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Semi-aposyndetic continuum X is metrizable if
and only if it admits a Whitney map for C(X)

IvaAN LONCAR*

Abstract. The main purpose of this paper is to prove the metriz-
ability of semi-aposyndetic continuum X which admits a Whitney map

for C(X).
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1. Introduction

All spaces in this paper are compact Hausdorff and all mappings are continuous.
The weight of a space X is denoted by w(X).

A generalized arc is a Hausdorfl continuum with exactly two non-separating
points (end points) z,y. Each separable arc is homeomorphic to the closed interval
I=10,1].

We say that a space X is arcwise connected if for every pair x,y of points of X
there exists a generalized arc L with end points x, y.

Let X be a space. We define its hyperspaces as the following sets:

2X = {F C X : F is closed and nonempty},
C(X) ={F € 2% : F is connected}, (1)
C*(X) = C(C(X)),
X(n) = {F € 2% : F has at most n points}, n € N.
For any finitely many subsets Si, ..., Sy, let
(S1, .00y Sp) = {F e2X . FcC U S;, and F'NS; # P, for each z} . (2)
i=1

The topology on 2% is the Vietoris topology, i.e., the topology with a base

{< Ux,...,U, >: U; is an open subset of X for each i and each n < oo },
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and C(X), X(n) are subspaces of 2X. Moreover, X (1) is homeomorphic to X.

Let X and Y be the spaces and let f : X — Y be a mapping. Define
2/ 12X — 2Y by 2/(F) = f(F) for F € 2%. By [9, p. 170, Theorem 5.10] 2/ is
continuous and 2 (C(X)) ¢ C(Y), 2/(X(n)) C Y(n)). The restriction 27|C(X)
is denoted by C(f).

Let A be a subspace of 2%. By a Whitney map for A [10, p. 24, (0.50)] we will
mean any mapping g : A — [0, +00) satisfying

a) if A, B € A such that A C B and A # B, then g(A) < g(B) and

b) g({z}) = 0 for each z € X such that {z} € A.

If X is a metric continuum, then there exists a Whitney map for 2% and C(X)
([10, pp. 24-26], [3, p. 106]). On the other hand, if X is non-metrizable, then it
admits no Whitney map for 2% [1]. It is known that there exist non-metrizable
continua which admit and ones which do not admit a Whitney map for C(X) [1].

The notion of an irreducible mapping was introduced by Whyburn [12, p. 162].
If X is a continuum, a surjection f : X — Y is drreducible provided no proper
subcontinuum of X maps onto all of Y under f. Some theorems for the case when
X is semi-locally-connected are given in [12, p. 163].

A mapping f : X — Y is said to be hereditarily irreducible [10, p. 204, (1.212.3)]
provided that for any given subcontinuum Z of X, no proper subcontinuum of Z
maps onto f(Z).

A mapping f : X — Y is light (zero-dimensional) if all fibers f~!(y) are
hereditarily disconnected (zero-dimensional or empty) [2, p. 450], i.e., if f=1(y)
does not contain any connected subsets of cardinality larger that one (dim f~*(y) <
0). Every zero-dimensional mapping is light, and in the realm of mappings with
compact fibers the two classes of mappings coincide. Every hereditarily irreducible
mapping is light. If f: X — Y is monotone and hereditarily irreducible, then f is
one-to-one.

We shall use the notion of inverse system as in [2, pp. 135-142]. An inverse
system is denoted by X = {X,, pas, A}

An element {z,} of the Cartesian product [[{X, : a € A} is called a thread of
X if pap(zp) = x4 for any a, b € A satisfying a < b. The subspace of [[{X, : a € A}
consisting of all threads of X is called the limit of the inverse system X = {X,, pas,
A} and is denoted by lim X or by lim{X,, ps, A} [2, p. 135].

We say that an inverse system X = { X, pap, A} is o-directed if for each sequence
ai,as, ..., ag, ... of the members of A there is an a € A such that a > ay, for each k
eN.

