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Better butterfly theorem in the isotropic plane

Jelena Beban-Brkić∗

Abstract. A real affine plane A2 is called an isotropic plane I2, if
in A2 a metric is induced by an absolute {f, F}, consisting of the line
at infinity f of A2 and a point F ∈ f .

Better butterfly theorem is one of the generalisations of the well-
known butterfly theorem ([1],[4]). In this paper the better butterfly the-
orem has been adapted for the isotropic plane and its validity in I2 has
been proved.
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1. Isotropic plane

Let P2(R) be a real projective plane, f a real line in P2, and A2 = P2\f the
associated affine plane. The isotropic plane I2(R) is a real affine plane A2 where
the metric is introduced with a real line f ⊂ P2 and a real point F incidental with
it. The ordered pair {f, F}, F ∈ f is called the absolute figure of the isotropic plane
I2(R) ([2], [3]). In the affine model, where

x = x1/x0, y = x2/x0, (1)

the absolute figure is determined by the absolute line f ≡ x0 = 0, and the absolute
point F (0:0:1).

We will first define some terms and point out some properties of triangles and
circles in I2 that are going to be used further on. The geometry of I2 could be seen
for example in Sachs [2], or Strubecker [3].

All straight lines through the point F are called isotropic straight lines. A
triangle in I2 is called allowable if none of its sides is isotropic.

An isotropic circle (parabolic circle or simply circle) is a regular 2nd order curve
in P2(R) which touches the absolute line f in the absolute point F . In I2 there
exists a three parametric family of circles, given by y = Rx2 + αx + β, R �= 0,
α, β ∈ R. Each circle can be reduced to the normal form y = Rx2. Two circles
ki ≡ y = Rix

2 +αix+βi, (i = 1, 2) are called congruent if R1 = R2; they are called
concentric if α1 = α2.
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2. Better butterfly theorem

Euclidean version
Let there be 2 concentric circles with the common centre O. A line crosses the two
circles at points P , Q and P

′
, Q

′
, M being the common midpoint of PQ and P

′
Q

′
.

Through M , draw two lines AA
′
B

′
B and CC

′
D

′
D and connect AD

′
, A

′
D, BC

′
,

B
′
C. Let X,Y, Z,W be the points of intersection of PP

′
Q

′
Q with AD

′
, B

′
C, A

′
D,

and BC
′
, respectively. Then

1
MX

+
1

MZ
=

1
MY

+
1

MW

The proof is to be found in [4].

Figure 1. Better butterfly theorem

Isotropic version
This statement remains valid in the isotropic plane provided concentric circles are
replaced by congruent and concentric circles and the corresponding equation for
the signed lengths reads:

1
d(M,X)

+
1

d(M,Z)
= − 1

d(M,Y )
− 1

d(M,W )
(2)

Figure 2. Better butterfly theorem in I2
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The proof depends on the following lemma:
Lemma 1. In the allowable triangle 	RST let RU be a non-isotropic straight

line connecting the vertex R with some point U on the opposite side ST of R. Let’s
introduce angles α = ∠(UR,RS), and β = ∠(TR,RU). Then

α + β

d(U,R)
=

α

d(T,R)
− β

d(R,S)
(3)

Proof. Without loos of generality, we can assume that the vertex coordinates
are as follows: S(0, 0), T (t1, 0), R(r1, r2), and U(u1, 0), with t1 �= r1 �= u1 (see
Figure 3).

Figure 3.

For angles α, β and α + β we have:

α = ∠(UR,RS) = u(RS)− u(UR) =
s2 − r2
s1 − r1

− r2 − u2

r1 − u1
, (4)

β = ∠(TR,RU) = u(RU)− u(TR) =
u2 − r2
u1 − r1

− r2 − t2
r1 − t1

, (5)

and
α + β = ∠(TR,RS) = u(RS)− u(TR) =

s2 − r2
s1 − r1

− r2 − t2
r1 − t1

. (6)

Inserting (4), (5), and (6) in (3), together with d(U,R) = r1−u1, d(T,R) = r1− t1,
d(R,S) = −r1 an equality is obtained. ✷

Proof of the theorem. Let k and k
′
be two congruent and concentric circles in

I2, k ≡ y = Rx2, k
′ ≡ y = Rx2 + s, s �= 0 and let M be the midpoint of the chord−→

PQ of k. Let us choose the coordinate system as shown (in the affine model) in
Figure 2, i.e. the tangent on the circle k parallel to the chord −→

PQ as the x-axis,
and the isotropic straight line through M as the y-axis.

Choosing M(0,m), for the chord −→
PQ we have −→

PQ ≡ y = m, and P (p1,m),
Q(q1,m), P

′
(p

′
1,m), Q

′
(q

′
1,m). Note that p2

1 = q2
1 = m

R , and p
′
1

2
= q

′
1

2
= m−s

R .
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Let A(a1, Ra2
1), B(b1, Rb21), with a1 �= b1, and C(c1, Rc21), D(d1, Rd2

1), with
c1 �= d1, be the four points on the circle k, and A

′
(a

′
1, Ra

′
1

2
+ s), B

′
(b

′
1, Rb

′
1

2
+ s),

with a
′
1 �= b

′
1, C

′
(c

′
1, Rc

′
1

2
+ s), D

′
(d

′
1, Rd

′
1

2
+ s), with c

′
1 �= d

′
1, the four points

on the circle k
′
. Let us introduce angles α = ∠(PM,MA) = ∠(QM,MB) and

β = ∠(DM,MP ) = ∠(CM,MQ). Applying Lemma 2 to allowable triangles
	AD′M , 	A′DM , 	B′CM , and 	BC′M successively one gets

α + β

d(X,M)
=

α

d(D′ ,M)
− β

d(M,A)
(7)1,

α + β

d(Z,M)
=

α

d(D,M)
− β

d(M,A′)
(7)2,

α + β

d(Y,M)
=

α

d(C,M)
− β

d(M,B′)
(7)3,

α + β

d(W,M)
=

α

d(C ′ ,M)
− β

d(M,B)
(7)4.

