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The Knopp and statistical α-cores of sequences
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Abstract. In this paper, we give some non-trivial generalizations of the Knopp core and
statistical core theorems introduced by Knopp [Math. Z. 31 (1930) 97-127] and by Fridy
and Orhan [J. Math. Anal. Appl. 208 (1997) 520-527], respectively.
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1. Introduction

Let m and c be the linear spaces of complex bounded and convergent sequences
x = {xn}, respectively, endowed with the normed by ‖x‖ = sup |xn|. Let A = (ank)
be an infinite matrix and we write (Ax)n :=

∑
k ankxk provided that the series

converges for each n ∈ N. By Ax we denote the sequence {(Ax)n}. If limAx = limx
for each x ∈ c, then we say that A is regular [1, 4, 18] and write A ∈ (c, c; p).
The Silverman-Toeplitz theorem gives the necessary and sufficient conditions for the
regularity of the matrix A (see, e.g., [1]). A matrix A = (ank) is called normal if it
is a lower semi triangular matrix with non-zero diagonal entries [4].

The concept of the core of a complex number sequence was introduced by Knopp
[11]. For brevity we shall denote the Knopp core of x by K − core {x}. Recall that
it is defined by

K − core {x} :=
∞⋂
n=1

Cn(x),

where Cn(x) is the least closed convex hull of {xk}k≥n. The famous Knopp’s core
theorem (see e.g., [4, 11, 5, 14, 17, 20]) gives necessary and sufficient conditions on
a matrix A so that the Knopp core of Ax is contained in the Knopp core of x; that
is,

K − core {Ax} ⊆ K − core {x}

holds. Let C denote the set of complex numbers. Shcherbakoff [19] proved for every
bounded x that
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K − core {x} :=
⋂
z∈C

Bx(z),

where

Bx(z) :=
{
w ∈ C : |w − z| ≤ lim sup

k
|xk − z|

}
.

He also generalized the notion of the core of a bounded complex sequence by intro-
ducing the idea of the generalized α − core of a bounded complex sequence x as
follows:

K(α) − core {x} :=
⋂
z∈C

Bαx (z),

where

Bαx (z) :=
{
w ∈ C : |w − z| ≤ α lim sup

k
|xk − z| , α ≥ 1

}
.

Observe that the case of α = 1 in the above definition reduces the usual Knopp core.
In [16] Natarajan has proved the following theorem.

Theorem 1 (see [16]). When K = R or C, an infinite matrix A = (ank), ank ∈ K
n, k = 0, 1, 2, ... is such that

K − core {Ax} ⊆ K(α) − core {x} , α ≥ 1, (1)

for any bounded sequence x if and only if A is regular and satisfies

lim sup
n→∞

( ∞∑
k=0

|ank|

)
≤ α .

If K ⊆ N, then let Kn := {k ∈ K : k ≤ n}; and |Kn| will denote the cardinality
of Kn. The natural density of K is given by δ(K) := limn n

−1 |Kn| provided that the
limit exists. In [8] a statistical cluster point of a sequence x is defined as a number
γ such that for every ε > 0 the set {k ∈ N : |xk − γ| < ε} does not have density
zero. In [9] the sequence x is defined to be statistically bounded if x has a bounded
subsequence of density one; and the statistical core of such an x of real values is the
closed interval [st− lim inf x, st− lim supx], where st− lim inf x and st− lim supx are
the least and greatest statistical cluster points of x, respectively (see [9, 10, 6]). It is
known [9] that for a sequence x the number β is the st− lim supx if and only if for
every ε > 0, δ{k : xk > β−ε} 6= 0 and δ{k : xk > β+ε} = 0. The dual statement for
st− lim inf x is as follows: The number η is the st− lim inf x if and only if for every
ε > 0, δ{k : xk < η + ε} 6= 0 and δ{k : xk < η − ε} = 0. A statistically bounded
sequence x is statistically convergent if and only if st − lim supx = st − lim inf x
(see [9]). We denote the all statistical convergent sequences by st. Some results on
statistical convergence may be found in the papers [8, 9, 3, 7, 15].

