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Fixed points of strip ¢-contractions
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Abstract. In this paper, we introduce strip p-contraction, where ¢ is an altering distance
function, and obtain sufficient conditions for the existence of fixed points for such maps.
Further, we extend it to a pair of selfmaps. These results improve and generalize the results
of Khan, Swaleh and Sessa [1], Sastry and Babu [5] and Park [4] to strip ¢-contractions.
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1. Introduction

Throughout this paper we assume that (X, d) is a metric space denoted simply by
X and T a selfmap of X, Rt = [0, o0), N denotes the set of all natural numbers.
For x € X, Or(z) = {x, Tx, T?z,...} denotes the orbit of x with respect to 7.
We denote the closure of Or(x) by Or(z).

We say that T is orbitally continuous at a point z € X with respect to z € X
if for any sequence {z,} C Or(z), with z,, — z as n — oo implies Tx,, — Tz as
n — oo. Here we note that any continuous selfmap of a metric space is orbitally
continuous, but an orbitally continuous map may not be continuous. For more
details and examples, see Turkoglu et al. [6].

We write
®={p: R" — R": ¢ is continuous and ¢(t) = 0 if and only if t = 0}.

We call an element ¢ € ¢ an “altering distance function”.
Park [4] proved the following theorem.

Theorem 1 (see [4]). Let T be a selfmap of X.
Suppose that for some xg € X, Or(x0) has a cluster point z in X. (1)
If T is orbitally continuous at z and Tz and T satisfies

d(Tz, Ty) < d(z, y) (2)
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for each x, y € Or(xg), x £y, y =Tz, then z is a fized point of T.

By using an altering distance function ¢ € ®, Sastry and Babu [5] proved the
following theorem.

Theorem 2 (see [5]). Let T be a selfmap of X. Suppose that T satisfies (1). If T
is orbitally continuous at z and Tz, and if there exists ¢ € ® such that

e(d(Tz, Ty)) < p(d(z, y)) (3)
for each x, y € Or(xg), x £y, y =Tz, then z is a fized point of T.
Remark 1. Theorem 1 follows by choosing ¢(t) =t, t >0, in Theorem 2.

Theorem 3 (see [4]). Let T be a selfmap of a metric space X. Assume that for
some positive integer m, there exists a point xo € X such that

Orm(x9) has a cluster point z in X, (4)
and
d(T™z, T"y) < d(z, y) (5)
forallx, ye X, x #vy. Then z is a unique fived point of T in X.

The study of fixed points of Meir-Keeler type contractions in the presence of an
altering distance function is an interesting and open area. Thus the purpose of this
paper is to introduce strip - contraction for ¢ € ®, which is more general than
Meir-Keeler type contraction (Example 1), and obtain sufficient conditions for the
existence of fixed points for such maps. Further, it is extended to a pair of selfmaps.
These results improve and generalize the theorems of Khan, Swaleh and Sessa [1],
Sastry and Babu [5] and Park [4] to strip ¢-contractions.

2. Preliminaries

Meir and Keeler [3] established a fixed point theorem for selfmaps satisfying the
following (e, d) - contraction, which is known as Meir-Keeler type contraction.

Definition 1. Given ¢ > 0, there exists § > 0 such that
e <d(z, y) < e+ implies d(Tzx, Ty) < e (6)
forall x, y in X.

Maiti and Pal [2] improved condition (6) in the following way and obtained fixed
points: given € > 0, there is a § > 0, such that

¢ < maz{d(z, y), d(z, Tx), d(y, Ty)} <e+
implies
d(Tz, Ty) <e¢

for all z, y in X.
We now introduce “strip p-contraction” as follows:
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Definition 2. Let (X,d) be a metric space and T a selfmap on X. Let p € . We
say that T is a strip p-contraction if for a given € > 0, there is a § > 0, such that

e < p(d(z, y) <e+d implies o(d(Tx, Ty)) <€ (7)
for all x, y in X.

Here we observe that every strip ¢-contraction is a Meir-Keeler type contraction
when ¢ is the identity map of R*. The following example shows that the class of
all strip ¢-contractions is larger than the class of all Meir-Keeler type contractions.

Example 1. Let X = N with the usual metric. Define T : X — X by Tx = z>.
Define o : RT™ — R* by

t2
5o i 0st<l

1
g 121

Then clearly ¢ € ®.
We now show that T is a strip p-contraction. Let 0 < € < 1. For anyl, m € X,
with | # m,

0<e=p(l-m|) = 5 < €+ 0 with § = min{e, 1 —e¢}.

