# Fixed points of strip $\varphi$-contractions 

Kambhampaty Pattabhi Rama Sastry ${ }^{1}$, Gutti Venkata Ravindranadh Babu $^{2, *}$ and Mukkavilli Vani Rama Kameswari ${ }^{2}$<br>${ }^{1}$ 8-28-8/1, Tamil Street, Chinna Waltair, Visakhapatnam-530 017, India<br>${ }^{2}$ Department of Mathematics, Andhra University, Visakhapatnam-530 003, India

Received November 11, 2008; accepted April 23, 2009


#### Abstract

In this paper, we introduce strip $\varphi$-contraction, where $\varphi$ is an altering distance function, and obtain sufficient conditions for the existence of fixed points for such maps. Further, we extend it to a pair of selfmaps. These results improve and generalize the results of Khan, Swaleh and Sessa [1], Sastry and Babu [5] and Park [4] to strip $\varphi$-contractions.


AMS subject classifications: $54 \mathrm{H} 25,47 \mathrm{H} 10$
Key words: selfmaps, metric spaces, strip $\varphi$-contractions, orbitally continuous, fixed points

## 1. Introduction

Throughout this paper we assume that $(X, d)$ is a metric space denoted simply by $X$ and $T$ a selfmap of $X, R^{+}=[0, \infty), N$ denotes the set of all natural numbers. For $x \in X, O_{T}(x)=\left\{x, T x, T^{2} x, \ldots\right\}$ denotes the orbit of $x$ with respect to $T$. We denote the closure of $O_{T}(x)$ by $\overline{O_{T}(x)}$.

We say that $T$ is orbitally continuous at a point $z \in X$ with respect to $x \in X$ if for any sequence $\left\{x_{n}\right\} \subset O_{T}(x)$, with $x_{n} \rightarrow z$ as $n \rightarrow \infty$ implies $T x_{n} \rightarrow T z$ as $n \rightarrow \infty$. Here we note that any continuous selfmap of a metric space is orbitally continuous, but an orbitally continuous map may not be continuous. For more details and examples, see Turkoglu et al. [6].

We write
$\Phi=\left\{\varphi: R^{+} \rightarrow R^{+}: \varphi\right.$ is continuous and $\varphi(t)=0$ if and only if $\left.t=0\right\}$.
We call an element $\varphi \in \Phi$ an "altering distance function".
Park [4] proved the following theorem.
Theorem 1 (see [4]). Let $T$ be a selfmap of $X$.
Suppose that for some $x_{0} \in X, O_{T}\left(x_{0}\right)$ has a cluster point $z$ in $X$.
If $T$ is orbitally continuous at $z$ and $T z$ and $T$ satisfies

$$
\begin{equation*}
d(T x, T y)<d(x, y) \tag{2}
\end{equation*}
$$

*Corresponding author. Email addresses: kprsastry@hotmail.com (K. P. R. Sastry), gvr_babu@hotmail.com (G.V.R.Babu), kameswaridvr@yahoo.co.in (M. V. R. Kameswari)
for each $x, y \in \overline{O_{T}\left(x_{0}\right)}, x \neq y, y=T x$, then $z$ is a fixed point of $T$.
By using an altering distance function $\varphi \in \Phi$, Sastry and Babu [5] proved the following theorem.
Theorem 2 (see [5]). Let $T$ be a selfmap of $X$. Suppose that $T$ satisfies (1). If $T$ is orbitally continuous at $z$ and $T z$, and if there exists $\varphi \in \Phi$ such that

$$
\begin{equation*}
\varphi(d(T x, T y))<\varphi(d(x, y)) \tag{3}
\end{equation*}
$$

for each $x, y \in \overline{O_{T}\left(x_{0}\right)}, x \neq y, y=T x$, then $z$ is a fixed point of $T$.
Remark 1. Theorem 1 follows by choosing $\varphi(t)=t, t \geq 0$, in Theorem 2.
Theorem 3 (see [4]). Let $T$ be a selfmap of a metric space $X$. Assume that for some positive integer $m$, there exists a point $x_{0} \in X$ such that

$$
\begin{equation*}
O_{T^{m}}\left(x_{0}\right) \text { has a cluster point } z \text { in } X \tag{4}
\end{equation*}
$$

