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Abstract. In this paper we begin with the basics of multisets and their operations intro-
duced in [5, 22] and define a multiset relation, an equivalence multiset relation and explore
some of their basic properties. We also define a partially ordered multiset as a multiset
relation being reflexive, antisymmetric and transitive, chains and antichains of a partially
ordered multiset, and extend Dilworth’s Theorems for partially ordered sets in the context
of partially ordered multisets.
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1. Introduction

A multiset (mset for short) is a set with the additional feature that elements have
multiple occurrences. A finite mset over a set X is an mset M formed with finitely
many elements from X such that each element has a finite multiplicity of occurrence
in M .

We begin with the definition of the notion of a subset of an mset called a submset,
and the operations between msets [5, 22]. In 1950 R. P. Dilworth proved the theorem:
Every partially ordered set (poset) can be partitioned into w-chains, where w is
the width of the poset. Later in 1971 Mirsky proved its dual in the context of
h-antichains, where h is the height of the poset. In this paper we will define an
mset relation, a partially ordered mset (pomset), chains and antichains of pomsets
and prove some theorems related to msets and pomsets. Finally, we will obtain the
analogous of Dilworth’s theorem and its dual for pomsets.

This paper is organized as follows. In section 2 we collect preliminaries and basic
definitions based on msets. In sections 3, 4 and 5 we extend set theoretic results to
msets, pomsets, chains and antichains of pomsets and a pomset version of Dilworth’s
theorem and its dual.
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2. Preliminaries and basic definitions

In this section we will collect basic definitions and notations as introduced by Cerf
et al. [4] in 1972, Peterson [16] in 1976 and Yager [22] in 1986.

Definition 1 (see [5]). A collection of elements which may contain duplicates is
called a multiset. Formally if X is a set of elements, a multiset M drawn from the
set X is represented by a function count M or CM defined as CM : X → N where
N represents the set of non-negative integers.

For each x ∈ X, CM (x) is the characteristic value of x in M and it indicates the
number of occurrences of the elements x in M . A multiset M is a set if CM (x) = 0
or 1 for all x ∈ X.

Definition 2 (see [5]). Let M1 and M2 be two msets selected from a set X, then
M1 is a sub mset of M2 (M1 ⊆ M2) if CM1(x) ≤ CM2(x) for all x ∈ X. M1 is a
proper sub mset of M2 (M1 ⊂ M2) if CM1(x) ≤ CM2(x) for all x ∈ X and there
exists at least one x ∈ X such that CM1(x) < CM2(x).

Definition 3 (see [5]). Two msets M1 and M2 are equal (M1 = M2) if (M1 ⊆M2)
and (M2 ⊆M1).

Definition 4 (see [5]). An mset M is empty if CM (x) = 0 for all x ∈ X.

Definition 5 (see [5]). The cardinality of an mset M drawn from a set X, Card
M =

∑
x∈X CM (x). It is also denoted by |M |.

Definition 6 (see [5]). Insertion of an element x into an mset M results in a new
mset M ′ denoted by M ′ = M ⊕ x such that CM ′(x) = CM (x) + 1 and CM ′(y) =
CM (y) for all y 6= x.

Definition 7 (see [5]). Addition of two msets M1 and M2 drawn from a set X results
in a new mset M = M1 ⊕M2 such that for all x ∈ X, CM (x) = CM1(x) +CM2(x).

Definition 8 (see [5]). The removal of an element x from an mset M results in a
new mset M ′ denoted by M ′ = M 	 x such that CM ′(x) = max{CM (x)− 1, 0} and
CM ′(y) = CM (y) for all y 6= x.

Definition 9 (see [5]). Subtraction of two msets M1 and M2 drawn from a set X
results in a new mset M , denoted by M = M1 	M2 such that

CM (x) = max{CM1(x)− CM2(x), 0}.

Definition 10 (see [5]). The union of two msets M1 and M2 drawn from a set X
is an mset M denoted by M = M1 ∪M2 such that for all x ∈ X,

CM (x) = max{CM1(x), CM2(x)}.