In [10] Fridy and Orhan defined a statistical core of a complex sequence x as
follows:
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Definition 1 (see [10]). Let x be a statistically bounded sequence, and let, for each
z ∈ C,

B∗x(z) :=
{
w ∈ C : |w − z| ≤ st− lim sup

k
|xk − z|

}
.

Then the statistical core of x is defined by

st− core {x} :=
⋂
z∈C

B∗x(z).

In [10] the statistical core analogs of the Knopp core theorem was obtained.

Theorem 2 (see [10]). If the matrix A satisfies supn
∑
k

|ank| < ∞, then K −

core {Ax} ⊆ st − core {x} for every x ∈ m if and only if the following conditions
hold:

(i) A is regular and lim
n

∑
k∈E
|ank| = 0 whenever δ(E) = 0, E ⊆ N ,

(ii) lim
n

∞∑
k=1

|ank| = 1.

We can generalize the notion of the statistical core of a bounded complex sequence
by introducing the idea of the generalized statistical α-core of a bounded complex
sequence x as

st(α) − core {x} :=
⋂
z∈C

Cαx (z),

where Cαx (z) :=
{
w ∈ C : |w − z| ≤ α st− lim sup

k
|xk − z| , α ≥ 1

}
. When α = 1,

st(α) − core {x} coincides with the usual statistical core.

2. The main results

In this paper, with the help of the method used in Natarajan [16], we improve the
results introduced by Fridy and Orhan [10].

Theorem 3. If A satisfies ‖A‖ := supn
∑
k

|ank| <∞, then

K − core {Ax} ⊆ st(α) − core {x} (2)

for every x ∈ m if and only if the following conditions hold:
(i) A is regular,
(ii) lim

n

∑
k∈E
|ank| = 0 whenever δ(E) = 0, E ⊆ N,

(iii) lim
n

∞∑
k=1

|ank| ≤ α, (α > 1).
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Proof. Necessity: Let ‖A‖ <∞. Assume that, for α > 1, x ∈ m, (2) holds. Then,
for all x ∈ m,

K − core {Ax} ⊆ st(α) − core {x} ⊆ K(α) − core {x} .

Then by [19, 16], A is regular and (iii) holds. If x is statistically convergent to L,
then using the idea of Fridy and Orhan [10], we show that A maps st ∩m into c.
Hence, by Theorem 2 of [3] and Theorem 1 of [13], we conclude that A satisfies (ii)
(see also [12]).

Sufficiency: Assume that (i), (ii) and (iii) hold. Let w ∈ K − core {Ax} and
α ≥ 1. For any z ∈ C, we have

|w − z| ≤ lim sup
n

∣∣∣∣∣
∞∑
k=1

ank(z − xk)

∣∣∣∣∣ .
Let r = st − lim sup

k
|xk − z| . Then we have αr = st − lim sup

k
(α |xk − z|), α ≥ 1.

Now, for given ε > 0, setting E = {k : α |z − xk| > αr + ε} , α ≥ 1, we see that
δ(E) = 0. Then, we obtain∣∣∣∣∣

∞∑
k=1

ank(z − xk)

∣∣∣∣∣ ≤ sup
k
|z − xk|

∑
k∈E

|ank|+ (αr + ε)
∑
k/∈E

|ank| (3)

Now (i), (ii) and (iii) yield that

lim sup
n

∣∣∣∣∣
∞∑
k=1

ank(z − xk)

∣∣∣∣∣ ≤ αr + ε. (4)

By (4), we have |w − z| ≤ αr+ε. Since ε was arbitrary, we may write that |w − z| ≤
αr. Hence, we get w ∈ Cαx (z), i.e.,

w ∈ stα − core {x} , α ≥ 1.

The theorem is proved.

Since st−core of any sequence is a subset of the K−core, therefore the preceding
theorem gives the following result immediately.

Corollary 1. If the matrix A satisfies sup
n

∞∑
k=1

|ank| < ∞ and properties (ii) and

(iii) of Theorem 3, then

st− core {Ax} ⊆ st(α) − core {x} .