and

$$
\begin{equation*}
d\left(T^{m} x, T^{m} y\right)<d(x, y) \tag{5}
\end{equation*}
$$

for all $x, y \in X, x \neq y$. Then $z$ is a unique fixed point of $T$ in $X$.
The study of fixed points of Meir-Keeler type contractions in the presence of an altering distance function is an interesting and open area. Thus the purpose of this paper is to introduce strip $\varphi$ - contraction for $\varphi \in \Phi$, which is more general than Meir-Keeler type contraction (Example 1), and obtain sufficient conditions for the existence of fixed points for such maps. Further, it is extended to a pair of selfmaps. These results improve and generalize the theorems of Khan, Swaleh and Sessa [1], Sastry and Babu [5] and Park [4] to strip $\varphi$-contractions.

## 2. Preliminaries

Meir and Keeler [3] established a fixed point theorem for selfmaps satisfying the following $(\epsilon, \delta)$ - contraction, which is known as Meir-Keeler type contraction.
Definition 1. Given $\epsilon>0$, there exists $\delta>0$ such that

$$
\begin{equation*}
\epsilon \leq d(x, y)<\epsilon+\delta \text { implies } d(T x, T y)<\epsilon \tag{6}
\end{equation*}
$$

for all $x, y$ in $X$.
Maiti and Pal [2] improved condition (6) in the following way and obtained fixed points: given $\epsilon>0$, there is a $\delta>0$, such that

$$
\epsilon \leq \max \{d(x, y), d(x, T x), d(y, T y)\}<\epsilon+\delta
$$

implies

$$
d(T x, T y)<\epsilon
$$

for all $x, y$ in $X$.
We now introduce "strip $\varphi$-contraction" as follows:

Definition 2. Let $(X, d)$ be a metric space and $T$ a selfmap on $X$. Let $\varphi \in \Phi$. We say that $T$ is a strip $\varphi$-contraction if for a given $\epsilon>0$, there is a $\delta>0$, such that

$$
\begin{equation*}
\epsilon \leq \varphi(d(x, y))<\epsilon+\delta \text { implies } \varphi(d(T x, T y))<\epsilon \tag{7}
\end{equation*}
$$

for all $x, y$ in $X$.
Here we observe that every strip $\varphi$-contraction is a Meir-Keeler type contraction when $\varphi$ is the identity map of $R^{+}$. The following example shows that the class of all strip $\varphi$-contractions is larger than the class of all Meir-Keeler type contractions.

Example 1. Let $X=N$ with the usual metric. Define $T: X \rightarrow X$ by $T x=x^{3}$. Define $\varphi: R^{+} \rightarrow R^{+}$by

$$
\varphi(t)= \begin{cases}\frac{t^{2}}{2}, & \text { if } 0 \leq t \leq 1 \\ \frac{1}{2 t^{2}}, & \text { if } t \geq 1\end{cases}
$$

Then clearly $\varphi \in \Phi$.
We now show that $T$ is a strip $\varphi$-contraction. Let $0<\epsilon<1$. For any $l, m \in X$, with $l \neq m$,

$$
0<\epsilon=\varphi(|l-m|)=\frac{1}{2(l-m)^{2}}<\epsilon+\delta \text { with } \delta=\min \{\epsilon, 1-\epsilon\} .
$$

Then we have

$$
\varphi(|T l-T m|)=\varphi\left(\left|l^{3}-m^{3}\right|\right)=\frac{1}{2\left(\left(l^{3}-m^{3}\right)^{2}\right)}<\frac{1}{4(l-m)^{2}}<\frac{1}{2}(\epsilon+\delta) \leq \epsilon,
$$

so that $T$ satisfies the strip $\varphi$-contraction condition. The case when $\epsilon \geq 1$ is trivial.
But for $x=1, y=5$, with $\varphi$ the identity map of $R^{+}$, choosing $\epsilon=4$ and for any $\delta>0$, we have

$$
\epsilon \leq|x-y|=4<\epsilon+\delta \text { and }|T x-T y|=|T 1-T 5|=124 \not \leq \epsilon,
$$

so that $T$ is not a Meir-Keeler type contraction.
The following example shows that the orbital continuity of $T$ at $z$ may not imply the orbital continuity of $T$ at $T z$, where $z$ is as in (1).

