Better butterfly theorem in the isotropic plane

Jelena Beban-Brkić*

Abstract

A real affine plane A_{2} is called an isotropic plane I_{2}, if in A_{2} a metric is induced by an absolute $\{f, F\}$, consisting of the line at infinity f of A_{2} and a point $F \in f$.

Better butterfly theorem is one of the generalisations of the wellknown butterfly theorem ([1],[4]). In this paper the better butterfly theorem has been adapted for the isotropic plane and its validity in I_{2} has been proved.

Key words: isotropic plane, better butterfly theorem

AMS subject classifications: 51N25

Received March 3, 2006

1. Isotropic plane

Let $P_{2}(\mathbf{R})$ be a real projective plane, f a real line in P_{2}, and $A_{2}=P_{2} \backslash f$ the associated affine plane. The isotropic plane $I_{2}(\mathbf{R})$ is a real affine plane A_{2} where the metric is introduced with a real line $f \subset P_{2}$ and a real point F incidental with it. The ordered pair $\{f, F\}, F \in f$ is called the absolute figure of the isotropic plane $I_{2}(\mathbf{R})([2],[3])$. In the affine model, where

$$
\begin{equation*}
x=x_{1} / x_{0}, \quad y=x_{2} / x_{0} \tag{1}
\end{equation*}
$$

the absolute figure is determined by the absolute line $f \equiv x_{0}=0$, and the absolute point F (0:0:1).

We will first define some terms and point out some properties of triangles and circles in I_{2} that are going to be used further on. The geometry of I_{2} could be seen for example in Sachs [2], or Strubecker [3].

All straight lines through the point F are called isotropic straight lines. A triangle in I_{2} is called allowable if none of its sides is isotropic.

An isotropic circle (parabolic circle or simply circle) is a regular $2^{\text {nd }}$ order curve in $P_{2}(\mathbf{R})$ which touches the absolute line f in the absolute point F. In I_{2} there exists a three parametric family of circles, given by $y=R x^{2}+\alpha x+\beta, R \neq 0$, $\alpha, \beta \in \mathbf{R}$. Each circle can be reduced to the normal form $y=R x^{2}$. Two circles $k_{i} \equiv y=R_{i} x^{2}+\alpha_{i} x+\beta_{i},(i=1,2)$ are called congruent if $R_{1}=R_{2}$; they are called concentric if $\alpha_{1}=\alpha_{2}$.

[^0]
2. Better butterfly theorem

Euclidean version

Let there be 2 concentric circles with the common centre O. A line crosses the two circles at points P, Q and $P^{\prime}, Q^{\prime}, M$ being the common midpoint of $P Q$ and $P^{\prime} Q^{\prime}$. Through M, draw two lines $A A^{\prime} B^{\prime} B$ and $C C^{\prime} D^{\prime} D$ and connect $A D^{\prime}, A^{\prime} D, B C^{\prime}$, $B^{\prime} C$. Let X, Y, Z, W be the points of intersection of $P P^{\prime} Q^{\prime} Q$ with $A D^{\prime}, B^{\prime} C, A^{\prime} D$, and $B C^{\prime}$, respectively. Then

$$
\frac{1}{M X}+\frac{1}{M Z}=\frac{1}{M Y}+\frac{1}{M W}
$$

The proof is to be found in [4].

Figure 1. Better butterfly theorem

Isotropic version

This statement remains valid in the isotropic plane provided concentric circles are replaced by congruent and concentric circles and the corresponding equation for the signed lengths reads:

$$
\begin{equation*}
\frac{1}{d(M, X)}+\frac{1}{d(M, Z)}=-\frac{1}{d(M, Y)}-\frac{1}{d(M, W)} \tag{2}
\end{equation*}
$$

Figure 2. Better butterfly theorem in I_{2}

The proof depends on the following lemma:
Lemma 1. In the allowable triangle $\triangle R S T$ let $R U$ be a non-isotropic straight line connecting the vertex R with some point U on the opposite side $S T$ of R. Let's introduce angles $\alpha=\angle(U R, R S)$, and $\beta=\angle(T R, R U)$. Then

$$
\begin{equation*}
\frac{\alpha+\beta}{d(U, R)}=\frac{\alpha}{d(T, R)}-\frac{\beta}{d(R, S)} \tag{3}
\end{equation*}
$$

Proof. Without loos of generality, we can assume that the vertex coordinates are as follows: $S(0,0), T\left(t_{1}, 0\right), R\left(r_{1}, r_{2}\right)$, and $U\left(u_{1}, 0\right)$, with $t_{1} \neq r_{1} \neq u_{1}$ (see Figure 3).