Let X = {Xa, Pab, A} be an inverse system of compact spaces with the
natural projections p, : limX — X, for a € A. Then 2X = {2%« 2Par A},
C(X) = {C(X.),C(pap), A} and X(n) = {Xa(n), 2Pet| X,(n), A} form inverse
systems.

Lemma 1. [5, Lemma 2/. Let X = limX. Then 2¥ = lim2%X, C(X) =
lim C(X) and X (n) = lim X(n).

The following theorem is an external characterization of non-metric continua
which admit a Whitney map for C(X) [7, p. 398, Theorem 2.3].

Theorem 1. Let X be a non-metric continuum. Then X admits a Whitney
map for C(X) if and only if for each o-directed inverse system X = { X, pap, A}
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of continua which admit Whitney maps for C(X,) and X = limX there exists a
cofinal subset B C A such that for every b € B the projection py, : imX — X, is
hereditarily irreducible.
In the sequel we shall use the following result [11, p. 226, Exercise 11.52].
Lemma 2. If X is a continuum and if A and B are mutually disjoint subcon-
tinua of X, then there is a component K of X\ (AU B) such that CIKNA # ( and
CIKN B # 0.

2. Preliminary results and definitions

The theorems stated in this section will be used in proving the main theorems in
the section below.

We shall use the notion of a network of a topological space.

A family N = {M, : s € S} of subsets of a topological space X is a network for
X if for every point x € X and any neighbourhood U of = there exists an s € .S
such that x € My C U [2, p. 170]. The network weight of a space X is defined
as the smallest cardinal number of the form card(N), where N is a network for X;
this cardinal number is denoted by nw(X).

Theorem 2. [2, p. 171, Theorem 3.1.19]. For every compact space X we have
nw(X) = w(X).

The following theorem is the main theorem of this section.

Theorem 3. Let X be a continuum. Then w(C(X)\X(1)) = Rg if and only if

Proof. If w(X) = Ny, then w(C(X)) = Ng. Hence, w(C(X)\X(1)) = No.
Conversely, if w(C(X)\X(1)) = Ng, then there exists a countable base B = {B; :
i € N} of C(X)\X(1). For each B; let C; = U{x € X : x € B, B € B;}, i.e. the
union of all continua B contained in B;.

Claim 1. The family {C; : i € N} is a network of X. Let X be a point of
X and let U be an open subsets of X such that x € U. There exists an open set
V such that x € V. C CIV C U. Let K be a component of CIV containing z. By
Boundary Bumping Theorem [11, p. 73, Theorem 5.4] K is non-degenerate and,
consequently, K € C(X)\X(1). Now, (U) N (C(X)\X(1)) is a neighbourhood
of K in C(X)\X(1). It follows that there exists a B; € B such that K € B; C
(UY N (C(XINX(1)). Tt is clear that C; C U and = € C; since x € K C U. Hence,
the family {C; : i € N} is a network of X.

Claim 2. nw(X) = Xg. Apply Claim 1 and the fact that B is countable.

Claim 3. w(X) = Rg. By Claim 1 we have nw(X) = Ry. Moreover, by

Theorem 2 w(X) = No. O
Corollary 1. If X is a continuum, then w(C?(X)\C(X)(1)) = N if and only
Zf w(X) = No.
Proof. By Theorem 3 w(C(X)) = Ng. This means that w(X) = g since X is
homeomorphic to X (1) C C(X). O

3. Main theorem

The concept of aposyndesis was introduced by Jones in [4].
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A continuum is said to be semi-aposyndetic [3, p. 238, Definition 29.1], if for
every p # ¢ in X, there exists a subcontinuum M of X such that Intx (M) contains
one of the points p,q and X\ M contains the other one. Each locally connected
continuum is semi-aposyndetic.

Now we shall prove the main theorem of this paper.

Theorem 4. Semi-aposyndetic continuum X is metrizable if and only if it
admits a Whitney map for C(X).