Example 2. Let $X=\left\{\frac{1}{n}, n \in N\right\} \cup\left\{1-\frac{1}{n}, n \in N\right\}$ with the usual metric. We define $T: X \rightarrow X$ by

$$
T(0)=1, T(1)=1, T\left(\frac{1}{n}\right)=1-\frac{1}{n} \text { for } n=2,3, \ldots
$$

and

$$
T\left(1-\frac{1}{n}\right)=\frac{1}{n+1} \text { for } n=3,4, \ldots
$$

First we show that $T$ is orbitally continuous at 0 . Let $x \in X$. If $\left\{x_{n}\right\} \subseteq O_{T}(x)$ such that $x_{n} \rightarrow 0$, then $\left\{x_{n}\right\}$ is a subsequence of $\left\{\frac{1}{k}\right\}$ and hence $T x_{n}=1-x_{n} \rightarrow 1=T(0)$.

But $T$ is not orbitally continuous at $T(0)$, since $1-\frac{1}{n} \in O_{T}\left(\frac{1}{3}\right)$ for $n \geq 3$, $1-\frac{1}{n} \rightarrow 1=T(0)$ as $n \rightarrow \infty$ and $T\left(1-\frac{1}{n}\right)=\frac{1}{n+1} \rightarrow 0 \neq T(T(0))=1$ as $n \rightarrow \infty$.

## 3. Fixed point theorems using strip $\varphi$-contractions

Theorem 4. Let $T$ be a selfmap of $X$. Suppose that $T$ satisfies (1). Further, assume that

$$
\begin{gather*}
\text { given } \epsilon>0, \text { there exist } \varphi \in \Phi \text { and } \delta>0 \text {, } \\
\text { such that } \epsilon \leq \varphi(d(x, y))<\epsilon+\delta \text { implies } \varphi(d(T x, T y))<\epsilon \tag{8}
\end{gather*}
$$

for all $x, y \in \overline{O_{T}\left(x_{0}\right)}, x \neq y, y=T x$. Then $z$ is a fixed point of $T$ in $\overline{O_{T}\left(x_{0}\right)}$ provided $T$ is orbitally continuous at $z$. This $z$ is unique in the sense that $\overline{O_{T}\left(x_{0}\right)}$ contains one and only one fixed point $z$ of $T$.

Proof. We define the sequence $\left\{x_{n}\right\} \subseteq X$ by $\left\{x_{n}\right\}=T^{n} x_{0}$, for $n=1,2, \ldots$. Let $\alpha_{n}=\varphi\left(d\left(x_{n}, x_{n+1}\right)\right)$. If $x_{n}=x_{n+1}$ for some $n \in N$, then the conclusion of the theorem trivially holds.

Suppose $x_{n} \neq x_{n+1}$ for all $n$. Then from (8), we have

$$
\alpha_{n+1}=\varphi\left(d\left(T x_{n}, T x_{n+1}\right)\right)<\varphi\left(d\left(x_{n}, x_{n+1}\right)\right)=\alpha_{n}
$$

Similarly $\alpha_{n}<\alpha_{n-1}$.
Therefore $\left\{\alpha_{n}\right\}$ is a decreasing sequence of non-negative reals and hence it converges to a nonnegative real number $\alpha$ (e.g.).

From (1), there exists a subsequence $\left\{x_{n(k)}\right\}$ of $\left\{x_{n}\right\}$ such that $x_{n(k)} \rightarrow z$ as $k \rightarrow$ $\infty$. Hence

$$
\begin{aligned}
\alpha & =\lim _{k \rightarrow \infty} \alpha_{n(k)} \\
& =\lim _{k \rightarrow \infty} \varphi\left(d\left(x_{n(k)}, x_{n(k)+1}\right)\right) \\
& =\varphi\left(\lim _{k \rightarrow \infty} d\left(x_{n(k)}, x_{n(k)+1}\right)\right) \\
& =\varphi(d(z, T z))
\end{aligned}
$$

(since $T$ is orbitally continuous at $z$ ). Now, we claim that $\alpha=0$. Suppose $\alpha>0$. Then

$$
\alpha=\inf _{n \geq 1} \varphi\left(d\left(x_{n}, x_{n+1}\right)\right)
$$

Also, for any $\delta>0$ there exists $m$ in $N$ such that

$$
\begin{equation*}
\alpha \leq \varphi\left(d\left(x_{n}, x_{n+1}\right)\right)<\alpha+\delta \text { for all } n \geq m \tag{9}
\end{equation*}
$$

