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The Knopp and statistical a-cores of sequences

SEYHMUS YARDIMCI!*

L Department of Mathematics, Faculty of Science, University of Ankara, 06 100
Tandogan-Ankara, Turkey

Received February 2, 2009; accepted June 9, 2009

Abstract. In this paper, we give some non-trivial generalizations of the Knopp core and
statistical core theorems introduced by Knopp [Math. Z. 31 (1930) 97-127] and by Fridy
and Orhan [J. Math. Anal. Appl. 208 (1997) 520-527], respectively.
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1. Introduction

Let m and ¢ be the linear spaces of complex bounded and convergent sequences
x = {x,}, respectively, endowed with the normed by ||z|| = sup |z,|. Let A = (ank)
be an infinite matrix and we write (Az), := ), anrxr provided that the series
converges for each n € N. By Az we denote the sequence {(Az),}. If lim Az = limx
for each & € ¢, then we say that A is regular [1, 4, 18] and write A € (¢, ¢;p).
The Silverman-Toeplitz theorem gives the necessary and sufficient conditions for the
regularity of the matrix A (see, e.g., [1]). A matrix A = (ayx) is called normal if it
is a lower semi triangular matrix with non-zero diagonal entries [4].

The concept of the core of a complex number sequence was introduced by Knopp
[11]. For brevity we shall denote the Knopp core of by K — core {z}. Recall that
it is defined by

K —core{z} := ﬂ Cp(x),
n=1

where C),(x) is the least closed convex hull of {x}},~,. The famous Knopp’s core
theorem (see e.g., [4, 11, 5, 14, 17, 20]) gives necessary and sufficient conditions on
a matrix A so that the Knopp core of Az is contained in the Knopp core of z; that
is,

K — core{Az} C K — core{x}

holds. Let C denote the set of complex numbers. Shcherbakoff [19] proved for every
bounded z that
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K — core{z} = m B.(2),

zeC

where
B, (z) := {w e€C:|w—z| <limsup |z, — z|} .
k

He also generalized the notion of the core of a bounded complex sequence by intro-
ducing the idea of the generalized « — core of a bounded complex sequence x as
follows:

K@ — core{x} = m B&(z),
z€C

where
B (z) := {we@:|w—z§a limsup|xk—z|,a21}.
k

Observe that the case of @ = 1 in the above definition reduces the usual Knopp core.
In [16] Natarajan has proved the following theorem.

Theorem 1 (see [16]). When K =R or C, an infinite matrizc A = (ank), ank € K
n,k=0,1,2,... s such that

K —core{Az} C K —core {2}, a >1, (1)

for any bounded sequence x if and only if A is reqular and satisfies

lim sup <Z |ank|> <a.

If K CN, then let K,, := {k € K : k < n}; and |K,| will denote the cardinality
of K,,. The natural density of K is given by §(K) := lim,, n=! | K,,| provided that the
limit exists. In [8] a statistical cluster point of a sequence z is defined as a number
v such that for every € > 0 the set {k € N : |z, — 7| < €} does not have density
zero. In [9] the sequence z is defined to be statistically bounded if « has a bounded
subsequence of density one; and the statistical core of such an x of real values is the
closed interval [st —lim inf x, st —lim sup x|, where st —lim inf z and st —lim sup x are
the least and greatest statistical cluster points of x, respectively (see [9, 10, 6]). It is
known [9] that for a sequence x the number § is the st — limsup z if and only if for
every € > 0, 0{k : x, > f—¢c} # 0 and §{k : & > B+¢c} = 0. The dual statement for
st —liminf x is as follows: The number 7 is the st — liminf z if and only if for every
e>0,0k:ap<n+e} #0and 6{k: zp <n—e} =0. A statistically bounded
sequence x is statistically convergent if and only if st — limsupz = st — liminfx
(see [9]). We denote the all statistical convergent sequences by st. Some results on
statistical convergence may be found in the papers [8, 9, 3, 7, 15].

In [10] Fridy and Orhan defined a statistical core of a complex sequence z as
follows:
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Definition 1 (see [10]). Let x be a statistically bounded sequence, and let, for each
zeC,

B (z) = {w €C:|w—z| < st—limsup |z —z}.
k

Then the statistical core of x is defined by

st — core{z} = m B} (z).

zeC
In [10] the statistical core analogs of the Knopp core theorem was obtained.

Theorem 2 (see [10]). If the matriz A satisfies sup,, Y |ank| < oo, then K —
k
core {Azx} C st — core{x} for every x € m if and only if the following conditions
hold:
(1) A is regular and lim Y |apk| =0 whenever §(E) =0, EC N,
" keE

(#) im > |ank| = 1.
" k=1

We can generalize the notion of the statistical core of a bounded complex sequence
by introducing the idea of the generalized statistical a-core of a bounded complex
sequence x as

st() — core {x} = m Co(2),
zeC

where CS(z) = {wEC:|w—z| < a st —limsup |z — 2|, & > 1}. When a =1,
k

st(®) — core {x} coincides with the usual statistical core.

2. The main results

In this paper, with the help of the method used in Natarajan [16], we improve the
results introduced by Fridy and Orhan [10].

Theorem 3. If A satisfies | A|| :=sup,, Y. |ank| < 00, then
k

K — core {Az} C st'® — core {z} (2)

for every x € m if and only if the following conditions hold:
(1) A is regular,

(#) lim > |ank| = 0 whenever §(E) =0, E CN,
" keE
&)
(#3) Um 3 |ank] < o, (@ 2 1).
" k=1
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Proof. Necessity: Let ||A|| < co. Assume that, for o > 1, € m, (2) holds. Then,
for all z € m,

K — core {Az} C st — core {z} C K™ — core {z}.

