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Abstract. In this paper, we introduce strip ϕ-contraction, where ϕ is an altering distance
function, and obtain sufficient conditions for the existence of fixed points for such maps.
Further, we extend it to a pair of selfmaps. These results improve and generalize the results
of Khan, Swaleh and Sessa [1], Sastry and Babu [5] and Park [4] to strip ϕ-contractions.
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1. Introduction

Throughout this paper we assume that (X, d) is a metric space denoted simply by
X and T a selfmap of X, R+ = [0, ∞), N denotes the set of all natural numbers.
For x ∈ X, OT (x) = {x, Tx, T 2x, . . . } denotes the orbit of x with respect to T .
We denote the closure of OT (x) by OT (x).

We say that T is orbitally continuous at a point z ∈ X with respect to x ∈ X
if for any sequence {xn} ⊂ OT (x), with xn → z as n → ∞ implies Txn → Tz as
n → ∞. Here we note that any continuous selfmap of a metric space is orbitally
continuous, but an orbitally continuous map may not be continuous. For more
details and examples, see Turkoglu et al. [6].

We write
Φ = {ϕ : R+ → R+ : ϕ is continuous and ϕ(t) = 0 if and only if t = 0}.
We call an element ϕ ∈ Φ an “altering distance function”.

Park [4] proved the following theorem.

Theorem 1 (see [4]). Let T be a selfmap of X.

Suppose that for some x0 ∈ X, OT (x0) has a cluster point z in X. (1)

If T is orbitally continuous at z and Tz and T satisfies

d(Tx, Ty) < d(x, y) (2)
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for each x, y ∈ OT (x0), x 6= y, y = Tx, then z is a fixed point of T .

By using an altering distance function ϕ ∈ Φ, Sastry and Babu [5] proved the
following theorem.

Theorem 2 (see [5]). Let T be a selfmap of X. Suppose that T satisfies (1). If T
is orbitally continuous at z and Tz, and if there exists ϕ ∈ Φ such that

ϕ(d(Tx, Ty)) < ϕ(d(x, y)) (3)

for each x, y ∈ OT (x0), x 6= y, y = Tx, then z is a fixed point of T .

Remark 1. Theorem 1 follows by choosing ϕ(t) = t, t ≥ 0, in Theorem 2.

Theorem 3 (see [4]). Let T be a selfmap of a metric space X. Assume that for
some positive integer m, there exists a point x0 ∈ X such that

OT m(x0) has a cluster point z in X, (4)

and

d(Tmx, Tmy) < d(x, y) (5)

for all x, y ∈ X, x 6= y. Then z is a unique fixed point of T in X.

The study of fixed points of Meir-Keeler type contractions in the presence of an
altering distance function is an interesting and open area. Thus the purpose of this
paper is to introduce strip ϕ- contraction for ϕ ∈ Φ, which is more general than
Meir-Keeler type contraction (Example 1), and obtain sufficient conditions for the
existence of fixed points for such maps. Further, it is extended to a pair of selfmaps.
These results improve and generalize the theorems of Khan, Swaleh and Sessa [1],
Sastry and Babu [5] and Park [4] to strip ϕ-contractions.

2. Preliminaries

Meir and Keeler [3] established a fixed point theorem for selfmaps satisfying the
following (ε, δ) - contraction, which is known as Meir-Keeler type contraction.

Definition 1. Given ε > 0, there exists δ > 0 such that

ε ≤ d(x, y) < ε + δ implies d(Tx, Ty) < ε (6)

for all x, y in X.

Maiti and Pal [2] improved condition (6) in the following way and obtained fixed
points: given ε > 0, there is a δ > 0, such that

ε ≤ max{d(x, y), d(x, Tx), d(y, Ty)} < ε + δ

implies
d(Tx, Ty) < ε

for all x, y in X.
We now introduce “strip ϕ-contraction” as follows:
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Definition 2. Let (X, d) be a metric space and T a selfmap on X. Let ϕ ∈ Φ. We
say that T is a strip ϕ-contraction if for a given ε > 0, there is a δ > 0, such that

ε ≤ ϕ(d(x, y)) < ε + δ implies ϕ(d(Tx, Ty)) < ε (7)

for all x, y in X.

Here we observe that every strip ϕ-contraction is a Meir-Keeler type contraction
when ϕ is the identity map of R+. The following example shows that the class of
all strip ϕ-contractions is larger than the class of all Meir-Keeler type contractions.