Definition 11 (see [5]). The intersection of two msets M1 and M2 drawn from a
set X is an mset M denoted by M = M1 ∩M2 such that for all x ∈ X,

CM (x) = min{CM1(x), CM2(x)}.
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2.1. Notation

Let M be an mset from X and let x appear n times in M . We denote it by x ∈n M .
M = {k1/x1, k2/x2, . . . , kn/xn} also means that M is an mset with x1 appearing k1

times, x2 appearing k2 times and so on. [M ]x denotes the element x belonging to
the mset M and |[M ]x| denotes the cardinality of an element x in M .

An entry of the form (m/x, n/y)/k means that the pair (x, y) is repeated with
x m-times, y n-times and the pair occurring k-times. C1(x, y) denotes the count of
the first coordinate in the ordered pair (x, y) and C2(x, y) denotes the count of the
second coordinate in the ordered pair (x, y).

The mset order relations and quasi-mset order relations are denoted by the sym-
bol ≤:≤ and strict mset orders by <:<. We write m/x ≤:≤ n/y in R which means
x and y are comparable and irrespective of the counts of x and y, m/x ≤:≤: n/y in
R which means x and y are incomparable and irrespective of the counts of x and y
and m/x ≤≤ n/y which means that x and y are comparable and the correspond-
ing counts are also comparable. A strict mset order is denoted analogously. Also
m/x == n/y in R if and only if m = n and x = y, m/x = 6= n/y in R if and only
if m = n and x 6= y, m/x 6== n/y in R if and only if m 6= n and x = y, and
m/x 6= 6= n/y if and only if m 6= n and x 6= y. The notation m/x <:< n/y in R
means that m/x 6= 6= n/y and m/x ≤:≤ n/y.

Definition 12 (see [5]). The mset space Xn is the set of all msets whose elements
are in X such that no element in an mset occurs more than n times. The set X∞

is the set of all msets over a domain X such that there is no limit on the number of
occurrences of an element in an mset. If X = {x1, x2, . . . , xk}, then

Xn = {{n1/x1, n2/x2, . . . , nk/xk} for i = 1, 2, . . . , k, ni ∈ {0, 1, 2, . . . , n}}

Definition 13 (see [5]). Let M be an mset drawn from a set X. The support set of
M denoted by M∗ is a subset of X and M∗ = {x ∈ X : CM (x) > 0}, i.e., M∗ is an
ordinary set. M∗ is also called a root set.

Definition 14 (see [5]). Let X be a support set and Xn the mset space defined over
X. Then for any mset M ∈ Xn, the complement M c of M in Xn is an element of
Xn such that CMc(x) = n− CM (x) for all x ∈ X.

Remark 1. Using Definition 12, the mset sum can be modified as follows:

CM1⊕M2(x) = min{n,CM1(x) + CM2(x)} for all x ∈ X.

If X is a set with n distinct elements, then a power set of X,P (X) contains exactly
2n distinct elements. If X is an mset with n-elements (repetitions counted), then
P (X) contains strictly less than 2n elements because singleton submsets do not repeat
in P (X). Unlike classical set theory, Cantor’s power set theorem fails for msets. It
is possible to formulate a reasonable definition of a power mset of X for finite msets
X that preserves Cantor’s theorem.

Definition 15 (see [6]). A power mset, denoted by P̃ (X), of mset X is defined as
follows:
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Y ∈ P̃ (X) iff Y ⊆ X, if Y = ϕ, then Y ∈1 P̃ (X), and if Y 6= ϕ, then Y ∈k P̃ (X)

where k =
∏

z

(
|[X]z|
|[Yz|

)
, the product

∏
z is taken over distinct elements of z of the

mset Y and |[X]z| = m iff z ∈m X,|[Y ]z| = n iff z ∈n Y , then(
|[X]z|
|[Y ]z|

)
=
(
m
n

)
=

m!
n!(m− n)!

.

Example 1. Let M = {6/x, 3/y} be an mset and let P̃ (M) denote the power mset,

if {3/x} is a member of P̃ (M), then {3/x} repeats k =
(

6
3

)
= 20 times. Also, if

{4/x, 2/y} is a member of P̃ (M), then {4/x, 2/y} repeats k =
(
6
4

)(
3
2

)
= 45 times.