Proof. If X is metrizable, then it admits a Whitney map for C(X) ([10, pp.
24-26], [3, p. 106]). Conversely, let X admit a Whitney map u : C(X) — [0, +00).
Suppose that X is non-metrizable. The remaining part of the proof is broken into
several steps.

Step 1. There exists a o-directed directed inverse system X = {Xq, pap, A}
of metric compact spaces X, such that X is homeomorphic to limX [7, p. 397,
Theorem 1.8].

Step 2. There exists a cofinal subset B C A such that for every b € B the
projection pp : im X — X3, is hereditarily irreducible. This follows from Theorem 1.

Step 3. If lim X is semi-aposyndetic, then for every pair C,D of disjoint
non-degenerate subcontinua of lim X there exists a non-degenerate subcontinuum
E C lim X such that CNE #0# DNE and (CU D)\ E # 0. We shall consider
two cases.

a) If either Intx (C) # 0 or Intx (D) # (), then it suffices to apply Lemma 2 to
the union C'U D and obtain a component K of X\ (C'U D) such that CIK NC # ()
and CIKND # (). Then F = CIK is a continuum with properties CNE # () # DNE
and (CU D)\ E # 0 since Intx(C)NE =0 or Intx(D)NE = .

b) Assume that Intx (C') = ) and Intx (D) = 0. There exist x,y € C such that
x # y. Moreover, there exists a subcontinuum M of lim X such that Intjmx (M)
contains one of the points z,y and X\ M contains the other one since X is semi-
aposyndetic. Suppose that z € Intx (M) and y € X\ M. If M N D # (), then
we set £ = M and we have the continuum E such that CNE # ) # DN E and
(C UD)\E # ) since y € X\ M. Suppose that M N D = . Applying Lemma 2
to the union C'U D U M we obtain a component K of X\ (C'U D U M) such that
CIKN(CUM) # (0 and CIK N D # (. Tt is clear that z ¢ CIK. If CIK N C # 0,
then we set F = C1K and obtain a continuum E such that CNE # ) # DN E and
(CUD)\E # 0 since x ¢ CIK. If CLK N C = 0, then CIK N M # () and we set
E=CIKUM.Nowy¢ E,CNE#0# DNE and (CUD)\FE # 0.

Step 4. Every C(py) : C(limX) — C(pp)(C(lim X)) C C(X,) is one-to-one.
Consider the inverse system C(X) = {C(X,), C(pas), A} whose limit is C(lim X))
(Lemma 1). From Theorem 1 it follows that there exists a subset B cofinal in
A such that the projections p;, are hereditarily irreducible and C(ps) are light
for every b € B, see [10, p. 204, (1.212.3)]. Since lim X is homeomorphic to
lim{ Xy, pye, B}, we may assume that B = A. Let Y, = C(p,)(C(X)). Furthermore,
C(pa) 1(Xa(1)) = X (1) since from the hereditary irreducibility of p, it follows
that no non-degenerate subcontinuum of X maps under p, onto a point. We in-
fer that C(p,) Yo \Xa(1)] = C(X)N\X(1). Let us prove that the restriction
C(pa)|[C(X)N\X(1)] is one-to-one. Suppose that C(pg)|[C(X)\X (1)] is not one-
to-one. Then there exist a continuum C, in X, and two continua C, D in X such
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that p,(C) = po(D) = C,. Tt is impossible that C C D or D C C since p, is hered-
itarily irreducible. Otherwise, if C N D # @), then for the continuum ¥ = CU D we
have that C and D are subcontinua of Y and pe(Y') = pa(C) = pa(D) = C, which
is impossible since p, is hereditarily irreducible. We infer that C N D = ). There
exists a non-degenerate subcontinuum F C lim X such that CNE # 0 # DN E and
(CUD)\E # 0 since lim X is semi-aposyndetic (Step 3). Moreover, we may assume
that ENC # C and END # D. Now p,(EUD) = p,(FE) which is impossible since p,
is hereditarily irreducible. It follows that the restriction P, = C(p,)|(C(X)N\X(1))
is one-to-one and closed [2, p. 95, Proposition 2.1.4].