Example 1. Let X = N with the usual metric. Define T : X → X by Tx = x3.
Define ϕ : R+ → R+ by

ϕ(t) =





t2

2
, if 0 ≤ t ≤ 1

1
2t2

, if t ≥ 1.

Then clearly ϕ ∈ Φ.
We now show that T is a strip ϕ-contraction. Let 0 < ε < 1. For any l, m ∈ X,
with l 6= m,

0 < ε = ϕ(|l −m|) =
1

2(l −m)2
< ε + δ with δ = min{ε, 1− ε}.

Then we have

ϕ(|T l − Tm|) = ϕ(|l3 −m3|) =
1

2((l3 −m3)2)
<

1
4(l −m)2

<
1
2
(ε + δ) ≤ ε,

so that T satisfies the strip ϕ-contraction condition. The case when ε ≥ 1 is trivial.
But for x = 1, y = 5, with ϕ the identity map of R+, choosing ε = 4 and for

any δ > 0, we have

ε ≤ |x− y| = 4 < ε + δ and |Tx− Ty| = |T1− T5| = 124 � ε,

so that T is not a Meir-Keeler type contraction.

The following example shows that the orbital continuity of T at z may not imply
the orbital continuity of T at Tz, where z is as in (1).

Example 2. Let X = { 1
n

, n ∈ N} ∪ {1 − 1
n

, n ∈ N} with the usual metric. We
define T : X → X by

T (0) = 1, T (1) = 1, T

(
1
n

)
= 1− 1

n
for n = 2, 3, . . .

and

T

(
1− 1

n

)
=

1
n + 1

for n = 3, 4, . . . .
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First we show that T is orbitally continuous at 0. Let x ∈ X. If {xn} ⊆ OT (x) such

that xn → 0, then {xn} is a subsequence of {1
k
} and hence Txn = 1−xn → 1 = T (0).

But T is not orbitally continuous at T (0), since 1− 1
n
∈ OT (

1
3
) for n ≥ 3,

1− 1
n
→ 1 = T (0) as n →∞ and T (1− 1

n
) =

1
n + 1

→ 0 6= T (T (0)) = 1 as n →∞.

3. Fixed point theorems using strip ϕ-contractions

Theorem 4. Let T be a selfmap of X. Suppose that T satisfies (1). Further, assume
that

given ε > 0, there exist ϕ ∈ Φ and δ > 0,

such that ε ≤ ϕ(d(x, y)) < ε + δ implies ϕ(d(Tx, Ty)) < ε
(8)

for all x, y ∈ OT (x0), x 6= y, y = Tx. Then z is a fixed point of T in OT (x0)
provided T is orbitally continuous at z. This z is unique in the sense that OT (x0)
contains one and only one fixed point z of T .

Proof. We define the sequence {xn} ⊆ X by {xn} = Tnx0, for n = 1, 2, ... . Let
αn = ϕ(d(xn, xn+1)). If xn = xn+1 for some n ∈ N , then the conclusion of the
theorem trivially holds.

Suppose xn 6= xn+1 for all n. Then from (8), we have

αn+1 = ϕ(d(Txn, Txn+1)) < ϕ(d(xn, xn+1)) = αn.

Similarly αn < αn−1.
Therefore {αn} is a decreasing sequence of non-negative reals and hence it con-

verges to a nonnegative real number α (e.g.).
From (1), there exists a subsequence {xn(k)} of {xn} such that xn(k) → z as k →

∞. Hence

α = lim
k→∞

αn(k)

= lim
k→∞

ϕ(d(xn(k), xn(k)+1))

= ϕ( lim
k→∞

d(xn(k), xn(k)+1))

= ϕ(d(z, Tz))

(since T is orbitally continuous at z). Now, we claim that α = 0. Suppose α > 0.
Then

α = inf
n≥1

ϕ(d(xn, xn+1)).

Also, for any δ > 0 there exists m in N such that

α ≤ ϕ(d(xn, xn+1)) < α + δ for all n ≥ m. (9)
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In particular
α ≤ ϕ(d(xm, xm+1)) < α + δ.

Hence from (8) and (9), we have

α ≤ ϕ(d(xm+1, xm+2)) < α,

a contradiction.
Therefore α = 0 so that limn→∞ ϕ(d(xn, xn+1)) = 0 and since ϕ is an element of

Φ, it follows that limn→∞ d(xn, xn+1) = 0 so that d(z, Tz) = 0. Hence Tz = z.