Example 2. Let M = {1, 2, 2} = {1/1, 2/2} be an mset. Then the power mset of
M

P̃ (M) = {1/φ, 1/M, 1/{1/1}, 2/{1/2}, 1/{2/2}, 2/{1/1, 1/2}}.

3. Multiset relations

The concept of a multirelation was introduced by Winskel [21] in 1987, and those
are structures similar to Multiset relations. But the way in which Multiset relations
are defined in this paper is entirely different from multirelations.

Definition 16. Let M1 and M2 be two msets drawn from a set X; then the Cartesian
product of M1 and M2 is defined as

M1 ×M2 = {(m/x, n/y)/mn : x ∈m M1, y ∈n M2}.

We now define the Cartesian product of three or more nonempty msets by generaliz-
ing the definition of the Cartesian product of two msets. That is, the Cartesian prod-
uct M1×M2×· · ·×Mn of nonempty msets M1,M2, . . . ,Mn is the mset of all ordered
n-tuples (m1,m2, . . . ,mn) where mi ∈ri Mi, i = 1, 2, . . . , n and (m1,m2, . . . ,mn) ∈p

M1 ×M2 × . . .×Mn with p =
∏
ri, ri = CMi

(mi), i = 1, 2, . . . , n.

Example 3. Let M1 = {1/1, 2/2} and M2 = {4/3} be two msets; then
M1 ×M2 = {(1/1, 4/3)/4, (2/2, 4/3)/8}.

Theorem 1. For any two nonempty msets M1 and M2,

CM1×M2 [(x, y)] = CM1(x) · CM2(y) and |M1 ×M2| = |M1| · |M2|.

In general, |M1 ×M2 ×M3 × · · · ×Mn| = |M1| · |M2| · |M3| . . . |Mn|.

Definition 17. A sub mset R of M ×M is said to be an mset relation on M if
every member (m/x, n/y) of R has count C1(x, y) ·C2(x, y). We denote m/x related
to n/y by m/xRn/y.

Definition 18. Domain and range of the mset relation R on M is defined as follows:
Dom R = {x ∈r M : ∃y ∈s M such that r/xRs/y}, where CDom R(x) = sup{C1(x, y) :
x ∈r M}.
Ran R = {y ∈s M : ∃x ∈r M such that r/xRs/y}, where CRan R(x) = sup{C2(x, y) :
y ∈s M}.
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Example 4. Let M = {8/x, 11/y, 15/z} be an mset. Then

R = {(2/x, 4/y)/8, (5/x, 3/x)/15, (7/x, 11/z)/77, (8/y, 6/x)/48, (11/y, 13/z)/143,
(7/z, 7/z)/49, (12/z, 10/y)/120, (14/z, 5/x)/70}

is an mset relation defined on M . Here Dom R = {7/x, 11/y, 14/z} and
Ran R = {6/x, 10/y, 13/z}.

Definition 19. It holds:

(i) An mset relation R on an mset M is reflexive iff m/xRm/x for all m/x in
M , irreflexive iff m/xRm/x never holds.

(ii) An mset relation R on an mset M is symmetric iff m/xRn/y implies
n/yRm/x, antisymmetric iff m/xRn/y and n/yRm/x implies m/x == n/y
for all m/x, n/y in M .

(iii) An mset relation R on an mset M is transitive if m/xRn/y, n/yRk/z, then
m/xRk/z.

Definition 20. An mset relation R on an mset M is called an equivalence mset
relation if it is reflexive, symmetric and transitive.

Example 5. Let M = {3/x, 5/y, 3/z, 7/r}. Then the mset relation given by

R = {(3/x, 3/x)/9, (3/x, 3/z)/9, (3/x, 7/r)/21, (7/r, 3/x)/21, (5/y, 5/y)/25,
(3/z, 3/z)/9, (7/r, 7/r)/49, (3/z, 3/x)/9, (3/z, 7/r)/21, (7/r, 3/z)/21}

is an equivalence mset relation.

Definition 21. The identity mset relation in any mset M is the set of all pairs in
M ×M with equal co-ordinates and it is denoted by IM .

Example 6. Let M = {2/x, 3/y, 2/z} be an mset. Then the identity mset relation
on M

IM = {(2/x, 2/x)/4, (3/y, 3/y)/9, (2/z, 2/z)/4}.