_ 1
2(l—=m)
Then we have

1 1
2P —m?)?) ~ A —m)

1
e(IT1 = Tm|) = (|I° —m?|) = s <gletd)<e

so that T satisfies the strip p-contraction condition. The case when € > 1 is trivial.
But for x = 1, y = 5, with ¢ the identity map of RY, choosing ¢ = 4 and for
any § > 0, we have

e<lzr—yl=4<e+dand |Tx —Ty|=|T1—T5| =124 L e,
so that T is not a Meir-Keeler type contraction.

The following example shows that the orbital continuity of T at z may not imply
the orbital continuity of T" at Tz, where z is as in (1).

1 1

Example 2. Let X = {—, ne€ N}U{l — —, n € N} with the usual metric. We
n n

defineT : X — X by

1 1
T(O):l,T(l):l,T() =1-= forn=2,3,...
n n

and . )
T(l—): forn= 3,4,....

n n+1
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First we show that T is orbitally continuous at 0. Let x € X. If {x,} C Or(z) such
1
that z, — 0, then {x,} is a subsequence Of{E} and hence Tz, = 1—2, — 1 =T(0).

1 1
But T s not orbitally continuous at T(0), since 1 — — € OT(g) for n > 3,
n
1 1

1
1_E_>1:T<O) asn—>ooandT(l—E):mHO#T(T(O))zlasn—>oo.

3. Fixed point theorems using strip ¢-contractions

Theorem 4. Let T be a selfmap of X. Suppose that T satisfies (1). Further, assume
that

given € > 0, there exist ¢ € ® and § > 0,

3
such that € < o(d(z, y)) < e+ 9 implies p(d(Tx, Ty)) <€ ®)

for all x, y € Op(xg), * # vy, y = Tx. Then z is a fized point of T in Op(xo)
provided T is orbitally continuous at z. This z is unique in the sense that Or(xg)
contains one and only one fixed point z of T.

Proof. We define the sequence {z,} C X by {z,} = T"xg, forn = 1, 2,.... Let
oy = o(d(zy, Tpy1)). If 2, = xp41 for some n € N, then the conclusion of the
theorem trivially holds.

Suppose x,, # 41 for all n. Then from (8), we have

any1 = P(d(Try, Trny1)) < @(d(Tn, Tny1)) = an.

Similarly a, < ap_1.

Therefore {o,} is a decreasing sequence of non-negative reals and hence it con-
verges to a nonnegative real number « (e.g.).

From (1), there exists a subsequence {2} of {x,,} such that z, ;) — 2z as k —
co. Hence

o= lim «
k—oco n(k)

Jim (@), Tay+))
= Qp(kllrgo d(mn(k), xn(k)-‘rl))

(since T is orbitally continuous at z). Now, we claim that o = 0. Suppose a > 0.
Then

a = f o(d(@n, Tni1)).
Also, for any § > 0 there exists m in N such that

a < o(d(xn, Tny1)) <a+9d foralln>m. (9)
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In particular
a < o(d(Tm, Tmi1)) < @+ 0.

Hence from (8) and (9), we have
a < gﬁ(d(Im+1, xm+2)) < a,

a contradiction.
Therefore o = 0 so that lim,, o ¢(d(2,, Tn41)) = 0 and since @ is an element of
®, it follows that lim, . d(2,, Tni1) = 0so that d(z, Tz) =0. Hence Tz = 2. O

Theorem 5. Let T be a selfmap of X. Assume that T satisfies (1). Further, assume
that given € > 0 there exist ¢ € ® and § > 0, such that

e < max{p(d(z, y)), ¢(d(z, Tx)), o(d(y, Ty))} <e+d (10)

implies
p(d(Tz, Ty)) <e

forall z, y in X. Then z of (1) is a unique fixed point of T.

Proof. Follows as a corollary to Theorem 4, in the sense that condition (10) implies
(8). O

Theorem 6. Let T be a selfmap of X. Assume that for some xg € X and for some
positive integer m

Orm(x0) has a cluster point z in X. (11)

Further, assume that for a given € > 0 there exist ¢ € ® and § > 0 such that

e <pd(z, y)) < e+ implies (d(T™x, T"y)) < € (12)

forallx £y, x, y € X, i.e. T™ is a strip p-contraction. Then z is the unique
fized point of T, provided T™ 1is orbitally continuous at z.

Proof. By replacing T by 7™ in Theorem 4, T™ has a unique fixed point z in X.
Therefore T™z = z. Now

Tz=T(T"z) =T™ 2 = T™(Tz).

Therefore Tz is also a fixed point of T7". We now show that Tz = z. Suppose
Tz # z. Then from (12) for

e=@(d(z,Tz)) <e+d

implies

Pd(T™ 2, T™(T2))) = pld(z T2)) < € = p(d(2,T2),

a contradiction. Therefore Tz = z. O
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Remark 2. Strip p-contraction is actually stronger than (3), since condition (8)
implies (3). Hence some condition(s) in the hypotheses of Theorem 2, namely T is
orbitally continuous at Tz, may be relaxed under strip -contraction in obtaining
fized points, which is established in our results (Theorem 4 and Theorem 6).