Theorem 5. Let T be a selfmap of X. Assume that T satisfies (1). Further, assume
that given ε > 0 there exist ϕ ∈ Φ and δ > 0, such that

ε ≤ max{ϕ(d(x, y)), ϕ(d(x, Tx)), ϕ(d(y, Ty))} < ε + δ (10)

implies
ϕ(d(Tx, Ty)) < ε

for all x, y in X. Then z of (1) is a unique fixed point of T .

Proof. Follows as a corollary to Theorem 4, in the sense that condition (10) implies
(8).

Theorem 6. Let T be a selfmap of X. Assume that for some x0 ∈ X and for some
positive integer m

OT m(x0) has a cluster point z in X. (11)

Further, assume that for a given ε > 0 there exist ϕ ∈ Φ and δ > 0 such that

ε ≤ ϕ(d(x, y)) < ε + δ implies ϕ(d(Tmx, Tmy)) < ε (12)

for all x 6= y, x, y ∈ X, i.e. Tm is a strip ϕ-contraction. Then z is the unique
fixed point of T , provided Tm is orbitally continuous at z.

Proof. By replacing T by Tm in Theorem 4, Tm has a unique fixed point z in X.
Therefore Tmz = z. Now

Tz = T (Tmz) = Tm+1z = Tm(Tz).

Therefore Tz is also a fixed point of Tm. We now show that Tz = z. Suppose
Tz 6= z. Then from (12) for

ε = ϕ(d(z, Tz)) < ε + δ

implies
ϕ(d(Tmz, Tm(Tz))) = ϕ(d(z, Tz)) < ε = ϕ(d(z, Tz)),

a contradiction. Therefore Tz = z.
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Remark 2. Strip ϕ-contraction is actually stronger than (3), since condition (8)
implies (3). Hence some condition(s) in the hypotheses of Theorem 2, namely T is
orbitally continuous at Tz, may be relaxed under strip ϕ-contraction in obtaining
fixed points, which is established in our results (Theorem 4 and Theorem 6).

Remark 3. In Theorem 4 we need not assume that strip ϕ-contraction condition
(8) holds on the whole space X. The following example gives its justification.

Example 3. Let X = N ∪ {0, 2−1, 2−2, ....} with the usual metric. We define
T : X → X by

T (0) = 0, T (n) = n + 1, T (2−n) = 2−(n+1), n = 1, 2, 3, . . . .

Here X = OT (1) ∪ OT (2−1) ∪ {0}. At x = 1, y = 2, condition (7) fails to hold for
any ϕ ∈ Φ, since ϕ(d(x, y)) = ϕ(d(1, 2)) = ϕ(1), and

ϕ(d(Tx, Ty)) = ϕ(d(T1, T2)) = ϕ(d(2, 3)) = ϕ(1).

Therefore for ε = ϕ(1), strip ϕ-contraction condition (8) fails to hold in OT (1) for
any ϕ ∈ Φ and has no fixed point in OT (1).

But strip ϕ-contraction holds on the closure of the orbit of 2−1, where

OT (2−1) = {0, 2−1, 2−2, ...} with ϕ(t) = t2, t ≥ 0 and δ = min{ε, 1− ε}

when 0 < ε < 1; T satisfies all the hypotheses of Theorem 4, with 0 as the cluster
point of OT (2−1); and T has the unique fixed point 0.

Thus, condition (8) is more general than condition (7).

Remark 4. The following two examples show that

(1) every strip ϕ-contraction need not be a contraction, and

(2) an operator satisfying strip ϕ-contraction may not have a

fixed point if T does not satisfy orbital continuity at z of (1) in X.

Example 4. Let X = {1 + 2−n : n = 1, 2, 3, ...} ∪ {1} with the usual metric. We
define T on X by

T (1) = 1 + 2−1 and T (1 + 2−n) = 1 + 2−(n+1), n = 1, 2, 3, . . . .

For x0 = 1; OT (x0) = {1 + 2−n : n = 1, 2, 3, ....}, OT (x0) = OT (x0) ∪ {1}.
Then T satisfies all the conditions of Theorem 4 with ϕ, the identity map of R+

with δ = min{ε, 1 − ε} for 0 ≤ ε < 1, but T is not orbitally continuous at z(= 1)
and it has no fixed point.

Example 5. Let

X =

{
n∑

i=0

2−i : n ∈ N

}
∪ {1, 2},
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with the usual metric. Define T on X by

T2 = 1, T1 = 1 + 2−1, T

(
n∑

i=0

2−i

)
=

n+1∑

i=0

2−i, for n ∈ N.