Definition 22. A partition of a nonempty mset M is a collection P of nonempty
sub msets of M such that

(1) Each element of M belongs to one of the msets in P .

(2) If M1 and M2 are distinct elements of P , then M1 ∩M2 = ∅.

4. Partially ordered multisets

Definition 23. Let R be an mset relation on an mset M . Then R is called a quasi-
mset order (or a pre-mset order) if it is reflexive and transitive. In addition, if R is
antisymmetric it is also called an mset order relation (or in short, an mset order)
or a partially ordered mset relation. The pair (M,R) is called an ordered mset or
partially ordered multiset (pomset) and it is denoted by MP .
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Definition 24. The mset relation R is called a linear mset order (or a total mset
order) on M , if R is an mset order and if for every two elements m/x 6= 6= n/y of
M either m/xRn/y or n/yRm/x holds. (Both cannot hold since this would imply
m/x == n/y because of antisymmetry of R).

Definition 25. The mset relation R is called a strict mset order if R is irreflexive
and transitive, and R is called a strict linear mset order if R is a strict mset order
which satisfies for every two distinct elements m/x, n/y of M either m/xRn/y or
n/yRm/x hold.

Remark 2. A strict mset order R is antisymmetric since m/x and n/y would be
elements with m/xRn/y and n/yRm/x, the transitivity of R would imply m/xRm/x
contradiction to the irreflexivity of R.

Theorem 2. Let <:< be a strict mset order on M . Then the mset relation

≤:≤ = <:< ∪ IM

is an mset order on M .

Proof. ≤:≤ is reflexive by definition. Let m/x, n/y be in M and m/x ≤:≤ n/y and
n/y ≤:≤ m/x. If m/x 6= 6= n/y holds, we have m/x <:< n/y and n/y <:< m/x,
hence m/x <:< m/x which is a contradiction to the irreflexivity of <:<. Thus ≤:≤
is antisymmetric.

Let m/x, n/y, p/z be in M and m/x ≤:≤ n/y and n/y ≤:≤ p/z. If m/x == n/y
or n/y == p/z holds, then m/x ≤:≤ p/z is trivial. Otherwise, m/x <:< n/y and
n/y <:< p/z, then m/x <:< p/z and m/x ≤:≤ p/z.

Theorem 3. Let R be a reflexive and antisymmetric relation on an mset M . Then
the following statements are equivalent.
(a) R is a linear mset order on M .
(b) R and its complementary mset relation Rc are both transitive.

Proof. (a)⇒ (b): ClearlyR is transitive. Letm/x, n/y, p/z be inM andm/xRcn/y
and n/yRcp/z. Then neither m/xRn/y nor n/yRp/z would hold. Therefore m/x is
not R-related to p/z. Thus m/xRcp/z and Rc is transitive.
(b)⇒ (a): Suppose R and its complementary mset relation Rc are both transitive. If
m/x, n/y are distinct elements of M , then either m/xRn/y or n/yRm/x must hold.
Otherwise, we would have m/xRcn/y and n/yRcm/x, hence m/xRcm/x since Rc

is transitive. But this contradicts m/xRm/x. And so R is a linear mset order.

Remark 3. For a linear mset order R on M the inverse mset relation R−1 and the
complementary mset relation Rc “nearly” coincide. They differ only in the identity
mset relation IM .

Theorem 4. Let R be an mset order relation on M . Then the following two state-
ments are equivalent.
(a) R is a linear mset ordering.
(b) Rc = R−1 \ IM .
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Proof. (a) ⇒ (b): Trivial.
(b) ⇒ (a): Let m/x, n/y be distinct elements of M . If neither m/xRn/y nor
n/yRm/x held, we would have m/xRcn/y and n/yRcm/x and therefore by (b),
m/xR−1n/y and n/yR−1m/x. This implies n/yRm/x and m/xRn/y, so that
m/x == n/y a contradiction to our assumption. Thus R is a linear mset order-
ing.

Remark 4. If we have a reflexive and antisymmetric mset relation ≤:≤ on an mset
M and if we want to show that it is also transitive, it suffices evidently to prove that
the mset relation <:<, which is defined by <:<=≤:≤ \ IM , is transitive.