From (7)1 and (7)2 we obtain:

(α + β)
( 1
d(X,M)

+
1

d(Z,M)

)
= α

( 1
d(D′ ,M)

+
1

d(D,M)

)

−β
( 1
d(M,A)

+
1

d(M,A′)

)
. (8)

Analogously, (7)3 and (7)4 yield that

(α + β)
( 1
d(Y,M)

+
1

d(W,M)

)
= α

( 1
d(C ′ ,M)

+
1

d(C,M)

)

−β
( 1
d(M,B)

+
1

d(M,B′)

)
. (9)

Using d(Y,M) = −d(M,Y ) and d(W,M) = −d(M,W ), the latter becomes

(α + β)
( 1
d(M,Y )

+
1

d(M,W )

)
= −α

( 1
d(C ′ ,M)

+
1

d(C,M)

)

+β
( 1
d(M,B)

+
1

d(M,B′)

)
. (10)

Showing that the right-hand sides in (8) and (10) are equal, i.e.

α
( 1
d(D′ ,M)

+
1

d(D,M)

)
− β

( 1
d(M,A)

+
1

d(M,A′)

)

= −α
( 1
d(C ′ ,M)

+
1

d(C,M)

)
+ β

( 1
d(M,B)

+
1

d(M,B′ )

)
(11)

the theorem will be proved.
Using the point coordinates we can rewrite the identity given in (11) to the

following form

β
( 1
a1

+
1
a

′
1

)
+ β

( 1
b1

+
1
b
′
1

)
= −α

( 1
c1

+
1
c
′
1

)
− α

( 1
d1

+
1
d

′
1

)
,

which is equivalent to

β
(a1 + b1

a1b1

)
+ β

(a
′
1 + b

′
1

a
′
1b

′
1

)
= −α

(c1 + d1

c1d1

)
− α

(c
′
1 + d

′
1

c
′
1d

′
1

)
. (12)
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Besides, knowing that −→
AB is a chord through M , the following relations are ob-

tained:

M,A,B collinear points ⇔ det




0 m 1
a1 Ra2

1 1
b1 Rb21 1


 = 0

⇔ −m(a1 − b1)−Ra1b1(a1 − b1) = 0

⇔ a1b1 = −m

R
. (13)

Analogously, for −→CD being a chord through M , we get that

c1d1 = −m

R
. (14)

Relations given in (13) and (14) can be reached using the following lemma:
Lemma 2. Let k be a circle in I2, a point P ∈ I2, P /∈ k, and S1, S2 two points

of intersection of a non-isotropic straight line g through P with k. The product
f(P ) := d(P, S1) · d(P, S2) does not depend on the line g, but only on k and P .
The proof is given in [2, p. 32].

So,

a1b1 = d(M,A) · d(M,B) = d(M,P ) · d(M,Q) = p1q1 = p1(−p1) = −p2
1 = −m

R
,

and

c1d1 = d(M,C) · d(M,D) = d(M,P ) · d(M,Q) = p1q1 = p1(−p1) = −p2
1 = −m

R
.

Analogously,

a
′
1b

′
1 = d (M,A

′
) · d(M,B

′
) = d(M,P

′
) · d(M,Q

′
)

= p
′
1q

′
1 = p

′
1(−p

′
1) = −p

′
1

2
= −m− s

R
, (15)

c
′
1d

′
1 = d(M,C

′
) · d(M,D

′
) = d(M,P

′
) · d(M,Q

′
)

= p
′
1q

′
1 = p

′
1(−p

′
1) = −p

′
1

2
= −m− s

R
. (16)

Since A, A
′
, and M as well as A, M , and B

′
are collinear points the relations

−m(a1 − a
′
1)− a1a

′
1R(a1 − a

′
1) + a1s = 0, −m(a1 − b

′
1)− a1b

′
1R(a1 − b

′
1) + a1s = 0

respectively, are valid. Subtracting these relations we get

m(a
′
1 − b

′
1) + a1R(a

′
1

2 − b
′
1

2
) − a2

1R(a
′
1 − b

′
1) = 0.

The chord
−−→
A

′
B

′
being a non-isotropic line allows us to rewrite the latter equation

as m + a1R(a
′
1 + b

′
1)− a2

1R = 0, wherefrom, using (13), we finally obtain that

a1 + b1 = a
′
1 + b

′
1. (17)
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Following the similar procedure, it can be shown that

c1 + d1 = c
′
1 + d

′
1 (18)

holds as well. For the oriented angles α, β, introduced at the beginning, we have
as follows:

α = ∠(PM,MA) = u(MA) − u(PM) =
a2 −m2

a1 −m1
− m2 − p2

m1 − p1
=

Ra2
1 −m

a1
, (19)

β = ∠(CM,MQ) = u(MQ)− u(CM) =
q2 −m2

q1 −m1
− m2 − c2

m1 − c1
=

m−Rc21
c1

. (20)

Finally, using the relations given in (13), (14),. . . , and (20) in (12) one gets that

(12) ⇔ β(a1 + b1) = −α(c1 + d1)

⇔
(m−Rc21

c1

)(
a1 − m

Ra1

)
=

(Ra2
1 −m

a1

)(
c1 − m

Rc1

)

⇔ (m−Rc21)(Ra2
1 −m)

Ra1c1
=

(m−Rc21)(Ra2
1 −m)

Ra1c1
.

✷
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