If x0 = 1 + 2−1, then

OT (1 + 2−1) = {
n∑

i=0

2−i : n ∈ N} and OT (1 + 2−1) = OT (1 + 2−1) ∪ {2}.

Also, T satisfies all the hypotheses of Theorem 4, with ϕ(t) = t2

2 , t > 0, with

δ = min{ε, 1− ε}

but T is not orbitally continuous at z(= 2) and it has no fixed point.

Remark 5. Let us mention:

(i) In Theorem 4 we do not assume the orbital continuity of T at Tz. Hence
Theorem 4 improves the results of Sastry and Babu [5] and hence also Park
[4], which in turn improves the results of Khan, Swaleh and Sessa [1].

(ii) By strengthening condition (3) by (8), the orbital continuity at Tz is relaxed.

4. Common fixed points for a pair of strip ϕ-contractions

We now extend Theorem 4 and Theorem 5 to a pair of selfmaps.

Theorem 7. Let S and T be selfmaps of X such that for some x0 ∈ X we define
the sequence {xn} by x2n+1 = Sx2n and x2n+2 = Tx2n+1, n = 0, 1, 2, . . . .
Assume that either (a) or (b) of the following holds:

(a) {x2n} has a cluster point z in X, S and TS are orbitally continuous at z,

(b) {x2n+1} has a cluster point z in X, T and ST are orbitally continuous at z.

Further, assume that given ε > 0 there exist ϕ ∈ Φ and δ > 0 such that

ε ≤ ϕ(d(x, y)) < ε + δ implies ϕ(d(Sx, Ty)) < ε (13)

for all x, y in {xn}, x 6= y satisfying either x = Ty or y = Sx. Then either (i) or
(ii) of the following is true:

(i) either S or T has a fixed point in X,

(ii) z is a unique common fixed point of S and T in {xn}.
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Proof.

Suppose that x2n = x2n+1 for some n in N. Then S has a fixed point in X. (14)

If x2n+1 = x2n+2 for some n in N, then T has a fixed point in X. (15)

(14) and (15) together imply that conclusion (i) holds. Now assume that xn 6= xn+1

for all n. Write βn = ϕ(d(xn, xn+1)). From (13) we have

β2n = ϕ(d(x2n, x2n+1)) = ϕ(d(Tx2n−1, Sx2n)) < ϕ(d(x2n−1, x2n)) = β2n−1.

Therefore

β2n < β2n−1. (16)

Similarly,

β2n+1 < β2n. (17)

Hence from (16) and (17) it follows that {βn} is a decreasing sequence of non-
negative reals and it converges to a real number β (e.g.).

Now assume (a). Then there exists a sequence {n(k)} of positive integers such
that

x2n(k) → z, Sx2n(k) → Sz, T (Sx2n(k)) → TSz. (18)

From the continuity of ϕ, we have

β = limk→∞β2n(k) = limk→∞ϕ(d(x2n(k), x2n(k)+1)) = ϕ(d(z, Sz)).

We now claim that β = 0. Suppose that β > 0, then

β = inf
n≥1

ϕ(d(xn, xn+1)).

Then for any δ > 0, there exists m ∈ N such that

β ≤ ϕ(d(xn, xn+1)) < β + δ for all n ≥ m. (19)

In particular, writing n = 2m and using (13), we have

β ≤ ϕ(d(x2m, x2m+1)) < β + δ

which implies

ϕ(d(Sx2m, Tx2m+1)) = ϕ(d(x2m+1, x2m+2)) < β,

a contradiction to (19). Hence β = 0 and it implies that Sz = z.
Now we prove that Tz = z. From (13) we have

ϕ(d(Sx2n(k), Tx2n(k)+1)) < ϕ(d(x2n(k), Sx2n(k))).
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Now by taking limits as k → ∞, by using (18) and continuity of ϕ, it follows that
ϕ(d(Sz, T (Sz)) ≤ ϕ(d(z, Sz)) = 0. Thus TSz = Sz. Since z = Sz, it follows that
Tz = z; and hence z is a common fixed point of S and T .

Similarly, when (b) holds, then it follows that z is a common fixed point of S
and T . Uniqueness of a fixed point trivially follows from (13). Thus S and T have
a unique common fixed point z in {xn} .

Hence conclusion (ii) follows.