In particular

$$
\alpha \leq \varphi\left(d\left(x_{m}, x_{m+1}\right)\right)<\alpha+\delta .
$$

Hence from (8) and (9), we have

$$
\alpha \leq \varphi\left(d\left(x_{m+1}, x_{m+2}\right)\right)<\alpha
$$

a contradiction.
Therefore $\alpha=0$ so that $\lim _{n \rightarrow \infty} \varphi\left(d\left(x_{n}, x_{n+1}\right)\right)=0$ and since $\varphi$ is an element of $\Phi$, it follows that $\lim _{n \rightarrow \infty} d\left(x_{n}, x_{n+1}\right)=0$ so that $d(z, T z)=0$. Hence $T z=z$.

Theorem 5. Let $T$ be a selfmap of $X$. Assume that $T$ satisfies (1). Further, assume that given $\epsilon>0$ there exist $\varphi \in \Phi$ and $\delta>0$, such that

$$
\begin{equation*}
\epsilon \leq \max \{\varphi(d(x, y)), \varphi(d(x, T x)), \varphi(d(y, T y))\}<\epsilon+\delta \tag{10}
\end{equation*}
$$

implies

$$
\varphi(d(T x, T y))<\epsilon
$$

for all $x, y$ in $X$. Then $z$ of (1) is a unique fixed point of $T$.
Proof. Follows as a corollary to Theorem 4, in the sense that condition (10) implies (8).

Theorem 6. Let $T$ be a selfmap of $X$. Assume that for some $x_{0} \in X$ and for some positive integer $m$

$$
\begin{equation*}
O_{T^{m}}\left(x_{0}\right) \text { has a cluster point } z \text { in } X . \tag{11}
\end{equation*}
$$

Further, assume that for a given $\epsilon>0$ there exist $\varphi \in \Phi$ and $\delta>0$ such that

$$
\begin{equation*}
\epsilon \leq \varphi(d(x, y))<\epsilon+\delta \text { implies } \varphi\left(d\left(T^{m} x, T^{m} y\right)\right)<\epsilon \tag{12}
\end{equation*}
$$

for all $x \neq y, x, y \in X$, i.e. $T^{m}$ is a strip $\varphi$-contraction. Then $z$ is the unique fixed point of $T$, provided $T^{m}$ is orbitally continuous at $z$.

Proof. By replacing $T$ by $T^{m}$ in Theorem $4, T^{m}$ has a unique fixed point $z$ in $X$. Therefore $T^{m} z=z$. Now

$$
T z=T\left(T^{m} z\right)=T^{m+1} z=T^{m}(T z) .
$$

Therefore $T z$ is also a fixed point of $T^{m}$. We now show that $T z=z$. Suppose $T z \neq z$. Then from (12) for

$$
\epsilon=\varphi(d(z, T z))<\epsilon+\delta
$$

implies

$$
\varphi\left(d\left(T^{m} z, T^{m}(T z)\right)\right)=\varphi(d(z, T z))<\epsilon=\varphi(d(z, T z))
$$

a contradiction. Therefore $T z=z$.

Remark 2. Strip $\varphi$-contraction is actually stronger than (3), since condition (8) implies (3). Hence some condition(s) in the hypotheses of Theorem 2, namely $T$ is orbitally continuous at Tz, may be relaxed under strip $\varphi$-contraction in obtaining fixed points, which is established in our results (Theorem 4 and Theorem 6).

Remark 3. In Theorem 4 we need not assume that strip $\varphi$-contraction condition (8) holds on the whole space $X$. The following example gives its justification.

Example 3. Let $X=N \cup\left\{0,2^{-1}, 2^{-2}, \ldots.\right\}$ with the usual metric. We define $T: X \rightarrow X$ by

$$
T(0)=0, T(n)=n+1, T\left(2^{-n}\right)=2^{-(n+1)}, n=1,2,3, \ldots
$$

Here $X=O_{T}(1) \cup O_{T}\left(2^{-1}\right) \cup\{0\}$. At $x=1, y=2$, condition (7) fails to hold for any $\varphi \in \Phi$, since $\varphi(d(x, y))=\varphi(d(1,2))=\varphi(1)$, and

$$
\varphi(d(T x, T y))=\varphi(d(T 1, T 2))=\varphi(d(2,3))=\varphi(1)
$$

Therefore for $\epsilon=\varphi(1)$, strip $\varphi$-contraction condition (8) fails to hold in $O_{T}(1)$ for any $\varphi \in \Phi$ and has no fixed point in $O_{T}(1)$.