Figure 3.
For angles α, β and $\alpha+\beta$ we have:

$$
\begin{align*}
& \alpha=\angle(U R, R S)=u(R S)-u(U R)=\frac{s_{2}-r_{2}}{s_{1}-r_{1}}-\frac{r_{2}-u_{2}}{r_{1}-u_{1}} \tag{4}\\
& \beta=\angle(T R, R U)=u(R U)-u(T R)=\frac{u_{2}-r_{2}}{u_{1}-r_{1}}-\frac{r_{2}-t_{2}}{r_{1}-t_{1}} \tag{5}
\end{align*}
$$

and

$$
\begin{equation*}
\alpha+\beta=\angle(T R, R S)=u(R S)-u(T R)=\frac{s_{2}-r_{2}}{s_{1}-r_{1}}-\frac{r_{2}-t_{2}}{r_{1}-t_{1}} \tag{6}
\end{equation*}
$$

Inserting (4), (5), and (6) in (3), together with $d(U, R)=r_{1}-u_{1}, d(T, R)=r_{1}-t_{1}$, $d(R, S)=-r_{1}$ an equality is obtained.
Proof of the theorem. Let k and k^{\prime} be two congruent and concentric circles in $I_{2}, k \equiv y=R x^{2}, k^{\prime} \equiv y=R x^{2}+s, s \neq 0$ and let M be the midpoint of the chord $\overrightarrow{P Q}$ of k. Let us choose the coordinate system as shown (in the affine model) in Figure 2, i.e. the tangent on the circle k parallel to the chord $\overrightarrow{P Q}$ as the x-axis, and the isotropic straight line through M as the y-axis.

Choosing $M(0, m)$, for the chord $\overrightarrow{P Q}$ we have $\overrightarrow{P Q} \equiv y=m$, and $P\left(p_{1}, m\right)$, $Q\left(q_{1}, m\right), P^{\prime}\left(p_{1}^{\prime}, m\right), Q^{\prime}\left(q_{1}^{\prime}, m\right)$. Note that $p_{1}^{2}=q_{1}^{2}=\frac{m}{R}$, and ${p_{1}^{\prime 2}}^{2}={q_{1}^{\prime 2}}^{2}=\frac{m-s}{R}$.

Let $A\left(a_{1}, R a_{1}^{2}\right), B\left(b_{1}, R b_{1}^{2}\right)$, with $a_{1} \neq b_{1}$, and $C\left(c_{1}, R c_{1}^{2}\right), D\left(d_{1}, R d_{1}^{2}\right)$, with $c_{1} \neq d_{1}$, be the four points on the circle k, and $A^{\prime}\left(a_{1}^{\prime}, R a_{1}^{\prime 2}+s\right), B^{\prime}\left(b_{1}^{\prime}, R b_{1}^{\prime 2}+s\right)$, with $a_{1}^{\prime} \neq b_{1}^{\prime}, C^{\prime}\left(c_{1}^{\prime}, R c_{1}^{\prime 2}+s\right), D^{\prime}\left(d_{1}^{\prime}, R d_{1}^{\prime 2}+s\right)$, with $c_{1}^{\prime} \neq d_{1}^{\prime}$, the four points on the circle k^{\prime}. Let us introduce angles $\alpha=\angle(P M, M A)=\angle(Q M, M B)$ and $\beta=\angle(D M, M P)=\angle(C M, M Q)$. Applying Lemma 2 to allowable triangles $\triangle A D^{\prime} M, \triangle A^{\prime} D M, \triangle B^{\prime} C M$, and $\triangle B C^{\prime} M$ successively one gets

$$
\begin{array}{ll}
\frac{\alpha+\beta}{d(X, M)}=\frac{\alpha}{d\left(D^{\prime}, M\right)}-\frac{\beta}{d(M, A)} \quad(7)_{1}, \quad \frac{\alpha+\beta}{d(Z, M)}=\frac{\alpha}{d(D, M)}-\frac{\beta}{d\left(M, A^{\prime}\right)} \tag{7}\\
\frac{\alpha+\beta}{d(Y, M)}=\frac{\alpha}{d(C, M)}-\frac{\beta}{d\left(M, B^{\prime}\right)} \quad(7)_{3}, \quad \frac{\alpha+\beta}{d(W, M)}=\frac{\alpha}{d\left(C^{\prime}, M\right)}-\frac{\beta}{d(M, B)}
\end{array}
$$

From $(7)_{1}$ and $(7)_{2}$ we obtain:

$$
\begin{align*}
(\alpha+\beta)\left(\frac{1}{d(X, M)}+\frac{1}{d(Z, M)}\right)= & \alpha\left(\frac{1}{d\left(D^{\prime}, M\right)}+\frac{1}{d(D, M)}\right) \\
& -\beta\left(\frac{1}{d(M, A)}+\frac{1}{d\left(M, A^{\prime}\right)}\right) \tag{8}
\end{align*}
$$

