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Abstract. In this paper we prove that the condition

2n∑
k=[ n

2 ]

krλk

|n− k|+ 1
= o(1) (= O(1)) ,

for r = 0, 1, 2, . . . , is necessary for the convergence of the r − th derivative of the Fourier
series in the L1−metric. This condition is sufficient under some additional assumptions for
Fourier coefficients. In fact, in this paper we generalize some results of A. S. Belov [1].
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1. Introduction

Let
∞∑

n=−∞
cne

inx

(
a0

2
+
∞∑
n=1

an cosnx+ bn sinnx

)
(1)

be a trigonometric series in the complex or real form, respectively, and let us write

an = cn + c−n,

bn = (cn − c−n)i,

λn =
√
|an|2 + |bn|2 =

√
2(|cn|2 + |c−n|2) ,

An(x) = cne
inx + c−ne

−inx = an cosnx+ bn sinnx,

Sn(x) = c0 +
n∑
k=1

Ak(x)

σn(x) =
1

n+ 1

n∑
k=1

Sk(x),

S̃n(x) =
n∑
k=1

(ak sin kx− bk cos kx) = −i
n∑
k=0

(
cke

ikx − c−ke−ikx
)
, n ≥ 0,
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for all n ≥ 0.
It is a well-known fact that for f ∈ L2π the L1−metric is defined by the equality

‖f‖L1 = ‖f‖ =
1

2π

∫ 2π

0

|f(x)|dx.

With regard to the series (1) the following theorem is proved [1]:

Theorem 1. If n ≥ 2 is an integer, then

2n∑
k=[ n

2 ]

λk
|n− k|+ 1

≤ 100 max
m=[n/2]−1,...,2n

‖σm − Sm‖.

In particular:

1. If
‖σm − Sm‖ = o(1) (= O(1)) , (2)

then
2n∑

k=[ n
2 ]

λk
|n− k|+ 1

= o(1) (= O(1), respectively) . (3)

2. Assume that series (1) converges (possesses bounded partial sums) in the L1−
metric, then condition (3) holds.

In the same paper the cosine and sine series are considered

a0

2
+
∞∑
n=1

an cosnx, (4)

∞∑
n=1

an sinnx, (5)

where for series (4) or (5) the coefficients an are the same as in the trigonometric
series (1) except for coefficients of series (5) which are denoted by an instead of bn,
and the following corollary is proved.

Corollary 1. It holds:

1. Assume that series (4) or (5) satisfies condition (2), then

2n∑
k=[ n

2 ]

|ak|
|n− k|+ 1

= o(1) (O(1), respectively) . (6)

2. Assume that series (4) or (5) converges (possesses bounded partial sums) in
the L1−metric, then condition (6) holds.

The aim of this paper is to generalize the above results under more general
assumptions and to obtain some corollaries.
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2. Helpful lemmas

To prove the main results first we need the following lemma.

Lemma 1. Given an arbitrary trigonometric series (1) and arbitrary natural num-
bers n and N such that N ≤ 2n+ 1, the following estimates hold:

max
k=n,...,N

‖S̃(r)
k − S̃

(r)
n−1‖ ≤ 2 max

k=n,...,N
‖S(r)

k − S
(r)
n−1‖ (7)

max
m=n,...,N

∥∥∥∥∥
 m∑
j=n

cje
ijx

(r) ∥∥∥∥∥ ≤ 3
2

max
m=n,...,N

‖S(r)
m − S

(r)
n−1‖; (8)

max
m=n,...,N

∥∥∥∥∥
 m∑
j=n

c−je
−ijx

(r) ∥∥∥∥∥ ≤ 3
2

max
m=n,...,N

‖S(r)
m − S

(r)
n−1‖; (9)

max
k=n,...,N

‖S(r)
k − S

(r)
n−1‖ ≤ 4 max

k=n−1,...,N
‖S(r)

k − σ
(r)
k ‖; (10)

N∑
k=n

krλk
k + 1− n

≤ 15 max
k=n,...,N

‖S(r)
k − S

(r)
n−1‖; (11)

N∑
k=n

krλk
N + 1− k

≤ 10‖S(r)
N − S

(r)
n−1‖, (r = 0, 1, . . . ). (12)

Proof. (7): Let m,n be two natural numbers such that m ≥ n. The r−th derivative
of the equality

S̃n−1(x)− S̃m(x) =
1
m

(
S′m(x)− S′n−1(x)

)
+
m−1∑
k=n

1
k(k + 1)

(
S′k(x)− S′n−1(x)

)
is

S̃
(r)
n−1(x)− S̃(r)

m (x) =
1
m

(
S(r+1)
m (x)− S(r+1)

n−1 (x)
)

+
m−1∑
k=n

1
k(k + 1)

(
S

(r+1)
k (x)− S(r+1)

n−1 (x)
)
.