But strip $\varphi$-contraction holds on the closure of the orbit of $2^{-1}$, where

$$
\overline{O_{T}\left(2^{-1}\right)}=\left\{0,2^{-1}, 2^{-2}, \ldots\right\} \text { with } \varphi(t)=t^{2}, t \geq 0 \text { and } \delta=\min \{\epsilon, 1-\epsilon\}
$$

when $0<\epsilon<1$; T satisfies all the hypotheses of Theorem 4, with 0 as the cluster point of $O_{T}\left(2^{-1}\right)$; and $T$ has the unique fixed point 0 .

Thus, condition (8) is more general than condition (7).
Remark 4. The following two examples show that
(1) every strip $\varphi$-contraction need not be a contraction, and
(2) an operator satisfying strip $\varphi$-contraction may not have a
fixed point if $T$ does not satisfy orbital continuity at $z$ of (1) in $X$.
Example 4. Let $X=\left\{1+2^{-n}: n=1,2,3, \ldots\right\} \cup\{1\}$ with the usual metric. We define $T$ on $X$ by

$$
T(1)=1+2^{-1} \text { and } T\left(1+2^{-n}\right)=1+2^{-(n+1)}, n=1,2,3, \ldots
$$

For $x_{0}=1 ; O_{T}\left(x_{0}\right)=\left\{1+2^{-n}: n=1,2,3, \ldots.\right\}, \overline{O_{T}\left(x_{0}\right)}=O_{T}\left(x_{0}\right) \cup\{1\}$.
Then $T$ satisfies all the conditions of Theorem 4 with $\varphi$, the identity map of $R^{+}$ with $\delta=\min \{\epsilon, 1-\epsilon\}$ for $0 \leq \epsilon<1$, but $T$ is not orbitally continuous at $z(=1)$ and it has no fixed point.

Example 5. Let

$$
X=\left\{\sum_{i=0}^{n} 2^{-i}: n \in N\right\} \cup\{1,2\}
$$

with the usual metric. Define $T$ on $X$ by

$$
T 2=1, \quad T 1=1+2^{-1}, T\left(\sum_{i=0}^{n} 2^{-i}\right)=\sum_{i=0}^{n+1} 2^{-i}, \text { for } n \in N
$$

If $x_{0}=1+2^{-1}$, then

$$
O_{T}\left(1+2^{-1}\right)=\left\{\sum_{i=0}^{n} 2^{-i}: n \in N\right\} \text { and } \overline{O_{T}\left(1+2^{-1}\right)}=O_{T}\left(1+2^{-1}\right) \cup\{2\}
$$

Also, $T$ satisfies all the hypotheses of Theorem 4, with $\varphi(t)=\frac{t^{2}}{2}, t>0$, with

$$
\delta=\min \{\epsilon, 1-\epsilon\}
$$

but $T$ is not orbitally continuous at $z(=2)$ and it has no fixed point.
Remark 5. Let us mention:
(i) In Theorem 4 we do not assume the orbital continuity of $T$ at $T z$. Hence Theorem 4 improves the results of Sastry and Babu [5] and hence also Park [4], which in turn improves the results of Khan, Swaleh and Sessa [1].
(ii) By strengthening condition (3) by (8), the orbital continuity at $T z$ is relaxed.

## 4. Common fixed points for a pair of strip $\varphi$-contractions

We now extend Theorem 4 and Theorem 5 to a pair of selfmaps.
Theorem 7. Let $S$ and $T$ be selfmaps of $X$ such that for some $x_{0} \in X$ we define the sequence $\left\{x_{n}\right\}$ by $x_{2 n+1}=S x_{2 n}$ and $x_{2 n+2}=T x_{2 n+1}, n=0,1,2, \ldots$. Assume that either (a) or (b) of the following holds:
(a) $\left\{x_{2 n}\right\}$ has a cluster point $z$ in $X, S$ and $T S$ are orbitally continuous at $z$,
(b) $\left\{x_{2 n+1}\right\}$ has a cluster point $z$ in $X, T$ and $S T$ are orbitally continuous at $z$.