Before giving some further results, we . . . restate a lemma due to Choudhary [2]
that we need for our purposes.
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Lemma 1 (see [2]). Let n be fixed. In order to define (Ax)n, whenever Bx bounded,
it is necessary and sufficient that

(i) cnk =
∞∑
v=k

anvb
−1
vk exists for all k,

(ii)
∞∑
k=0

|cnk| <∞ for all n,

(iii)
j∑

k=0

∣∣∣∣∣ ∞∑v=j+1

anvb
−1
vk

∣∣∣∣∣→ 0 as j →∞

should hold for the n considered. If these conditions are satisfied, then for bounded
Bx,

(Ax)n = (Cy)n, (5)

where y := Bx .

Whenever B is normal, B has a reciprocal. Denote its reciprocal by B−1 =
(b−1
nk ). Note that if B is a normal matrix, then the space mB := {x : Bx ∈ m} is

isometrically isomorphic to m. Hence given a sequence y ∈ mB , then there exists a
unique sequence x ∈ mB so that y := Bx.

Our next result extends Theorem 2 of Fridy and Orhan [10] to st(α) − core.

Theorem 4. Let B = (bnk) be a normal matrix and A any matrix. In order to have
that, whenever Bx is bounded, Ax should exist and be bounded and

K − core {Ax} ⊆ st(α) − core {Bx} , α ≥ 1 (6)

it is necessary and sufficient that

(i) C = AB−1 exists,

(ii) C is regular and lim
n

∑
k∈E
|cnk| = 0, for every E ⊆ N with δ(E) = 0,

(iii) lim sup
n→∞

( ∞∑
k=0

|cnk|
)
≤ α,

(iv) for any fixed n,
j∑

k=0

∣∣∣∣∣ ∞∑v=j+1

anvb
−1
vk

∣∣∣∣∣→ 0 (j →∞) .

Proof. Necessity: Assume that (6) holds. Write y := Bx . Let (Ax)n exist for each
n whenever y is bounded. Then, by Lemma 1, (i) and (iv) hold. Moreover, for every
bounded y, we have (5). Hence, by (6) we get K − core {Cy} ⊆ st(α) − core {y} ,
α ≥ 1, for every bounded y. Now it follows from Theorem 3 that (ii) and (iii) hold.

Sufficiency: Observe that conditions (i) - (iv) imply the conditions of Lemma 1.
So (5) holds and Cy is bounded whenever y ∈ m. Now from Theorem 3, (ii) and
(iii) imply that K−core {Cy} ⊆ st(α)−core {y} , α ≥ 1, provided that y is bounded.
Writing y = Bx we immediately get (6), hence the result.

Since st− core {Ax} ⊆ K − core {Ax}, we get the following result at once.
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Corollary 2. If A and B satisfy conditions (i)-(iv) of Theorem 4, then

st− core {Ax} ⊆ st(α) − core {Bx} , α ≥ 1

for every x such that Bx ∈ m.

Recall that the matrix A is called row-finite if every row contains only a finite
number of non-zero elements. In this case (iii) of Theorem 4 is zero for sufficiently
large j. Hence, (iii) is evidently satisfied. In this case Theorem 4 reduces to the
following

Theorem 5. Let B = (bnk) be a normal matrix. Then, for a row-finite matrix A
such that ‖A‖ <∞,

K − core {Ax} ⊆ st(α) − core {Bx} , α ≥ 1, for all x ∈ mB

if and only if (i) and (iii) of Theorem 4 hold.

If we interchange the roles of the matrices A and B in Theorem 4, we immediately
get the following

Theorem 6. Let B = (bnk) and A = (ank) be normal matrices. Then we have, for
all x ∈ mB ∩mA, that

K − core {Ax} = st(α) − core {Bx}

if and only if

(i) C = AB−1 and D = BA−1 exist,

(ii) C and D are regular, i.e.

lim
n

∑
k∈E

|cnk| = 0 and lim
n

∑
k∈E

|dnk| = 0

for every E ⊆ N with δ(E) = 0,

(iii) lim sup
n→∞

( ∞∑
k=0

|cnk|
)
≤ a and lim sup

n→∞

( ∞∑
k=0

|dnk|
)
≤ α,

(iv) for any fixed n
j∑

k=0

∣∣∣∣∣∣
∞∑

v=j+1

anvb
−1
vk

∣∣∣∣∣∣→ 0 as j →∞,

and
j∑

k=0

∣∣∣∣∣∣
∞∑

v=j+1

bnva
−1
vk

∣∣∣∣∣∣→ 0 as j →∞.
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