Example 7. Let M be an mset and P (M) the set of all submsets of M . For
submsets M1,M2 of M we put M1 ≤≤M2 if and only if M1 ⊆M2. Then ≤≤ is an
mset order relation.

Example 8. The set of n-tuples, from
∏
Mi, i = 1, 2, . . . , n and Mi’s are msets

and partially ordered by

(m1/x1,m2/x2, . . . ,mn/xn) ≤:≤ (k1/y1, k2/y2, . . . , kn/yn)

if and only if mi/xi ≤:≤ ki/yi for i = 1, 2, . . . , n. Then ≤≤ is an mset order
relation.

Remark 5. Next statements also holds:

1. Let R be an mset relation which is symmetric and transitive. If m/x is R-
related to n/y, then m/xRm/x because m/xRn/y implies n/yRm/x. Then,
we have M = S ∪ (M\S), where S is the mset of elements of M which are not
R-related to any element of M , and R/(M\S) is an equivalence mset relation
on M\S.

2. If the mset relation R is antisymmetric and transitive, then R∪ IM is an mset
order relation ≤:≤ on M . Its corresponding strict mset order <:< is a sub
mset order relation R.

3. The mset relation R is irreflexive, symmetric and transitive only if R = ∅.
If there existed elements m/x, n/y in M with m/xRn/y, we would also have
n/yRm/x and then m/xRm/x, which contradicts irreflexivity.

5. Chains and antichains in pomsets

Definition 26. Let MP = (M,≤:≤) be a pomset, m/x, n/y in M . If m/x <:< n/y
holds, m/x is said to be a predecessor of n/y and n/y a successor of m/x.

If m/x <:< n/y holds and if there is no element k/z in M which satisfies
m/x <:< k/z <:< n/y, then m/x is called an immediate predecessor of n/y or
n/y is called an immediate successor of m/x.

Definition 27. A submset C of MP = (M,≤:≤) is called a chain in a pomset if
every distinct pair of points from C is comparable in MP , i.e., for all distinct m/x,
n/y in C, then m/x <:< n/y in MP .
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A pomset MP = (M,≤:≤) itself is called a chain if every distinct pair of points
from M is comparable in MP . When (M,≤:≤) is a chain, we call MP a linear mset
order (also a total mset order) on an mset M .

Definition 28. A submset A of MP = (M,≤:≤) is called an antichain if every
distinct pair of points from A is incomparable in MP , i.e., for all distinct m/x, n/y
in A, then m/x <:<: n/y in MP .

A pomset MP = (M,≤:≤) itself is called an antichain if every distinct pair of
points from M is incomparable in MP .

Definition 29. Let MP = (M,≤:≤) be a pomset and N a nonempty submset of M ,
the restriction of MP to N , denoted by MP (N) (or MP /N) is a partial mset order
on N and we call (N,MP (N)) a sub pomset of MP = (M,≤:≤).

Definition 30. A nonempty submset N ⊆ M is called a chain (resp. antichain)
if the sub pomset (N,MP (N)) is a chain (resp. antichain). One element (element
with some multiplicity) of M is both a chain and an antichain and it is said to be
trivial. Chains and antichains of two or more points are non trivial.

Definition 31. If the cardinality of an mset M is m, then the corresponding chain
(resp. antichain) MP = (M,≤:≤) is called an m-chain (resp. m-antichain) on M .

Definition 32. A point m/x in M is called a maximal element (resp. mini-
mal element) if there is no element n/y in M with m/x <:< n/y in MP (resp.
m/x :>> n/y in MP ). We denote the mset of all maximal elements of a pomset
MP = (M,≤:≤) by Max (MP ), while Min(MP ) denotes the mset of all minimal
elements.

Definition 33. An element m/x in M is called the greatest element of MP if
n/y ≤:≤ m/x for every n/y in M . Similarly, m/x is called a least element of
MP if n/y :≤≤ m/x for every n/y in M .

Remark 6. If a pomset has a least element, then this is also the minimal element,
analogously the greatest element is the maximal element. In a linearly ordered mset
the notions “minimal element” and “least element” evidently coincide, as well as
“maximal” and “greatest”. But this is not true in general.