Further, assume that given $\epsilon>0$ there exist $\varphi \in \Phi$ and $\delta>0$ such that

$$
\begin{equation*}
\epsilon \leq \varphi(d(x, y))<\epsilon+\delta \text { implies } \varphi(d(S x, T y))<\epsilon \tag{13}
\end{equation*}
$$

for all $x, y$ in $\overline{\left\{x_{n}\right\}}, x \neq y$ satisfying either $x=T y$ or $y=S x$. Then either ( $i$ ) or (ii) of the following is true:
(i) either $S$ or $T$ has a fixed point in $X$,
(ii) $z$ is a unique common fixed point of $S$ and $T$ in $\overline{\left\{x_{n}\right\}}$.

## Proof.

Suppose that $x_{2 n}=x_{2 n+1}$ for some $n$ in $N$. Then $S$ has a fixed point in $X$. (14)

$$
\text { If } x_{2 n+1}=x_{2 n+2} \text { for some } n \text { in } N \text {, then } T \text { has a fixed point in } X \text {. (15) }
$$

(14) and (15) together imply that conclusion (i) holds. Now assume that $x_{n} \neq x_{n+1}$ for all $n$. Write $\beta_{n}=\varphi\left(d\left(x_{n}, x_{n+1}\right)\right)$. From (13) we have

$$
\beta_{2 n}=\varphi\left(d\left(x_{2 n}, x_{2 n+1}\right)\right)=\varphi\left(d\left(T x_{2 n-1}, S x_{2 n}\right)\right)<\varphi\left(d\left(x_{2 n-1}, x_{2 n}\right)\right)=\beta_{2 n-1}
$$

Therefore

$$
\begin{equation*}
\beta_{2 n}<\beta_{2 n-1} . \tag{16}
\end{equation*}
$$

Similarly,

$$
\begin{equation*}
\beta_{2 n+1}<\beta_{2 n} \tag{17}
\end{equation*}
$$

Hence from (16) and (17) it follows that $\left\{\beta_{n}\right\}$ is a decreasing sequence of nonnegative reals and it converges to a real number $\beta$ (e.g.).

Now assume (a). Then there exists a sequence $\{n(k)\}$ of positive integers such that

$$
\begin{equation*}
x_{2 n(k)} \rightarrow z, S x_{2 n(k)} \rightarrow S z, T\left(S x_{2 n(k)}\right) \rightarrow T S z \tag{18}
\end{equation*}
$$

From the continuity of $\varphi$, we have

$$
\beta=\lim _{k \rightarrow \infty} \beta_{2 n(k)}=\lim _{k \rightarrow \infty} \varphi\left(d\left(x_{2 n(k)}, x_{2 n(k)+1}\right)\right)=\varphi(d(z, S z))
$$

We now claim that $\beta=0$. Suppose that $\beta>0$, then

$$
\beta=\inf _{n \geq 1} \varphi\left(d\left(x_{n}, x_{n+1}\right)\right) .
$$

Then for any $\delta>0$, there exists $m \in N$ such that

$$
\begin{equation*}
\beta \leq \varphi\left(d\left(x_{n}, x_{n+1}\right)\right)<\beta+\delta \text { for all } n \geq m \tag{19}
\end{equation*}
$$

In particular, writing $n=2 m$ and using (13), we have

$$
\beta \leq \varphi\left(d\left(x_{2 m}, x_{2 m+1}\right)\right)<\beta+\delta
$$

which implies

$$
\varphi\left(d\left(S x_{2 m}, T x_{2 m+1}\right)\right)=\varphi\left(d\left(x_{2 m+1}, x_{2 m+2}\right)\right)<\beta
$$

a contradiction to (19). Hence $\beta=0$ and it implies that $S z=z$.
Now we prove that $T z=z$. From (13) we have

$$
\varphi\left(d\left(S x_{2 n(k)}, T x_{2 n(k)+1}\right)\right)<\varphi\left(d\left(x_{2 n(k)}, S x_{2 n(k)}\right)\right)
$$

Now by taking limits as $k \rightarrow \infty$, by using (18) and continuity of $\varphi$, it follows that $\varphi(d(S z, T(S z)) \leq \varphi(d(z, S z))=0$. Thus $T S z=S z$. Since $z=S z$, it follows that $T z=z$; and hence $z$ is a common fixed point of $S$ and $T$.