Analogously, $(7)_{3}$ and $(7)_{4}$ yield that

$$
\begin{align*}
(\alpha+\beta)\left(\frac{1}{d(Y, M)}+\frac{1}{d(W, M)}\right)= & \alpha\left(\frac{1}{d\left(C^{\prime}, M\right)}+\frac{1}{d(C, M)}\right) \\
& -\beta\left(\frac{1}{d(M, B)}+\frac{1}{d\left(M, B^{\prime}\right)}\right) \tag{9}
\end{align*}
$$

Using $d(Y, M)=-d(M, Y)$ and $d(W, M)=-d(M, W)$, the latter becomes

$$
\begin{align*}
(\alpha+\beta)\left(\frac{1}{d(M, Y)}+\frac{1}{d(M, W)}\right)= & -\alpha\left(\frac{1}{d\left(C^{\prime}, M\right)}+\frac{1}{d(C, M)}\right) \\
& +\beta\left(\frac{1}{d(M, B)}+\frac{1}{d\left(M, B^{\prime}\right)}\right) \tag{10}
\end{align*}
$$

Showing that the right-hand sides in (8) and (10) are equal, i.e.

$$
\begin{align*}
& \alpha\left(\frac{1}{d\left(D^{\prime}, M\right)}+\frac{1}{d(D, M)}\right)-\beta\left(\frac{1}{d(M, A)}+\frac{1}{d\left(M, A^{\prime}\right)}\right) \\
= & -\alpha\left(\frac{1}{d\left(C^{\prime}, M\right)}+\frac{1}{d(C, M)}\right)+\beta\left(\frac{1}{d(M, B)}+\frac{1}{d\left(M, B^{\prime}\right)}\right) \tag{11}
\end{align*}
$$

the theorem will be proved.
Using the point coordinates we can rewrite the identity given in (11) to the following form

$$
\beta\left(\frac{1}{a_{1}}+\frac{1}{a_{1}^{\prime}}\right)+\beta\left(\frac{1}{b_{1}}+\frac{1}{b_{1}^{\prime}}\right)=-\alpha\left(\frac{1}{c_{1}}+\frac{1}{c_{1}^{\prime}}\right)-\alpha\left(\frac{1}{d_{1}}+\frac{1}{d_{1}^{\prime}}\right),
$$

which is equivalent to

$$
\begin{equation*}
\beta\left(\frac{a_{1}+b_{1}}{a_{1} b_{1}}\right)+\beta\left(\frac{a_{1}^{\prime}+b_{1}^{\prime}}{a_{1}^{\prime} b_{1}^{\prime}}\right)=-\alpha\left(\frac{c_{1}+d_{1}}{c_{1} d_{1}}\right)-\alpha\left(\frac{c_{1}^{\prime}+d_{1}^{\prime}}{c_{1}^{\prime} d_{1}^{\prime}}\right) \tag{12}
\end{equation*}
$$

Besides, knowing that $\overrightarrow{A B}$ is a chord through M, the following relations are obtained:

$$
\begin{align*}
M, A, B \text { collinear points } & \Leftrightarrow \operatorname{det}\left(\begin{array}{ccc}
0 & m & 1 \\
a_{1} & R a_{1}^{2} & 1 \\
b_{1} & R b_{1}^{2} & 1
\end{array}\right)=0 \\
& \Leftrightarrow-m\left(a_{1}-b_{1}\right)-R a_{1} b_{1}\left(a_{1}-b_{1}\right)=0 \\
& \Leftrightarrow a_{1} b_{1}=-\frac{m}{R} \tag{13}
\end{align*}
$$

Analogously, for $\overrightarrow{C D}$ being a chord through M, we get that

$$
\begin{equation*}
c_{1} d_{1}=-\frac{m}{R} \tag{14}
\end{equation*}
$$

Relations given in (13) and (14) can be reached using the following lemma:
Lemma 2. Let k be a circle in I_{2}, a point $P \in I_{2}, P \notin k$, and S_{1}, S_{2} two points of intersection of a non-isotropic straight line g through P with k. The product $f(P):=d\left(P, S_{1}\right) \cdot d\left(P, S_{2}\right)$ does not depend on the line g, but only on k and P. The proof is given in [2, p. 32].