Example 9. Consider an mset {3/x1, 4/x2, 2/x3, 3/x4, 5/x5} whose order ≤:≤ is
given by

3/x1 <:< 2/x3 <:< 5/x5, 4/x2 <:< 2/x3 <:< 3/x4,

3/x1 <:<: 4/x2, 3/x4 <:<: 5/x5.

In this mset 3/x1 and 4/x2 are minimal elements, 3/x4 and 5/x5 are maximal
elements. This mset has neither a greatest nor a least element.

The mset of all chains in a pomset MP is partially ordered by mset inclusion
and the maximal elements in this pomset are called maximal chains. A chain C
is a maximum chain if no other chain contains more points than C. Maximal and
maximum antichains are defined analogously. Both Max (MP ) and Min (MP ) are
maximal antichains.
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Theorem 5 (see [19], Pigeonhole principle for msets). Suppose that M1, M2, . . . ,
Mn are submsets of an mset M satisfying Mi ∩ Mj = ∅ for all i and j. Then
M1 ∪M2 ∪ · · · ∪Mn ⊆M .

Definition 34. Let MP = (M,≤:≤) be a finite pomset, m/x an element of MP .
The height h(m/x) is the greatest non-negative integer h, so that there exists a chain
{m1/x1,m2/x2, . . . ,mt/xt}, where m1/x1 <:< m2/x2 <:< · · · <:< mt/xt = m/x
and h =

∑
mi, i = 1, 2, . . . , t.

For t ∈ N , let Ct = {m1/x1,m2/x2, . . . ,mt/xt} be the chain, then

h(m1/x1) = m1,

h(m2/x2) = m1 +m2,

...
h(mt/xt) = m1 +m2 + · · ·+mt,

where mt is the count of the element xt.
For n ∈ N , let Ln denote the mset of all elements of M which have height mn. It

is called the n-level or height-n-mset of M . Thus Ln is the mset of all last elements
of the chains of height mn.

Definition 35. The height of a pomset MP = (M,≤:≤), denoted by height (MP ),
is the largest integer h for which there exists a chain {m1/x1,m2/x2, . . . ,mt/xt} of
height h =

∑
mi, i = 1, 2, . . . , t, i.e., height (MP ) is the cardinality of a maximum

chain.

From Definition 34 it follows that height (MP ) = Max {h(m/x) : x ∈m M}.

Theorem 6. Let MP = (M,≤:≤) be a finite pomset.

(1) For two non-negative integers
∑

imi,
∑

j mj less than height (MP ), mi ≤ mj,
x ∈mi Li, y ∈mj Lj, we have mi/x ≤≤ mj/y or mi/x ≤:≤ mj/y.

(2) For every non-negative integer
∑

nmn < Height (MP ) the level Ln is an anti-
chain. Levels Ln are pairwise disjoint and they form a partition of M in
antichains.

Proof. Every chain among those chains which have mj/y in Lj as the last ele-
ment contains

∑
j mj elements. Otherwise we would have mj/y << mi/x, one

could extend these chains by adjoining mi/x and obtain a chain of cardinality∑
j mj+1 >

∑
imi which has mi/x as the last element. But this contradicts mi/x

in Li, so part (1) is proved. Proof of (2) follows from (1) by putting mi = mj .

Theorem 7. Let h be the height of a nonempty finite pomset MP . For
∑

imi < h,
then Li is the mset of all minimal elements of MP \ ∪ {Lv :

∑
v mv <

∑
imi}. In

particular, L1 is the mset of all minimal elements of MP .

Proof. Let mi/xi be in Li. If mi/xi were minimal in the mset ∪{Lv :
∑

v mv ≥∑
imi}, then this mset would contain an element mv/y < mi/x, and we would have

mv/y in Lv for an index v ≥ i. Hence there would exists a chain of cardinality



202 K. P. Girish and J. J. Sunil∑
v mv with mv/y as the last element and then also a chain of cardinality

∑
v mv+1

with mi/x as the last element. This would yield h(mi/x) ≥
∑

v mv >
∑

imi

contradicting mi/x in Li.