Similarly, when (b) holds, then it follows that $z$ is a common fixed point of $S$ and $T$. Uniqueness of a fixed point trivially follows from (13). Thus $S$ and $T$ have a unique common fixed point $z$ in $\overline{\left\{x_{n}\right\}}$.

Hence conclusion (ii) follows.
Theorem 8. Let $S$ and $T$ be selfmaps of $X$ such that for some $x_{0} \in X$ the sequence $\left\{(T S)^{n} x_{0}\right\}$ has a convergent subsequence, which converges to a point $z$ in $X$ and $S$, and let TS be orbitally continuous at $z$. Further assume that $S$ and $T$ satisfy the following condition: given $\epsilon>0$, there exist $\varphi \in \Phi$ and $\delta>0$, such that

$$
\begin{equation*}
\epsilon \leq \max \{\varphi(d(x, y)), \varphi(d(x, S x)), \varphi(d(y, T y))\}<\epsilon+\delta \tag{20}
\end{equation*}
$$

implies

$$
\begin{equation*}
\varphi(d(S x, T y))<\epsilon \tag{21}
\end{equation*}
$$

for all $x, y \in X, x \neq y$ satisfying either $x=T y$ or $y=S x$. Then, either ( $i$ ) or (ii) of the following is true:
(i) either $S$ or $T$ has a fixed point in $X$,
(ii) $S$ and $T$ have a unique common fixed point in $\overline{\left\{(T S)^{n} x_{0}\right\}}$.

Proof. Follows as a corollary to Theorem 7, since (20) implies (13).
The following is an example in support of Theorem 7.
Example 6. Let $X=[0,2)$ with the usual metric. We define $S, T: X \rightarrow X$ by

$$
S x=\left\{\begin{array}{l}
\frac{x}{2}, \text { if } x \in[0,1) \\
\frac{x^{2}}{8}, \text { if } x \in[1,2),
\end{array} \quad \text { and } \quad T x= \begin{cases}\frac{x}{2}, & \text { if } x \in[0,1) \\
\frac{x^{2}}{16}, & \text { if } x \in[1,2)\end{cases}\right.
$$

For any $x_{0} \in[0,1)$, the sequence $\left\{x_{n}\right\}$ defined in Theorem 7 is given by $x_{n}=\frac{x_{0}}{2^{n}}$, $n=0,1,2,3, \ldots$ and $\overline{\left\{x_{n}\right\}}=\left\{x_{n}\right\}_{n=0}^{\infty} \cup\{0\}$. Now for the case when $x_{0} \in[1,2)$, the sequence $\left\{x_{n}\right\}$ is given by
$\left\{x_{n}\right\}=\left\{x_{0}\right\} \cup\left\{\frac{x_{0}^{2}}{2^{n+2}}: n=1,2,3, \ldots\right\}$ and $\overline{\left\{x_{n}\right\}}=\left\{x_{0}\right\} \cup\left\{x_{n}: n=1,2,3, \ldots\right\} \cup\{0\}$.
Case (i): Let $x_{0} \in[0,1)$. Let $0<\epsilon<1$ with $\delta=\min \{\epsilon, 1-\epsilon\}$. Define $\varphi$ on $R^{+}$by $\varphi(t)=t^{2}, t \geq 0$. For $x=\frac{x_{0}}{2^{n}}$ and $y=S x=\frac{x_{0}}{2^{n+1}}, n=0,1,2, \ldots$, we have

$$
\begin{aligned}
\varphi(d(x, y)) & =\varphi\left(\left|\frac{x_{0}}{2^{n}}-\frac{x_{0}}{2^{n+1}}\right|\right)=\varphi\left(\frac{x_{0}}{2^{n+1}}\right)=\left(\frac{x_{0}}{2^{n+1}}\right)^{2}<\epsilon+\delta, \\
\varphi(d(S x, T y)) & =\varphi\left(\left|\frac{x_{0}}{2^{n+1}}-\frac{x_{0}}{2^{n+2}}\right|\right)=\varphi\left(\frac{x_{0}}{2^{n+2}}\right)=\left(\frac{x_{0}}{2^{n+2}}\right)^{2}=\left(\frac{x_{0}}{2^{n+1} .2}\right)^{2} \\
& =\frac{1}{4}\left(\frac{x_{0}}{2^{n+1}}\right)^{2}<\frac{1}{4}(\epsilon+\delta)<\epsilon .
\end{aligned}
$$