Using the well-known Bernstein’s inequality (see [3, Chapter 10, Theorems 3.13
and 3.16]) we have

‖S(r+1)
k − S(r+1)

n−1 ‖ ≤ k‖S
(r)
k − S

(r)
n−1‖,

and

‖S̃(r)
n−1 − S̃(r)

m ‖ ≤ ‖S(r)
m − S

(r)
n−1‖+

m−1∑
k=n

1
k + 1

‖S(r)
k − S

(r)
n−1‖

≤

(
1 +

m−1∑
k=n

1
k + 1

)
max

k=n,...,m
‖S(r)

k − S
(r)
n−1‖.
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Therefore since for n ≤ N ≤ 2n+ 1

1 +
N−1∑
k=n

1
k + 1

≤ 1 +
1

n+ 1
(N − n) ≤ 2,

then we obtain

max
k=n,...,N

‖S̃(r)
n−1 − S̃(r)

m ‖ ≤ 2 max
k=n,...,N

‖S(r)
k − S

(r)
n−1‖.

(8): From the equality

2
m∑
j=n

cje
ijx = (Sm(x)− Sn−1(x))− i

(
S̃m(x)− S̃n−1(x)

)
we find

2

 m∑
j=n

cje
ijx

(r)

=
(
S(r)
m (x)− S(r)

n−1(x)
)
− i
(
S̃(r)
m (x)− S̃(r)

n−1(x)
)
,

therefore using estimate (7) we get

2 max
m=n,...,N

∥∥∥∥∥
 m∑
j=n

cje
ijx

(r) ∥∥∥∥∥ ≤ max
m=n,...,N

‖S(r)
m − S

(r)
n−1‖+ max

m=n,...,N
‖S̃(r)

m − S̃
(r)
n−1‖

≤ 3 max
m=n,...,N

‖S(r)
m − S

(r)
n−1‖,

which is the required estimate.
Estimate (9) can be proved in the same line as estimate (8). In fact, it is sufficient

to use the r−th derivative of the equality

2
m∑
j=n

c−je
−ijx = (Sm(x)− Sn−1(x)) + i

(
S̃m(x)− S̃n−1(x)

)
,

therefore by reason of its simplicity we omit it.
(10): Since the r−th derivative of the equality

Sm(x)− Sn−1(x) =
m+ 1
m

(Sm(x)− σm(x))

+
m−1∑
k=n

1
k

(Sk(x)− σk(x))− (Sn−1(x)− σn−1(x))

is

S(r)
m (x)− S(r)

n−1(x) =
m+ 1
m

(
S(r)
m (x)− σ(r)

m (x)
)

+
m−1∑
k=n

1
k

(
S

(r)
k (x)− σ(r)

k (x)
)
−
(
S

(r)
n−1(x)− σ(r)

n−1(x)
)
,
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then

‖S(r)
m − S

(r)
n−1‖ ≤

m+ 1
m
‖S(r)

m − σ(r)
m ‖+

m−1∑
k=n

1
k
‖S(r)

k − σ
(r)
k ‖+ ‖S(r)

n−1 − σ
(r)
n−1‖

= ‖S(r)
m − σ(r)

m ‖+
m∑
k=n

1
k
‖S(r)

k − σ
(r)
k ‖+ ‖S(r)

n−1 − σ
(r)
n−1‖

≤

(
2 +

m∑
k=n

1
k

)
max

k=n−1,...,m
‖S(r)

k − σ
(r)
k ‖

< 4 max
k=n−1,...,N

‖S(r)
k − σ

(r)
k ‖, for n = 1.

Let us consider now the case when n ≥ 2. Indeed, since for n ≤ N ≤ 2n + 1, we
have

2 +
m∑
k=n

1
k
≤ 2 +

N − n+ 1
n

≤ 3 +
2
n
≤ 4,

then estimate (10) holds for all n ≥ 1.
(11): By estimate (8) we have

H := π

∥∥∥∥∥
 N∑
j=n

cje
ijx

(r) ∥∥∥∥∥ ≤ 3π
2

max
k=n,...,N

‖S(r)
k − S

(r)
n−1‖. (13)

But, by the Hardy’s inequality (see [2, Chapter 7, Theorem 8.7] ) we have

H := π

∥∥∥∥∥
N∑
j=n

(ij)rcjeijx
∥∥∥∥∥ ≥

N∑
k=n

kr|ck|
k + 1− n

. (14)

From (13) and (14) we obtain

N∑
k=n

kr|ck|
k + 1− n

≤ 3π
2

max
k=n,...,N

‖S(r)
k − S

(r)
n−1‖. (15)