Theorem 8. Let m/x, n/y be elements of a finite pomset MP = (M,≤:≤) with
m/x as the immediate predecessor of n/y. Then we have h(n/y) ≥ h(m/x).

Proof. Every chain of cardinality h(m/x) which ends in m/x yields a chain of
cardinality h(m/x) + n (≤ h(n/y)) which ends in n/y by attaching the element
n/y.

Remark 7. From Theorem 8 one cannot conclude that h(n/y) = h(m/x) +n always
holds. For example, let M be an mset with 3/x1, 2/x2, 4/x3, 3/x4 as elements, where
3/x1 <:< 2/x2 <:< 4/x3 and 3/x4 <:< 4/x3 hold and 3/x4 is incomparable with
3/x1 and 2/x2, then h(4/x3) = 9, h(3/x4) = 3, but 3/x4 the immediate predecessor
of 4/x3 holds. Thus h(4/x3) 6= h(3/x4) + 4.

Theorem 9. Let the assumptions of Theorem 7 be fulfilled and mn/x in Ln for a non
negative integer

∑
nmn < h. Further, let m1/x1 <:< m2/x2 <:< · · · <:< mn/xn be

the longest chain among the chains which have mn/x == mn/xn as the last element.
Then mv/xv is in Lv, v = 1, 2, . . . , n.

Proof. The msets L1, L2, . . . are antichains and therefore the elements
m1/x1,m2/x2, . . . ,mn/xn are all in different levels. Then by Theorem 8 we have
h(m1/x1) < h(m2/x2) < · · · < h(mn/xn) =

∑
nmn. This is possible only if

h(mv/xv) =
∑

v mv, v = 1, 2, . . . , n.

Theorem 10. Every mset order ≤:≤ on a finite mset M is a submset of a linear
mset order on this mset. In other words: Every mset order relation on a finite mset
is extensible to a linear mset order.

Proof. Let MP = (M,≤:≤) be a non-empty finite pomset. We consider the lev-
els L1, L2, . . . , Ln of MP , where

∑
nmn is the height (MP ). Then we take an

arbitrary linear mset order in each of these levels, and if mi, mj are elements of
{m1,m2, . . . ,mn} with mi < mj , we put mi/x << mj/y for all mi/x in Li and
all mj/y in Lj . Together we obtain a linear mset order in MP , which extends the
original mset order ≤:≤.

Theorem 11. Let MP = (M,≤:≤) be a pomset and let height (MP ) = h, then
there exists a partition M = M1 ∪ M2 ∪ · · · ∪ Mt where Mi’s are antichains for
i = 1, 2, · · · , t and t ≤ h. Furthermore, there is no partition using a fewer number
of antichains.

Proof. For each m/x in M , let height (m/x) be the largest integer s for which there
exists a chain m1/x1 <:< m2/x2 <:< · · · . <:< mr/xr with s =

∑
mi, i = 1, 2, . . . , r

and m/x == mr/xr. Evidently, height (m/x) ≤ h, i.e., s ≤ h for all m/x in M .
Then for each i = 1, 2, . . . , t, let Mi = {x ∈m M : height (m/x) =

∑
imi}. It

is easy to see that each Mi is an antichain, as if m/x, n/y in Mi are such that
m/x <:< n/y, then there is a chain

m1/x1 <:< m2/x2 <:< · · · <:< mi/xi == m/x <:< mi+1/xi+1 == n/y.
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So height
(n/y) =

∑
mp >

∑
mp = height (m/x),

which is not possible. So each Mi is an antichain. Since height (MP ) = h, there is a
maximum chain C = {m1/x1,m2/x2, . . . ,mt/xt} with h =

∑
mi/xi, i = 1, 2, . . . , t.

If it were possible to partition MP into r antichains with r < t, then by the Pigeon-
hole principle one of the antichain would contain two elements with some multiplicity
or one element with some multiplicity from C, but which is absurd.

Definition 36. The width of a pomset MP = (M,≤:≤) denoted by width (MP )
is the largest integer w for which there exists an antichain {m1/x1, m2/x2, . . .,
mt/xt} with w =

∑
mi, i = 1, 2, . . . , t, i.e., width (MP ) is the cardinality of the

largest antichain.