Remark 3. In Theorem 4 we need not assume that strip p-contraction condition
(8) holds on the whole space X. The following example gives its justification.

Example 3. Let X = N U {0, 271,272 ...} with the usual metric. We define
T: X — X by

T0)=0,T(n)=n+1,T2 ") =2""" n=123,....

Here X = Or(1)UOr (27 1)U {0}. Atz =1, y = 2, condition (7) fails to hold for
any ¢ € @, since p(d(z, y)) = @(d(1, 2)) = ¢(1), and

p(d(Tz, Ty)) = o(d(T1, T2)) = ¢(d(2, 3)) = ¢(1).

Therefore for e = p(1), strip @-contraction condition (8) fails to hold in Op(1) for
any ¢ € ® and has no fixed point in Op(1).
But strip @-contraction holds on the closure of the orbit of 271, where

Or(2=1) = {0, 271, 272, ..} with ¢(t) =t*, t >0 and § = min{e,1 — ¢}

when 0 < € < 1; T satisfies all the hypotheses of Theorem 4, with 0 as the cluster
point of Or(27Y); and T has the unique fived point 0.
Thus, condition (8) is more general than condition (7).

Remark 4. The following two examples show that
(1) every strip p-contraction need not be a contraction, and
(2) an operator satisfying strip p-contraction may not have a
fized point if T does not satisfy orbital continuity at z of (1) in X.

Example 4. Let X ={1+2"":n= 1, 2, 3, ..} U{1} with the usual metric. We
define T on X by

T =142 and TA+27") =1+2""FD) n=1 2 3,....
Forxog=1; Or(xo) ={1+2":n= 1, 2, 3, ...}, Op(zg) = Op(z0) U {1}.
Then T satisfies all the conditions of Theorem 4 with o, the identity map of R™
with § = min{e,1 — €} for 0 < e < 1, but T is not orbitally continuous at z(= 1)
and it has no fived point.

Example 5. Let

=0

X = {Zn:?i:neN}U{lﬂ},
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with the usual metric. Define T on X by

n n+1
T2=1, T1=1+2"', T <Z2-) =Y 27" forneN.
1=0 =0

If xg =1+4271, then
Or(1+27)={> 27" :ne N} and Or(1+271) = Op(1+27") U {2}.
i=0
Also, T satisfies all the hypotheses of Theorem 4, with ¢(t) = %, t >0, with
6 = min{e, 1 — €}
but T is not orbitally continuous at z(= 2) and it has no fized point.

Remark 5. Let us mention:

(i) In Theorem 4 we do not assume the orbital continuity of T at Tz. Hence
Theorem 4 improves the results of Sastry and Babu [5] and hence also Park
[4], which in turn improves the results of Khan, Swaleh and Sessa [1].

(ii) By strengthening condition (3) by (8), the orbital continuity at Tz is relazed.

4. Common fixed points for a pair of strip p-contractions
We now extend Theorem 4 and Theorem 5 to a pair of selfmaps.

Theorem 7. Let S and T be selfmaps of X such that for some xo € X we define
the sequence {x,} by xopt1 = Sxopn and xopio = Txopy1, n=0, 1, 2,....
Assume that either (a) or (b) of the following holds:

(a) {x2,} has a cluster point z in X, S and T'S are orbitally continuous at z,
(b) {xant+1} has a cluster point z in X, T and ST are orbitally continuous at z.
Further, assume that given € > 0 there exist p € ® and § > 0 such that
e < p(d(z, y)) < e+ implies p(d(Sz, Ty)) < e (13)

for all z, y in {x,},x # y satisfying either x = Ty or y = Sx. Then either (i) or
(1) of the following is true:

(i) either S or T has a fized point in X,

(i1) z is a unique common fized point of S and T in {x,}.
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Proof.

Suppose that xa, = x2,11 for some n in N. Then S has a fixed point in X. (14)

If 941 = Tanto for some n in N, then T has a fixed point in X. (15)

(14) and (15) together imply that conclusion (i) holds. Now assume that x,, # @41
for all n. Write 8, = ¢(d(zn, Tp4+1)). From (13) we have

Pan = @(d(x2n, T2n+1)) = @(d(T2n-1, 572s)) < p(d(T2n-1,T20)) = P2n—1-
Therefore

Bon < Bon—1- (16)
Similarly,

Bon+1 < Bon. (17)

Hence from (16) and (17) it follows that {f,} is a decreasing sequence of non-
negative reals and it converges to a real number 3 (e.g.).