Case (ii): Let $x_{0} \in[1,2)$. Let $0<\epsilon<1$, with $\delta=\min \{\epsilon, 1-\epsilon\}$. When $x=x_{0} ; y=S x=\frac{x_{0}^{2}}{2^{3}}$, we have

$$
\varphi(d(x, y))=\varphi\left(\left|x_{0}-\frac{x_{0}^{2}}{2^{3}}\right|\right)=\varphi\left(\frac{8 x_{0}-x_{0}^{2}}{2^{3}}\right)=\left(\frac{8 x_{0}-x_{0}^{2}}{2^{3}}\right)^{2}<\epsilon+\delta
$$

and

$$
\varphi(d(S x, T y))=\varphi\left(\left|\frac{x_{0}^{2}}{2^{3}}-\frac{x_{0}^{2}}{2^{4}}\right|\right)=\left(\frac{x_{0}^{2}}{16}\right)^{2}<\frac{1}{2}(\epsilon+\delta)<\epsilon .
$$

In general, when $x=\frac{x_{0}^{2}}{2^{n+2}} ; y=S x=\frac{x_{0}^{2}}{2^{n+3}}$, we have

$$
\varphi(d(x, y))=\varphi\left(\left|\frac{x_{0}^{2}}{2^{n+2}}-\frac{x_{0}^{2}}{2^{n+3}}\right|\right)=\varphi\left(\frac{x_{0}^{2}}{2^{n+3}}\right)=\frac{x_{0}^{4}}{\left(2^{n+3}\right)^{2}}<\epsilon+\delta
$$

and

$$
\varphi(d(S x, T y))=\varphi\left(\left|\frac{x_{0}^{2}}{2^{n+3}}-\frac{x_{0}^{2}}{2^{n+4}}\right|\right)=\frac{x_{0}^{4}}{\left(2^{n+3}\right)^{2} .2^{2}}<\frac{1}{4}(\epsilon+\delta)<\epsilon
$$

Thus $S$ and $T$ satisfy condition (13) with $\varphi(t)=t^{2}, t \geq 0$.
Also, in any case $\left\{x_{n}\right\}$ has a convergent subsequence which converges to the point 0; and satisfy all the hypotheses of Theorem 7; and 0 is the unique common fixed point of $S$ and $T$.

Remark 6. The following is an example to show that conclusion (i) of Theorem 8 is valid.

Example 7. Let $X=\{0,1\}$. Define selfmaps $S$ and $T$ on $X$ by

$$
S x=\left\{\begin{array}{l}
0, \text { if } x=0 \\
1, \text { if } x=1,
\end{array} \quad \text { and } \quad T x=\left\{\begin{array}{l}
1, \text { if } x=0 \\
0, \text { if } x=1
\end{array}\right.\right.
$$

Then $S$ and $T$ trivially satisfy strip $\varphi$-contraction for any $\varphi \in \Phi$ (in particular, we take $\varphi(t)=\frac{t^{2}}{2}, t \geq 0$ ) and they also satisfy all the conditions of Theorem 7. Observe that $S$ has two fixed points 0 and 1 whereas $T$ has no fixed points.

## References

[1] M. S. Khan, M. Swaleh, S. Sessa, Fixed point theorems by altering distances betweeen the points, Bull. Austral. Math. Soc 30(1984), 1-9.
[2] M. Maiti, T. K. Pal, Generalizations of two fixed point theorems, Bull. Cal. Math. Soc. 70(1978), 59-61.
[3] A. Meir, E. Keeler, A theorem on contraction mappings, J. Math. Anal. Appl. 28(1969), 326-329.
[4] S. Park, A unified approach to fixed points of contractive maps, J. Korean. Math. Soc. 16(1980), 95-105.
[5] K. P. R. Sastry, G. V. R. Babu, Some fixed point theorems by altering distances between the points, Indian J. of Pure and Appl. Math. 30(1999), 641-647.
[6] D. Turkoglu, O. Ozer, B. Fisher, Fixed point theorems for T-orbitally complete spaces, Stud. Cerc. St. Ser. Matem. 9(1999), 211-218.