Remark 8. It is clear that for a finite pomset MP there always exists an antichain
of MP whose cardinality is width (MP ). For an infinite mset order this is not always
valid.

Definition 37. Let MP = (M,≤:≤) be a pomset and m/x in M . Then the following
is defined.

D(m/x) = {y ∈n M : n/y <:< m/x}
D[m/x] = {y ∈n M : n/y ≤:≤ m/x}
U(m/x) = {y ∈n M : n/y :>> m/x}
U [m/x] = {y ∈n M : n/y :≥≥ m/x}
I(m/x) = {y ∈n M\{m/x} : m/x <:< n/y}.

When S ⊆ M , D(S) = {y ∈n M : n/y <:< m/x for some m/x in S} and
D[S] = S ∪D(S). The submsets U(S) and U [S] are defined dually.

Theorem 12 (Dilworth Theorem for Pomsets). Let MP = (M,≤:≤) be a pomset,
and width (MP ) = w, then there exists a partition M = C1 ∪ C2 ∪ · · · ∪ Ct, where
Ci’s are chains for i = 1, 2, · · · , t and t ≤ w. Furthermore, there is no partition into
a fewer number of chains.

Proof. As the proof of Theorem 11, the Pigeonhole principle implies that we require
at least t ≤ w chains. To prove this, we proceed by induction on t, a suffix of the
chains of M . The result is trivial if t = 1 i.e., |M | = m1. Assume validity for all
pomsets with t ≤ r, i.e., |M | = m1 +m2 + · · ·+mt ≤ m1 +m2 + · · ·+mt +mr and
suppose that MP is a pomset with

|M | = m1 +m2 + · · ·+mt +mt+1 = m1 +m2 + · · ·+mt +mr.

Without loss of generality, width (MP ) > m1; else a trivial partition M = C1

satisfies the conclusion of the theorem. Furthermore, we observe that if C is a
nonempty chain in MP , then we may assume that the sub pomset (M\C,MP (M\C))
also has width w. To see this, observe that the theorem holds for the subpomset,
so that if width (M\C,MP (M\C)) = w′ < w, then we can partition M\C as
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M\C = C1 ∪ C2 ∪ · · · ∪ Cs with s < t, so that M = C ∪ C1 ∪ C2 ∪ · · · ∪ Cs is a
partition into s+1 chains. Since s < t, we know s+1 ≤ t, so that we have a partition
of M into atmost t chains with t ≤ w. Since any partition of M into chains must
use at least t chains, this is exactly the partition we seek.

If m/x in M is a loose point in MP , then C = {m/x} is a chain and a subpomset
(M\C,MP (M\C)) has a width less than w as any maximal antichain contains every
loose point. We may therefore assume that MP has no loose points.

Choose a maximal point m/x and a minimal point n/y with n/y <:< m/x in
MP ; such a pair exists since there are no loose points. Then set C = {m/x, n/y},
N = M\C and Q = MP (N). Now, width (N,Q) = w, so (N,Q) contains a w-
element antichain A = {m1/x1,m2/x2, . . . ,mt/xt} with w =

∑
mi/xi, i = 1, 2, . . . t.

Note that U [A] 6= M since n/y does not belong to U [A], and D[A] 6= M since m/x
does not belong to D[A]. Therefore, we may apply the inductive hypothesis to D[A]
and U [A]. Also note that D[A] 6= U [A] = A since if there were z ∈q (D[A]∪U [A])\A,
then there would become z′ ∈p A such that p/z′ :>> q/z and z′′ ∈r A such that
q/z :>> r/z′′. However, these facts would combine to imply that p/z′ :>> r/z′′,
contrary to the fact that A is an antichain.

By the inductive hypothesis, we know that we can partition each U [A] and D[A]
into chains. Without loss of generality, we may label these partitions as U [A] = C ′1∪
C ′2∪· · ·∪C ′t and D[A] = C ′′1 ∪C ′′2 ∪· · ·∪C ′′t , where xi ∈mi C ′i ∩C ′′i for i = 1, 2, . . . , t.
However, this implies that M = (C ′1 ∪ C ′′1 ) ∪ (C ′2 ∪ C ′′2 ) ∪ · · · ∪ (Ct ∪ C ′′t ), which is
the desired partition.
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