Theorem 8. Let S and T be selfmaps of X such that for some x0 ∈ X the sequence
{(TS)nx0} has a convergent subsequence, which converges to a point z in X and S,
and let TS be orbitally continuous at z. Further assume that S and T satisfy the
following condition: given ε > 0, there exist ϕ ∈ Φ and δ > 0, such that

ε ≤ max{ϕ(d(x, y)), ϕ(d(x, Sx)), ϕ(d(y, Ty))} < ε + δ (20)

implies

ϕ(d(Sx, Ty)) < ε (21)

for all x, y ∈ X, x 6= y satisfying either x = Ty or y = Sx. Then, either (i) or (ii)
of the following is true:

(i) either S or T has a fixed point in X,

(ii) S and T have a unique common fixed point in {(TS)nx0}.
Proof. Follows as a corollary to Theorem 7, since (20) implies (13).

The following is an example in support of Theorem 7.

Example 6. Let X = [0, 2) with the usual metric. We define
S, T : X → X by

Sx =

{
x
2 , if x ∈ [0, 1)
x2

8 , if x ∈ [1, 2),
and Tx =

{
x
2 , if x ∈ [0, 1)
x2

16 , if x ∈ [1, 2).

For any x0 ∈ [0, 1), the sequence {xn} defined in Theorem 7 is given by xn = x0
2n ,

n = 0, 1, 2, 3, . . . and {xn} = {xn}∞n=0 ∪ {0}. Now for the case when x0 ∈ [1, 2), the
sequence {xn} is given by

{xn} = {x0} ∪ { x2
0

2n+2
: n = 1, 2, 3, ...} and {xn} = {x0} ∪ {xn : n = 1, 2, 3, ...} ∪ {0}.

Case (i): Let x0 ∈ [0, 1). Let 0 < ε < 1 with δ = min{ε, 1− ε}. Define ϕ on R+ by
ϕ(t) = t2, t ≥ 0. For x = x0

2n and y = Sx = x0
2n+1 , n = 0, 1, 2, ... , we have

ϕ(d(x, y)) = ϕ(|x0

2n
− x0

2n+1
|) = ϕ(

x0

2n+1
) = (

x0

2n+1
)2 < ε + δ,

ϕ(d(Sx, Ty)) = ϕ(| x0

2n+1
− x0

2n+2
|) = ϕ(

x0

2n+2
) = (

x0

2n+2
)2 = (

x0

2n+1.2
)2

=
1
4
(

x0

2n+1
)2 <

1
4
(ε + δ) < ε.
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Case (ii): Let x0 ∈ [1, 2). Let 0 < ε < 1, with δ = min{ε, 1 − ε}. When
x = x0; y = Sx = x2

0
23 , we have

ϕ(d(x, y)) = ϕ(|x0 − x2
0

23
|) = ϕ(

8x0 − x2
0

23
) = (

8x0 − x2
0

23
)2 < ε + δ

and

ϕ(d(Sx, Ty)) = ϕ(|x
2
0

23
− x2

0

24
|) = (

x2
0

16
)2 <

1
2
(ε + δ) < ε.

In general, when x = x2
0

2n+2 ; y = Sx = x2
0

2n+3 , we have

ϕ(d(x, y)) = ϕ(| x2
0

2n+2
− x2

0

2n+3
|) = ϕ(

x2
0

2n+3
) =

x4
0

(2n+3)2
< ε + δ

and

ϕ(d(Sx, Ty)) = ϕ(| x2
0

2n+3
− x2

0

2n+4
|) =

x4
0

(2n+3)2.22
<

1
4
(ε + δ) < ε.

Thus S and T satisfy condition (13) with ϕ(t) = t2, t ≥ 0 .
Also, in any case {xn} has a convergent subsequence which converges to the point

0; and satisfy all the hypotheses of Theorem 7; and 0 is the unique common fixed
point of S and T .

Remark 6. The following is an example to show that conclusion (i) of Theorem 8
is valid.

Example 7. Let X = {0, 1}. Define selfmaps S and T on X by

Sx =
{

0, if x = 0
1, if x = 1,

and Tx =
{

1, if x = 0
0, if x = 1.

Then S and T trivially satisfy strip ϕ-contraction for any ϕ ∈ Φ (in particular, we
take ϕ(t) = t2

2 , t ≥ 0) and they also satisfy all the conditions of Theorem 7. Observe
that S has two fixed points 0 and 1 whereas T has no fixed points.
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