So,

$$
a_{1} b_{1}=d(M, A) \cdot d(M, B)=d(M, P) \cdot d(M, Q)=p_{1} q_{1}=p_{1}\left(-p_{1}\right)=-p_{1}^{2}=-\frac{m}{R}
$$

and

$$
c_{1} d_{1}=d(M, C) \cdot d(M, D)=d(M, P) \cdot d(M, Q)=p_{1} q_{1}=p_{1}\left(-p_{1}\right)=-p_{1}^{2}=-\frac{m}{R}
$$

Analogously,

$$
\begin{align*}
a_{1}^{\prime} b_{1}^{\prime} & =d\left(M, A^{\prime}\right) \cdot d\left(M, B^{\prime}\right)=d\left(M, P^{\prime}\right) \cdot d\left(M, Q^{\prime}\right) \\
& =p_{1}^{\prime} q_{1}^{\prime}=p_{1}^{\prime}\left(-p_{1}^{\prime}\right)=-p_{1}^{\prime 2}=-\frac{m-s}{R} \tag{15}\\
c_{1}^{\prime} d_{1}^{\prime} & =d\left(M, C^{\prime}\right) \cdot d\left(M, D^{\prime}\right)=d\left(M, P^{\prime}\right) \cdot d\left(M, Q^{\prime}\right) \\
& =p_{1}^{\prime} q_{1}^{\prime}=p_{1}^{\prime}\left(-p_{1}^{\prime}\right)=-p_{1}^{\prime 2}=-\frac{m-s}{R} \tag{16}
\end{align*}
$$

Since A, A^{\prime}, and M as well as A, M, and B^{\prime} are collinear points the relations $-m\left(a_{1}-a_{1}^{\prime}\right)-a_{1} a_{1}^{\prime} R\left(a_{1}-a_{1}^{\prime}\right)+a_{1} s=0,-m\left(a_{1}-b_{1}^{\prime}\right)-a_{1} b_{1}^{\prime} R\left(a_{1}-b_{1}^{\prime}\right)+a_{1} s=0$ respectively, are valid. Subtracting these relations we get

$$
m\left(a_{1}^{\prime}-b_{1}^{\prime}\right)+a_{1} R\left(a_{1}^{\prime 2}-b_{1}^{\prime 2}\right)-a_{1}^{2} R\left(a_{1}^{\prime}-b_{1}^{\prime}\right)=0
$$

The chord $\overrightarrow{A^{\prime} B^{\prime}}$ being a non-isotropic line allows us to rewrite the latter equation as $m+a_{1} R\left(a_{1}^{\prime}+b_{1}^{\prime}\right)-a_{1}^{2} R=0$, wherefrom, using (13), we finally obtain that

$$
\begin{equation*}
a_{1}+b_{1}=a_{1}^{\prime}+b_{1}^{\prime} \tag{17}
\end{equation*}
$$

Following the similar procedure, it can be shown that

$$
\begin{equation*}
c_{1}+d_{1}=c_{1}^{\prime}+d_{1}^{\prime} \tag{18}
\end{equation*}
$$

holds as well. For the oriented angles α, β, introduced at the beginning, we have as follows:

$$
\begin{align*}
& \alpha=\angle(P M, M A)=u(M A)-u(P M)=\frac{a_{2}-m_{2}}{a_{1}-m_{1}}-\frac{m_{2}-p_{2}}{m_{1}-p_{1}}=\frac{R a_{1}^{2}-m}{a_{1}} \tag{19}\\
& \beta=\angle(C M, M Q)=u(M Q)-u(C M)=\frac{q_{2}-m_{2}}{q_{1}-m_{1}}-\frac{m_{2}-c_{2}}{m_{1}-c_{1}}=\frac{m-R c_{1}^{2}}{c_{1}} \tag{20}
\end{align*}
$$

Finally, using the relations given in (13), (14),..., and (20) in (12) one gets that

$$
\begin{aligned}
(12) & \Leftrightarrow \beta\left(a_{1}+b_{1}\right)=-\alpha\left(c_{1}+d_{1}\right) \\
& \Leftrightarrow\left(\frac{m-R c_{1}^{2}}{c_{1}}\right)\left(a_{1}-\frac{m}{R a_{1}}\right)=\left(\frac{R a_{1}^{2}-m}{a_{1}}\right)\left(c_{1}-\frac{m}{R c_{1}}\right) \\
& \Leftrightarrow \frac{\left(m-R c_{1}^{2}\right)\left(R a_{1}^{2}-m\right)}{R a_{1} c_{1}}=\frac{\left(m-R c_{1}^{2}\right)\left(R a_{1}^{2}-m\right)}{R a_{1} c_{1}} .
\end{aligned}
$$

Acknowledgments. The author is grateful to the referees for their valuable suggestions.

References

[1] H. S. M. Coxeter, S. L. Greitzer, Geometry Revisited, The Mathematical Association of America, Washington D. C., 1967.
[2] H. Sachs, Ebene isotrope Geometrie, Vieweg-Verlag, Braunschweig; Wiesbaden, 1987.
[3] K. Strubecker, Geometrie in einer isotropen Ebene, Math.-naturwiss. Unterricht, 15(1962), 297-306, 343-351.
[4] www.cut-the-knot.org/pythagoras/Butterfly.shtm

[^0]: *Department of Geomatics, Faculty of Geodesy, University of Zagreb, Kačićeva 26, HR-10 000 Zagreb, Croatia, e-mail: jbeban@geof.hr