Now assume (a). Then there exists a sequence {n(k)} of positive integers such
that

Ton(k) — 2, STy — Sz, T(STonk)) — T'Sz. (18)
From the continuity of ¢, we have
B = limg—coBan(k) = limg—oo(d(Ton(k), Tan(k)+1)) = @(d(2, Sz)).
We now claim that 8 = 0. Suppose that 8 > 0, then
B = mf o(d@n, Tni1).
Then for any d > 0, there exists m € N such that
B < p(d(xn, Tpt1)) < B+ for all n>m. (19)
In particular, writing n = 2m and using (13), we have
B < (d(@2m, T2m+1)) <B+6
which implies
P(d(Szam, Tromi1)) = P(d(T2m+1, Tami2)) <P,

a contradiction to (19). Hence § = 0 and it implies that Sz = z.
Now we prove that Tz = z. From (13) we have

o(d(STank), TTonk)+1)) < P(A(T2nk)s STanm)))-
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Now by taking limits as k — oo, by using (18) and continuity of ¢, it follows that
w(d(Sz, T(Sz)) < p(d(z, Sz)) =0. Thus T'Sz = Sz. Since z = Sz, it follows that
Tz = z; and hence z is a common fixed point of S and T

Similarly, when (b) holds, then it follows that z is a common fixed point of S
and T. Uniqueness of a fixed point trivially follows from (13). Thus S and T have
a unique common fixed point z in {z,} .

Hence conclusion (i) follows. O

Theorem 8. Let S and T be selfmaps of X such that for some xg € X the sequence
{(T'S)"x} has a convergent subsequence, which converges to a point z in X and S,
and let T'S be orbitally continuous at z. Further assume that S and T satisfy the
following condition: given € > 0, there exist ¢ € ® and § > 0, such that

e <maz{p(d(z, y)), p(d(z, Sz)), ¢(d(y, Ty))} <e+0 (20)
mmplies
p(d(Sz, Ty)) < e (21)

forallz, y € X, x # y satisfying either x = Ty or y = Sx. Then, either (i) or (ii)
of the following is true:

(i) either S or T has a fized point in X,
(i) S and T have a unique common fized point in {(T.S)"xq}.
Proof. Follows as a corollary to Theorem 7, since (20) implies (13). O
The following is an example in support of Theorem 7.

Example 6. Let X = [0, 2) with the usual metric. We define
S, T: X— X by

For any xo € [0, 1), the sequence {x,,} defined in Theorem 7 is given by x, = 33,

n=0,1,2,3,... and {z,} = {£,}22,U{0}. Now for the case when x¢ € [1, 2), the
sequence {x,} is given by

zd —
{zn} ={xo}U {2n3_2 n=1,23,..} and {z,} = {zo} U{z, :n=1,2,3,..} U{0}.

Case (i): Let zg € [0,1). Let 0 < € < 1 with § = min{e, 1 —€}. Define ¢ on Rt by
o(t) =t*t>0. Forxz = 2% andy = Sz = 559+, n=0,1,2,... , we have

2’".
xo Xo xo Zo (2
Pd(z, ) = p(152 — S ]) = plorer) = (o)’ < e +6,
xo X0 Zo Zo (2 Zo 2
QD(d(SJ:a Ty)) = (p(|2n+1 - WD = @(2n+2) = (2n+2) = (2n+12)
1 o

1
2
Z(W) < 1(64‘5) < €.
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Case (ii): Let g € [1, 2). Let 0 < € < 1, with § = min{e, 1 — €}. When
2

x = xo; y = Sz = 3§, we have

(e, 1)) = pllan— 20 = (302 Bty
wnd 3 a? 3 1
Pld(S7, Ty)) = o150 — 22 = (T < (e 4 6) <.
In general, when x = Qf%, y = Sz = 2:%, we have
(e, 1) = Pl = 220)) = () = (fos)Q <e+s
and

¥y %o

1
pl(S, Ty)) = Pllg;5 ~ grial) = greagmgs < gle+) <<

Thus S and T satisfy condition (13) with p(t) =12, t >0 .

Also, in any case {x,} has a convergent subsequence which converges to the point
0; and satisfy all the hypotheses of Theorem 7; and 0 is the unique common fized
point of S and T.

Remark 6. The following is an example to show that conclusion (i) of Theorem 8
is valid.

Example 7. Let X = {0, 1}. Define selfmaps S and T on X by

(0 ifx =0 C(Lifx =0
Sx_{l,ifle, and Tx_{(),z’fle.

Then S and T trivially satisfy strip p-contraction for any p € ® (in particular, we

take o(t) = %,t > 0) and they also satisfy all the conditions of Theorem 7. Observe
that S has two fixed points 0 and 1 whereas T has no fized points.
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