Then by [19, 16], A is regular and (ii) holds. If x is statistically convergent to L,
then using the idea of Fridy and Orhan [10], we show that A maps st Nm into c.
Hence, by Theorem 2 of [3] and Theorem 1 of [13], we conclude that A satisfies (i%)
(see also [12]).

Sufficiency: Assume that (i), (i¢) and (¢i7) hold. Let w € K — core{Az} and
a > 1. For any z € C, we have

|w — z| < limsup

n

Z ank(z — xp)

k=1

Let r = st — limsup |z, — z| . Then we have ar = st — limsup(« |z — 2|), @ > 1.
k k

Now, for given € > 0, setting £ = {k: a|z — x| > ar+¢e}, a > 1, we see that
0(F) = 0. Then, we obtain

Z ank(z — xp)

k=1

Ssgplz—xklzIank|+(0ﬂ‘+€)2\ank| 3)

keE k¢E

Now (), (i7) and (44i) yield that

o

Z ank(z — xg)

k=1

lim sup
n

<ar+e. (4)

By (4), we have |w — z| < ar+e¢. Since € was arbitrary, we may write that |w — z| <
ar. Hence, we get w € C%(z), i.e.,

w € st* —core{z}, a>1.

The theorem is proved. O

Since st— core of any sequence is a subset of the K —core, therefore the preceding
theorem gives the following result immediately.

o0
> lank| < oo and properties (i) and

Corollary 1. If the matriz A satisfies sup
n k=1

(#5i) of Theorem 3, then
st — core {Az} C st' — core {z}.

Before giving some further results, we ...restate a lemma due to Choudhary [2]
that we need for our purposes.
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Lemma 1 (see [2]). Letn be fized. In order to define (Azx)
it is necessary and sufficient that
&)

(1) cop = > am,b;k1 exists for all k,
v=k

whenever Bx bounded,

n’

o0

(1) > |enr] < o0 for alln,

J 00
(ii5) Y° | > anubyi| —0 asj— oo
k=0 |v=5+1

should hold for the n considered. If these conditions are satisfied, then for bounded
Bz,

(Az),, = (CY)n, (5)
where y := Bx .

Whenever B is normal, B has a reciprocal. Denote its reciprocal by B~! =
(b,}}). Note that if B is a normal matrix, then the space mp := {z : Bz € m} is
isometrically isomorphic to m. Hence given a sequence y € mp, then there exists a
unique sequence x € mp so that y := Bx.

Our next result extends Theorem 2 of Fridy and Orhan [10] to st(*) — core.

Theorem 4. Let B = (byy) be a normal matriz and A any matriz. In order to have
that, whenever Bx is bounded, Ax should exist and be bounded and

K — core {Az} C st'®) — core{Bz}, a > 1 (6)
it is necessary and sufficient that
(i) C = AB™! exists,
(16) Cis regular and li;bn kZE |enk| =0, for every E C N with §(E) =0,
€

(#47) limsup <Z |an|> < q,

n—oo k=0

00 1
Z anvbvk
v=j+1

(iv) for any fized n, z]:

k=0

-0 (j — 00).

Proof. Necessity: Assume that (6) holds. Write y := Bx . Let (Az),, exist for each
n whenever y is bounded. Then, by Lemma 1, (i) and (iv) hold. Moreover, for every
bounded y, we have (5). Hence, by (6) we get K — core {Cy} C st(®) — core{y},
a > 1, for every bounded y. Now it follows from Theorem 3 that (#i) and (4i¢) hold.

Sufficiency: Observe that conditions (¢) - (iv) imply the conditions of Lemma 1.
So (5) holds and Cy is bounded whenever y € m. Now from Theorem 3, (i7) and
(#3) imply that K —core {Cy} C st(®) —core {y}, a > 1, provided that y is bounded.
Writing y = Bz we immediately get (6), hence the result. O

Since st — core {Az} C K — core { Az}, we get the following result at once.
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Corollary 2. If A and B satisfy conditions (i)-(iv) of Theorem 4, then
st — core {Az} C st'® — core {Bz}, a >1

for every x such that Bx € m.

Recall that the matrix A is called row-finite if every row contains only a finite
number of non-zero elements. In this case (iii) of Theorem 4 is zero for sufficiently
large j. Hence, (iii) is evidently satisfied. In this case Theorem 4 reduces to the
following

Theorem 5. Let B = (by) be a normal matriz. Then, for a row-finite matriz A
such that || A|| < oo,

K — core {Az} C st'® — core{Bz}, a > 1, for allz € mp
if and only if (i) and (i#i) of Theorem 4 hold.

If we interchange the roles of the matrices A and B in Theorem 4, we immediately
get the following

Theorem 6. Let B = (b,) and A = (ank) be normal matrices. Then we have, for
all x € mp Nmy, that

K — core {Az} = st' — core { Bz}
if and only if
(i) C = AB~! and D = BA™! emist,

(#1) C and D are regular, i.e.

limz lenk| =0 and limz |dnk] =0

keE keE

for every E C N with §(E) =0,

(#i¢) limsup (Z |cnk|> < a and limsup (Z |dnk|> <a,
k=0

n— oo k=0 n— o0

(iv) for any fized n

7 [*S)
E g am,b;k1 —0 as j — oo,
k=0 |v=j+1

and

Z i bm)a;kl — 0 as j — oo.

k=0 |v=7+1
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