In a very similiar way we can find the following estimate

N∑
k=n

kr|c−k|
k + 1− n

≤ 3π
2

max
k=n,...,N

‖S(r)
k − S

(r)
n−1‖. (16)

Since
λk =

√
2 (|ck|2 + |c−k|2) ≤

√
2 (|ck|+ |c−k|) ,

then by (15) and (16) we have

N∑
k=n

krλk
k + 1− n

≤
√

2
N∑
k=n

kr (|ck|+ |c−k|)
k + 1− n

≤ 15 max
k=n,...,N

‖S(r)
k − S

(r)
n−1‖,
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which proves estimate (11).
(12): The r−th derivative of the equality

SN (x)− Sn−1(x) =
N∑
j=n

cje
ijx +

N∑
j=n

c−je
−ijx

is

S
(r)
N (x)− S(r)

n−1(x) =
N∑
j=n

(ij)(r)cjeijx +
N∑
j=n

(−ij)(r)c−je−ijx,

therefore using the Hardy’s inequality we get

N∑
k=n

kr|ck|
N + 1− k

≤ π‖S(r)
N − S

(r)
n−1‖,

and similarly
N∑
k=n

kr|c−k|
N + 1− k

≤ π‖S(r)
N − S

(r)
n−1‖.

Using the last two estimates we obtain

N∑
k=n

krλk
N + 1− k

≤
N∑
k=n

kr
√

2 (|ck|+ |c−k|)2

N + 1− k

≤
√

2
N∑
k=n

kr (|ck|+ |c−k|)
N + 1− k

≤ 2π
√

2‖S(r)
N − S

(r)
n−1‖

≤ 10‖S(r)
N − S

(r)
n−1‖.

This completes the proof of Lemma 1.

We shall prove now another lemma which is not needed in this paper. Its only
importance is that it generalizes Lemma 2 in [1].

Lemma 2. For any trigonometric series (1) and an arbitrary natural number n,
the following estimate holds (r = 0, 1, . . . ):

‖σ(r)
n − S(r)

n ‖ ≤
(n− 1)r

n+ 1

n−1∑
j=1

‖Sj − S[j/2]‖+ 2nr max
k=[n/2],...,n

‖Sk − S[n/2]‖. (17)

If
nr max

k=[n/2],...,n
‖Sk − S[n/2]‖ = o(1) (= O(1)) , (18)

then condition (21) (see section 3 below in this paper) is satisfied.
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Proof. Applying the Bernstein’s inequality to the r−th derivative of the equality

(n+ 1) (Sn(x)− σn(x)) =
n−1∑
j=1

(
Sj(x)− S[j/2](x)

)
+ n

(
Sn(x)− S[n/2](x)

)
−2

n−1∑
j=[n/2]+1

(
Sj(x)− S[n/2](x)

)
,

we obtain

(n+ 1)‖S(r)
n − σ(r)

n ‖ ≤
n−1∑
j=1

‖S(r)
j − S

(r)
[j/2]‖+ n‖S(r)

n − S
(r)
[n/2]‖

+2
n−1∑

j=[n/2]+1

‖S(r)
j − S

(r)
[n/2]‖

≤
n−1∑
j=1

‖S(r)
j − S

(r)
[j/2]‖+ (2n− 1) max

k=[n/2],...,n
‖S(r)

k − S
(r)
[n/2]‖

≤ (n− 1)r
n−1∑
j=1

‖Sj − S[j/2]‖

+2(n+ 1)nr max
k=[n/2],...,n

‖Sk − S[n/2]‖.

Supposing that (18) holds, then obviously from (17) the estimate (21) holds.

Lemma 3. Given an arbitrary trigonometric series (1) and arbitrary natural num-
bers n and N such that N ≤ 2n+ 1, the following estimates hold:

max
k=n,...,N

‖S̃(r)
k − S̃

(r)
n−1‖ ≤ 2Nr max

k=n,...,N
‖Sk − Sn−1‖;

max
m=n,...,N

∥∥∥∥∥
 m∑
j=n

cje
ijx

(r) ∥∥∥∥∥ ≤ 3
2
Nr max

m=n,...,N
‖Sm − Sn−1‖;

max
m=n,...,N

∥∥∥∥∥
 m∑
j=n

c−je
−ijx

(r) ∥∥∥∥∥ ≤ 3
2
Nr max

m=n,...,N
‖Sm − Sn−1‖;

max
k=n,...,N

‖S(r)
k − S

(r)
n−1‖ ≤ 4Nr max

k=n−1,...,N
‖Sk − σk‖;

N∑
k=n

krλk
k + 1− n

≤ 15Nr max
k=n,...,N

‖Sk − Sn−1‖;

N∑
k=n

krλk
N + 1− k

≤ 10Nr‖SN − Sn−1‖, (r = 0, 1, . . . ).
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Proof. This lemma can be proved in a very same manner as Lemma 1. In this case
it is sufficient to use the well-known Bernstain’s inequality, therefore we shall omit
it.