Step 5. C(XN\X(1) is metrizable and w(C(X)\X(1)) < Rg. From Step 4
it follows that P, is a homeomorphism and C(X)\ X (1) is metrizable. Moreover,
w(C(XIONX(1)) < Ny since Y, as a compact metrizable space is separable and,
consequently, second-countable [2, p. 320].

Step 6. X is metrizable. Apply Theorem 3.

Step 6 contradicts the assumption that X is non-metrizable. The proof is com-
pleted. O

Let us observe that in the proof of Theorem 4 the semi-aposyndesis is used
only in Step 3 to ensure, for every pair C, D of disjoint non-degenerate subcontinua
of lim X, the existence of a non-degenerate subcontinuum FE C lim X such that
CNE#0#DNE and (CUD)\FE # (. The existence of such continuum can be
ensured in other classes of continua.

An easy proof of the following lemma is left to the reader.

Lemma 3. If X is an arcwise connected continuum, then for every pair C, D
of disjoint non-degenerate subcontinua of X there exists a non-degenerate subcon-
tinuum E C X such that CNE # 0 # DNE and (CU D)\ E # 0.

Theorem 5. An arcwise connected continuum X is metrizable if and only if it
admits a Whitney map for C(X).

Proof. Repeat the proof of Theorem 4 replacing b) in Step 3 by Lemma 3. O

An arboroid is a hereditarily unicoherent arcwise connected continuum. A
metrizable arboroid is a dendroid.

Corollary 2. Let X be an arboroid. Then X is metrizable if and only if it
admits a Whitney map for C(X).

Proof. Apply Theorem 5. g

We say that a continuum X admits a Whitney map for C?(X) if C(X) admits
a Whitney map for C(C(X)). It is known that if X is a continuum, then C(X) is
arcwise connected [8, p. 1209, Theorem|. Hence, using Theorem 5, we obtain the
following corollary.

Corollary 3. A continuum X is metrizable if and only if it admits a Whitney
map for C%(X).

Proof. If X admits a Whitney map for C?(X) = C(C(X)), then C(X) admits
a Whitney map for C(C(X) = C?(X). From Theorem 5 it follows that C(X) is
metrizable. Hence, X is metrizable. ]

It is known [2, p. 171, Corollary 3.1.20] that if a compact space X is the
countable union of its subspaces X,,,n € N, such that w(X,,) < 8o, then w(X) <
No. Using this fact and theorems proved in the previous section we obtain the
following theorems.
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Theorem 6. Let a continuum X be the countable union of its semi-aposyndetic
subcontinua. Then X is metrizable if and only if it admits a Whitney map for
C(X).

Theorem 7. If a continuum X is the countable union of its arcwise connected
subcontinua, then X is metrizable if and only if it admits a Whitney map for C(X).

A continuum X is said to be o-rim-semi-aposyndetic provided for each x € X
and for each open set U containing x there exists an open set V suchthat x € V C U
and the boundary Bd(V) is the countable union of its semi-aposyndetic subcontinua.

Theorem 8. If a continuum X is o-rim-semi-aposyndetic, then it is metrizable
if and only if it admits a Whitney map for C(X).

Proof. It is known that if X is metrizable, then it admits a Whitney map for
C(X) [10, pp. 24-26], [3, p. 106]. Conversely, let X be a o-rim-semi-aposyndetic
continuum which admits a Whitney map for C(X). We shall prove that X is rim-
metrizable. Let x € X be a point of X and let U be an open set which contains
x. There exists an open set V' such that x € V C U and the boundary Bd(V) =
U{C; : i € N} of semi-aposyndetic continua C;. If u: C(X) — [0,00) is a Whitney
map, then the restriction p|C(C;) is a Whitney map. From Theorem / it follows
that every C; is metrizable since every C; is a semi-aposyndetic continuum. Using
(2, p. 171, Corollary 3.1.20] we conclude that Bd(V') is metrizable. Finally, from
[6, p. 5, Theorem 11] it follows that X is metrizable. O
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