im H(Fp, Fz,)) <0. (39)

From T5 we have lim,, H(Fz,, Fp) = 0, showing that F' is continuous at p. This
completes the proof. O
Remark 2. Theorem 1 of [2] follows from Example 1 and Theorem 1.
Remark 3. We can have some new results from other erxamples and Theo-
rem 1.
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