Remark 1. Putting r = 0 to Lemma 1 and Lemma 2 we obtain Lemma 1 and
Lemma 2, respectively ,proved in [1]. Lemma 1 in [1] is a consequence of Lemma 3
as well.

3. Main results

Let

∞∑
n=−∞

(in)rcneinx
( ∞∑
n=1

nr
[
an cos

(
nx+

rπ

2

)
+ bn sin

(
nx+

rπ

2

)])
(19)

be the r−th derivative of a trigonometric series (1) in the complex or real form,
respectively.

In this section we shall prove the following theorems which generalize Theorem 1
and Corollary 1.

Theorem 2. If n ≥ 2 is an integer and r = 0, 1, . . . , then

2n∑
k=[ n

2 ]

krλk
|n− k|+ 1

≤ 100 max
m=[n/2]−1,...,2n

‖σ(r)
m − S(r)

m ‖. (20)

In particular:

1. If
‖σ(r)

m − S(r)
m ‖ = o(1) (= O(1)) , (21)

then
2n∑

k=[ n
2 ]

krλk
|n− k|+ 1

= o(1) (= O(1), respectively) . (22)

2. Assume that series (19) converges (possesses bounded partial sums) in the
L1−metric; then condition (22) holds.

Proof. From Lemma 1, according to estimates (11) and (10)

2n∑
k=n

krλk
k + 1− n

≤ 15 max
k=n,...,2n

∥∥∥S(r)
k − S

(r)
n−1

∥∥∥ ≤ 60 max
k=n,...,2n

∥∥∥S(r)
k − σ

(r)
k

∥∥∥ . (23)

On the other hand, according to estimates (12) and (10), for 2[n/2] + 1 ≥ n we have

n∑
k=[ n

2 ]

krλk
n+ 1− k

≤ 10
∥∥∥∥S(r)

n − S
(r)

[ n
2 ]−1

∥∥∥∥ ≤ 40 max
k=[ n

2 ]−1,...,n

∥∥∥S(r)
k − σ

(r)
k

∥∥∥ . (24)
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Adding (23) and (24) we obtain (20). In addition, (21) and (20) imply (22).
Let series (19) converge (possess bounded partial sums) in the L1−metric, then∥∥∥σ(r)

m − S(r)
m

∥∥∥ ≤ ∥∥∥f (r) − S(r)
m

∥∥∥+
∥∥∥σ(r)

m − f (r)
∥∥∥ = o(1) (= O(1)) .

Therefore (21) implies (22). This completes the proof of the theorem.

The following corollaries are direct consequeces of Theorem 2.

Corollary 2. It holds:

1. Assume that series (4) or (5) satisfies condition (2), then

2n∑
k=[ n

2 ]

kr|ak|
|n− k|+ 1

= o(1) (O(1), respectively) .

2. Assume that series (4) or (5) converges (possesses bounded partial sums) in
the L1−metric, then condition (6) holds.

Remark 2. If we put r = 0 to Theorem 2, we obtain the Theorem 1. In other
words, Theorem 2 is a generalization of Theorem 1. Likewise Corollary 1 is a direct
consequence of Corollary 2 (the case r = 0).

Finally, let us formulate a statement that generalizes only part (1) of Theorem 1.

Corollary 3. If n ≥ 2 is an integer and r = 0, 1, . . . , then

2n∑
k=[ n

2 ]

krλk
|n− k|+ 1

≤ 100 max
m=[n/2]−1,...,2n

{
mr‖σm − Sm‖

}
.

If
mr‖σm − Sm‖ = o(1) (= O(1)) ,

then
2n∑

k=[ n
2 ]

krλk
|n− k|+ 1

= o(1) (= O(1), respectively) .

Proof. The proof of this corollary is obvious, therefore we shall omit it.

Remark 3. For Lp2π we write

‖f‖p =
(

1
2π

∫ 2π

0

|f(x)|p dx
)1/p

for 1 ≤ p <∞,

‖f‖∞ = ess sup
x
|f(x)| for p =∞.

We observe that estimates (7)-(10) in Lemma 1 and estimate (17) in Lemma 2 with
all the corresponding proofs hold true when the norm ‖ · ‖ is replaced by the norm
‖ · ‖p for 1 ≤ p ≤ ∞.
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